首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The mammalian testis expresses a class of small noncoding RNAs that interact with mammalian PIWI proteins. In mice, the PIWI-interacting RNAs (piRNAs) partner with mammalian PIWI proteins, PIWIL1 and PIWIL2, also known as MIWI and MILI, to maintain transposon silencing in the germline genome. Here, we demonstrate that inactivation of Nct1/2, two noncoding RNAs encoding piRNAs, leads to derepression of LINE-1 (L1) but does not affect mouse viability, spermatogenesis, testicular gene expression, or fertility. These findings indicate that piRNAs from a cluster on chromosome 2 are necessary to maintain transposon silencing.  相似文献   

2.
3.
Piwi-interacting RNAs (piRNAs) and CRISPR RNAs (crRNAs) are two recently discovered classes of small noncoding RNA that are found in animals and prokaryotes, respectively. Both of these novel RNA species function as components of adaptive immune systems that protect their hosts from foreign nucleic acids-piRNAs repress transposable elements in animal germlines, whereas crRNAs protect their bacterial hosts from phage and plasmids. The piRNA and CRISPR systems are nonhomologous but rather have independently evolved into logically similar defense mechanisms based on the specificity of targeting via nucleic acid base complementarity. Here we review what is known about the piRNA and CRISPR systems with a focus on comparing their evolutionary properties. In particular, we highlight the importance of several factors on the pattern of piRNA and CRISPR evolution, including the population genetic environment, the role of alternate defense systems and the mechanisms of acquisition of new piRNAs and CRISPRs.  相似文献   

4.
RNA interference (RNAi)-related pathways affect gene activity by sequence-specific recruitment of Ago proteins to mRNA target molecules. The sequence specificity of this process stems from small RNA (sRNA) co-factors bound by the Ago protein. Stability of sRNA molecules in some pathways is in part regulated by Hen1-mediated methylation of their 3' ends. Here we describe the effects of the Caenorhabditis elegans HEN1 RNA-methyl-transferase homolog, HENN-1, on the different RNAi pathways in this nematode. We reveal differential effects of HENN-1 on the two pathways that are known to employ methylated sRNA molecules: the 26G and 21U pathways. Surprisingly, in the germline, stability of 21U RNAs, the C. elegans piRNAs, is only mildly affected by loss of methylation; and introduction of artificial 21U target RNA does not further destabilize non-methylated 21U RNAs. In contrast, most 26G RNAs display reduced stability and respond to loss of HENN-1 by displaying increased 3'-uridylation frequencies. Within the 26G RNA class, we find that specifically ERGO-1-bound 26G RNAs are modified by HENN-1, while ALG-3/ALG-4-bound 26G RNAs are not. Global gene expression analysis of henn-1 mutants reveals mild effects, including down-regulation of many germline-expressed genes. Our data suggest that, apart from direct effects of reduced 26G RNA levels of henn-1 on gene expression, most effects on global gene expression are indirect. These studies further refine our understanding of endogenous RNAi in C. elegans and the roles for Hen1 like enzymes in these pathways.  相似文献   

5.
6.
Zhong S  Li H  Bodi Z  Button J  Vespa L  Herzog M  Fray RG 《The Plant cell》2008,20(5):1278-1288
N6-Methyladenosine is a ubiquitous modification identified in the mRNA of numerous eukaryotes, where it is present within both coding and noncoding regions. However, this base modification does not alter the coding capacity, and its biological significance remains unclear. We show that Arabidopsis thaliana mRNA contains N6-methyladenosine at levels similar to those previously reported for animal cells. We further show that inactivation of the Arabidopsis ortholog of the yeast and human mRNA adenosine methylase (MTA) results in failure of the developing embryo to progress past the globular stage. We also demonstrate that the arrested seeds are deficient in mRNAs containing N6-methyladenosine. Expression of MTA is strongly associated with dividing tissues, particularly reproductive organs, shoot meristems, and emerging lateral roots. Finally, we show that MTA interacts in vitro and in vivo with At FIP37, a homolog of the Drosophila protein FEMALE LETHAL2D and of human WILMS' TUMOUR1-ASSOCIATING PROTEIN. The results reported here provide direct evidence for an essential function for N6-methyladenosine in a multicellular eukaryote, and the interaction with At FIP37 suggests possible RNA processing events that might be regulated or altered by this base modification.  相似文献   

7.
Glomeruli comprise an important filtering apparatus in the kidney and are derived from the metanephric mesenchyme. A nuclear protein, Sall1, is expressed in this mesenchyme, and we previously reported that Trb2, a mouse homolog of Drosophila tribbles, is expressed in the mesenchyme-derived tissues of the kidney by microarray analyses using Sall1-GFP knock-in mice. In the present report, we detected Trb2 expression in a variety of organs during gestation, including the kidneys, mesonephros, testes, heart, eyes, thymus, blood vessels, muscle, bones, tongue, spinal cord, and ganglions. In the developing kidney, Trb2 signals were detected in podocytes and the prospective mesangium of the glomeruli, as well as in ureteric bud tips. However, Trb2 mutant mice did not display any apparent phenotypes and no proteinuria was observed, indicating normal glomerular functions. These results suggest that Trb2 plays minimal roles during kidney and mouse development.  相似文献   

8.
Small RNAs regulate diverse biological processes by directing effector proteins called Argonautes to silence complementary mRNAs. Maturation of some classes of small RNAs involves terminal 2'-O-methylation to prevent degradation. This modification is catalyzed by members of the conserved HEN1 RNA methyltransferase family. In animals, Piwi-interacting RNAs (piRNAs) and some endogenous and exogenous small interfering RNAs (siRNAs) are methylated, whereas microRNAs are not. However, the mechanisms that determine animal HEN1 substrate specificity have yet to be fully resolved. In Caenorhabditis elegans, a HEN1 ortholog has not been studied, but there is evidence for methylation of piRNAs and some endogenous siRNAs. Here, we report that the worm HEN1 ortholog, HENN-1 (HEN of Nematode), is required for methylation of C. elegans small RNAs. Our results indicate that piRNAs are universally methylated by HENN-1. In contrast, 26G RNAs, a class of primary endogenous siRNAs, are methylated in female germline and embryo, but not in male germline. Intriguingly, the methylation pattern of 26G RNAs correlates with the expression of distinct male and female germline Argonautes. Moreover, loss of the female germline Argonaute results in loss of 26G RNA methylation altogether. These findings support a model wherein methylation status of a metazoan small RNA is dictated by the Argonaute to which it binds. Loss of henn-1 results in phenotypes that reflect destabilization of substrate small RNAs: dysregulation of target mRNAs, impaired fertility, and enhanced somatic RNAi. Additionally, the henn-1 mutant shows a weakened response to RNAi knockdown of germline genes, suggesting that HENN-1 may also function in canonical RNAi. Together, our results indicate a broad role for HENN-1 in both endogenous and exogenous gene silencing pathways and provide further insight into the mechanisms of HEN1 substrate discrimination and the diversity within the Argonaute family.  相似文献   

9.
10.
The planarian flatworm is an ideal system for the study of regeneration in vivo. In this study, we focus on TINP1, which is one of the most conserved proteins in eukaryotic organisms. We found that TINP1 was expressed in parenchymal region through whole body as well as central nervous system (CNS) during the course of regeneration. RNA interference targeting DjTINP1 caused lysis defects in regenerating tissues and a decreased in cell division and expression levels of DjpiwiA and Djpcna. Furthermore, the expression levels of DjTINP1 were decreased when we inhibited the TGF-β signal by knockdown of smad4, which is the sole co-smad and has been proved to control the blastema patterning and central nervous system (CNS) regeneration in planarians. These findings suggest that DjTINP1 participate in the maintenance of neoblasts and be required for proper cell proliferation in planarians as a downstream gene of the TGF-β signal pathway.  相似文献   

11.
The Drosophila homolog of Aut1 is essential for autophagy and development   总被引:1,自引:0,他引:1  
Juhász G  Csikós G  Sinka R  Erdélyi M  Sass M 《FEBS letters》2003,543(1-3):154-158
The Drosophila homolog of yeast Aut1, CG6877/Draut1, is a ubiquitously expressed cytosolic protein. Draut1 loss of function was achieved by expression of an inverted repeat transgene inducing RNA interference. The effect is temperature-dependent and resembles an allelic series as described by Fortier, E. and Belote, J.M. (Genesis 26 (2000) 240-244). Draut1 loss of function larvae are unable to induce autophagy and heterophagy in fat body cells before pupariation and die during metamorphosis. To our knowledge, this is the first report of a multicellular animal lacking the function of a gene participating in the protein conjugation systems of autophagy.  相似文献   

12.
13.
The MHC-encoded butyrophilin, BTN2A1, is a cell surface glycoprotein related to the extended family of B7 costimulatory molecules. BTN2A1 mRNA was expressed in most human tissues, but protein expression was significantly lower in leukocytes. An Ig-fusion protein of BTN2A1 bound to immature monocyte-derived dendritic cells. Binding diminished upon MoDC maturation and no binding was detected to Langerhans cells. Induction of the counterreceptor was IL-4 dependent and occurred early during dendritic cell differentiation. The interaction required the presence of Ca2+ and was mediated by high-mannose oligosaccharides. These properties matched DC-SIGN, a DC-specific HIV-1 entry receptor. This was confirmed by binding of soluble BTN2A1 to DC-SIGN-transfectants and its inhibition by a specific Ab. DC-SIGN bound to native BTN2A1 expressed on a range of tissues. However, BTN2A1 was not recognized on some normal cells such as HUVECs despite a similar expression level. The BTN2A1 of tumor cells such as HEK293T have more high-mannose moieties in comparison to HUVECs, and those high-mannose moieties are instrumental for binding to DC-SIGN. The data are consistent with tumor- or tissue-specific glycosylation of BTN2A1 governing recognition by DC-SIGN on immature monocyte-derived dendritic cells.  相似文献   

14.
Ultraviolet radiation induces DNA damage products, largely in the form of pyrimidine dimers, that are both toxic and mutagenic. In most organisms, including Arabidopsis, these lesions are repaired both through a dimer-specific photoreactivation mechanism and through a less efficient light-independent mechanism. Several mutants defective in this "dark repair" pathway have been previously described. The mechanism of this repair has not been elucidated, but is thought to be homologous to the nucleotide excision repair mechanisms found in other eukaryotes. Here we report the complementation of the Arabidopsis uvh1 dark repair mutant with the Arabidopsis homolog of the yeast nucleotide excision repair gene RAD1, which encodes one of the subunits of the 5'-repair endonuclease. The uvh1-2 mutant allele carries a glycine-->aspartate amino acid change that has been previously identified to produce a null allele of RAD1 in yeast. Although Arabidopsis homologs of genes involved in nucleotide excision repair are readily identified by searching the genomic database, it has not been established that these homologs are actually required for dark repair in plants. The complementation of the Arabidopsis uvh1 mutation with the Arabidopsis RAD1 homolog clearly demonstrates that the mechanism of nucleotide excision repair is conserved among the plant, animal, and fungal kingdoms.  相似文献   

15.
The Magnaporthe grisea snodprot1 homolog, MSP1, is required for virulence   总被引:1,自引:0,他引:1  
Secreted proteins play central roles in plant-microbe interactions acting as signals, toxins, and effectors. One important group of small secreted proteins is the snodprot1 family, members of which have demonstrated phytotoxic properties. A split-marker transformation system was applied for gene deletion of the snodprot1 homolog, MSP1, in the rice blast fungus Magnaporthe grisea. msp1 mutants were phenotypically indistinguishable from wild type and elaborated apparently normal appressoria. However, the deletion mutants were greatly reduced in virulence primarily due to impaired growth in planta. Western blot analysis showed that the protein was secreted and not associated with the fungal cell wall. When purified MSP1 protein was applied to wounded leaf tissue, no apparent phytotoxic effects were noted. This is the first report to the authors' knowledge that directly implicates a snodprot1 protein as a virulence factor.  相似文献   

16.
17.
18.
A Saccharomyces cerevisiae homolog to Drosophila melanogaster and mouse Tcp-1 encoding tailless complex polypeptide 1 (TCP1) has been identified, sequenced, and mapped. The mouse t complex has been under scrutiny for six decades because of its effects on embryogenesis and sperm differentiation and function. TCP1 is an essential gene in yeast cells and is located on chromosome 4R, linked to pet14. The TCP1-encoded proteins in yeast, Drosophila, and mouse cells share between 61 and 72% amino acid sequence identities, suggesting a primordial function for the TCP1 gene product. To assess function, we constructed a cold-impaired recessive mutation (tcp1-1) in the yeast gene. Cells carrying the tcp1-1 mutation grew linearly rather than exponentially at the restrictive temperature of 15 degrees C with a generation time of approximately 32 h in minimal medium. Both multinucleate and anucleate cells accumulated with time, suggesting that the linear growth kinetics may be explained by the generation of anucleate buds incapable of further cell division. In addition, the multinucleate and anucleate cells contained morphologically abnormal structures detected by anti-alpha-tubulin antibodies. The kinetics of appearance of these abnormalities suggest that they are a direct consequence of loss of function of the TCP1 protein and not a delayed, indirect consequence of cell death. We also observed that strains carrying tcp1-1 were hypersensitive to antimitotic compounds. Taken together, these observations imply that the TCP1 protein affects microtubule-mediated processes.  相似文献   

19.
Park W  Li J  Song R  Messing J  Chen X 《Current biology : CB》2002,12(17):1484-1495
BACKGROUND: In metazoans, microRNAs, or miRNAs, constitute a growing family of small regulatory RNAs that are usually 19-25 nucleotides in length. They are processed from longer precursor RNAs that fold into stem-loop structures by the ribonuclease Dicer and are thought to regulate gene expression by base pairing with RNAs of protein-coding genes. In Arabidopsis thaliana, mutations in CARPEL FACTORY (CAF), a Dicer homolog, and those in a novel gene, HEN1, result in similar, multifaceted developmental defects, suggesting a similar function of the two genes, possibly in miRNA metabolism.RESULTS: To investigate the potential functions of CAF and HEN1 in miRNA metabolism, we aimed to isolate miRNAs from Arabidopsis and examine their accumulation during plant development in wild-type plants and in hen1-1 and caf-1 mutant plants. We have isolated 11 miRNAs, some of which have potential homologs in tobacco, rice, and maize. The putative precursors of these miRNAs have the capacity to form stable stem-loop structures. The accumulation of these miRNAs appears to be spatially or temporally controlled in plant development, and their abundance is greatly reduced in caf-1 and hen1-1 mutants. HEN1 homologs are found in bacterial, fungal, and metazoan genomes.CONCLUSIONS: miRNAs are present in both plant and animal kingdoms. An evolutionarily conserved mechanism involving a protein, known as Dicer in animals and CAF in Arabidopsis, operates in miRNA metabolism. HEN1 is a new player in miRNA accumulation in Arabidopsis, and HEN1 homologs in metazoans may have a similar function. The developmental defects associated with caf-1 and hen1-1 mutations and the patterns of miRNA accumulation suggest that miRNAs play fundamental roles in plant development.  相似文献   

20.
Ribonucleotide reductase (RNR) is the key enzyme in the biosynthesis of deoxyribonucleotides. Alpha- and gammaherpesviruses express a functional enzyme, since they code for both the R1 and the R2 subunits. By contrast, betaherpesviruses contain an open reading frame (ORF) with homology to R1, but an ORF for R2 is absent, suggesting that they do not express a functional RNR. The M45 protein of murine cytomegalovirus (MCMV) exhibits the sequence features of a class Ia RNR R1 subunit but lacks certain amino acid residues believed to be critical for enzymatic function. It starts to be expressed independently upon the onset of viral DNA synthesis at 12 h after infection and accumulates at later times in the cytoplasm of the infected cells. Moreover, it is associated with the virion particle. To investigate direct involvement of the virally encoded R1 subunit in ribonucleotide reduction, recombinant M45 was tested in enzyme activity assays together with cellular R1 and R2. The results indicate that M45 neither is a functional equivalent of an R1 subunit nor affects the activity or the allosteric control of the mouse enzyme. To replicate in quiescent cells, MCMV induces the expression and activity of the cellular RNR. Mutant viruses in which the M45 gene has been inactivated are avirulent in immunodeficient SCID mice and fail to replicate in their target organs. These results suggest that M45 has evolved a new function that is indispensable for virus replication and pathogenesis in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号