首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Canonical translation initiation in eukaryotes begins with the Eukaryotic Initiation Factor 4F (eIF4F) complex, made up of eIF4E, which recognizes the 7-methylguanosine cap of messenger RNA, and eIF4G, which serves as a scaffold to recruit other translation initiation factors that ultimately assemble the 80S ribosome. Many eukaryotes have secondary EIF4E genes with divergent properties. The model plant Arabidopsis (Arabidopsis thaliana) encodes two such genes in tandem loci on chromosome 1, EIF4E1B (At1g29550) and EIF4E1C (At1g29590). This work identifies EIF4E1B/EIF4E1C-type genes as a Brassicaceae-specific diverged form of EIF4E. There is little evidence for EIF4E1C gene expression; however, the EIF4E1B gene appears to be expressed at low levels in most tissues, though microarray and RNA Sequencing data support enrichment in reproductive tissue. Purified recombinant eIF4E1b and eIF4E1c proteins retain cap-binding ability and form functional complexes in vitro with eIF4G. The eIF4E1b/eIF4E1c-type proteins support translation in yeast (Saccharomyces cerevisiae) but promote translation initiation in vitro at a lower rate compared with eIF4E. Findings from surface plasmon resonance studies indicate that eIF4E1b and eIF4E1c are unlikely to bind eIF4G in vivo when in competition with eIF4E. This study concludes that eIF4E1b/eIF4E1c-type proteins, although bona fide cap-binding proteins, have divergent properties and, based on apparent limited tissue distribution in Arabidopsis, should be considered functionally distinct from the canonical plant eIF4E involved in translation initiation.Cap-dependent translation in eukaryotes begins with recognition of the 7-methylguanosine cap at the 5′ end of an mRNA by the translation initiation factor eIF4E, which forms the eIF4F complex with the scaffolding protein eIF4G. The binding of the RNA helicase eIF4A along with eIF4B promotes unwinding of mRNA secondary structure (Aitken and Lorsch, 2012). The eIF4F complex then serves to circularize mRNA by interaction of eIF4G with poly(A) binding protein and recruit the preinitiation complex through binding of eIF4G to eIF3 and eIF5, ultimately leading to the assembly of the 80S ribosome (Aitken and Lorsch, 2012). eIF4E is an attractive target for global regulation of translational activity through its position at the earliest step, mRNA cap recognition. In many organisms, eIF4E availability is regulated by 4E-binding proteins as well as phosphorylation and sumoylation (Jackson et al., 2010; Xu et al., 2010). However, plants appear to lack 4E-binding proteins, and the role of phosphorylation of eIF4E in translational control is less clear (Pierrat et al., 2007).The eIF4E proteins generally thought to be involved in translation initiation are Class I eIF4E proteins (Joshi et al., 2005), of which two exist in flowering plants: eIF4E, which pairs with eIF4G to form the eIF4F complex, and the plant-specific isoform eIFiso4E, which pairs with eIFiso4G to form eIFiso4F (Mayberry et al., 2011; Patrick and Browning, 2012). Class I eIF4E family members have conserved Trp residues at positions equivalent to Trp-43 and Trp-56 of Homo sapiens eIF4E (Joshi et al., 2005), and the canonical members of this class, such as plant eIF4E and eIFiso4E, have the ability to promote translation through binding of mRNA cap structure and eIF4G (or eIFiso4G).In some organisms, however, secondary Class I isoforms exist with expression patterns and functions divergent from the conserved eIF4E (Rhoads, 2009). Caenorhabditis elegans has four isoforms involved in differentiation between mono- and trimethylated mRNA caps (Keiper et al., 2000) and have specialized roles for regulation of certain sets of mRNAs, particularly in the germline (Amiri et al., 2001; Song et al., 2010). Trypanosoma brucei has four isoforms with varying ability to bind cap analog and eIF4G isoforms (Freire et al., 2011). Schizosaccharomyces pombe has a second eIF4E isoform, eIF4E2, which is nonessential under normal growth conditions, but accumulates in response to high temperatures (Ptushkina et al., 2001). It cannot, however, complement deletion of EIF4E1, and while it can bind capped mRNA and promote translation in vitro, it has reduced ability to bind an eIF4G-derived peptide.Vertebrates encode a novel Class I isoform called EIF4E1B with oocyte-specific expression and functions (Evsikov and Marín de Evsikova, 2009). Zebrafish (Danio rerio) EIF4E1B, with expression limited to muscle and reproductive tissue, has conserved residues identified as necessary for binding cap analog and eIF4G, yet fails to bind either and cannot functionally complement deletion of yeast (Saccharomyces cerevisiae) eIF4E (Robalino et al., 2004). In Xenopus spp. oocytes, the eIF4E1b protein was found to bind eIF4E transporter and cytoplasmic polyadenylation element binding protein to form a translation-repressing complex (Minshall et al., 2007). Drosophila species have undergone extensive expansion of EIF4E-encoding loci to as many as seven different Class I eIF4E isoforms (Tettweiler et al., 2012). The seven EIF4E isoforms of Drosophila melanogaster are differentially expressed, with only five able to bind to eIF4G and complement deletion of yeast eIF4E (Hernández et al., 2005). The eIF4E-3 isoform of D. melanogaster was recently described as having a specific role in spermatogenesis (Hernández et al., 2012).Upon completion of sequencing of the Arabidopsis (Arabidopsis thaliana) genome (Rhee et al., 2003), it was discovered that in addition to the conserved plant EIF4E (At4g18040) and EIFISO4E (At5g35620), there existed a tandem pair of genes of high sequence similarity on chromosome 1 that also encoded Class I eIF4E family proteins, EIF4E1B (At1g29550, also known as EIF4E3) and EIF4E1C (At1g29590, also known as EIF4E2). Published microarray and RNA Sequencing (RNA-Seq) data indicate little to no EIF4E1C gene expression; however, the EIF4E1B gene appears to be expressed at low levels in most tissues and enriched in tissues involved in reproduction. The protein sequences contain the residues predicted to be involved in regular eIF4E function but also showed some divergence at highly conserved residues of the canonical plant eIF4E. Genome sequencing data indicate that these genes are part of a divergent eIF4E clade specific to Brassicaceae.The biochemical properties of the eIF4E1b and eIF4E1c proteins were investigated in this work, and it was found that while they can bind mRNA cap analog and eIF4G and support translation in yeast lacking eIF4E, their eIF4G-binding and translation initiation enhancing capabilities in vitro were less robust when compared with the conserved Arabidopsis eIF4E. In addition, it appears that these EIF4E1B-type genes cannot substitute for EIF4E or EIFISO4E in planta because deletion of both of these genes appears to be lethal. Taken together, these findings indicate the EIF4E1B-type genes represent a divergent eIF4E whose roles should be considered separately from the canonical eIF4E in plant translation initiation.  相似文献   

2.
Eukaryotic initiation factor eIF4E plays a pivotal role in translation initiation. As a component of the ternary eIF4F complex, eIF4E interacts with the mRNA cap structure to facilitate recruitment of the 40S ribosomal subunit onto mRNA. Plants contain two distinct cap-binding proteins, eIF4E and eIFiso4E, that assemble into different eIF4F complexes. To study the functional roles of eIF4E and eIFiso4E in tobacco, we isolated two corresponding cDNAs, NteIF4E1 and NteIFiso4E1, and used these to deplete cap-binding protein levels in planta by antisense downregulation. Antibodies raised against recombinant NteIF4E1 detected three distinct cap-binding proteins in tobacco leaf extracts; NteIF4E and two isoforms of NteIFiso4E. The three cap-binding proteins were immuno-detected in all tissues analysed and were coordinately regulated, with peak expression in anthers and pollen. Transgenic tobacco plants showing significant depletion of either NteIF4E or the two NteIFiso4E isoforms displayed normal vegetative development and were fully fertile. Interestingly, NteIFiso4E depletion resulted in a compensatory increase in NteIF4E levels, whereas the down-regulation of NteIF4E did not trigger a reciprocal increase in NteIFiso4E levels. The antisense depletion of both NteIF4E and NteIFiso4E resulted in plants with a semi-dwarf phenotype and an overall reduction in polyribosome loading, demonstrating that both eIF4E and eIFiso4E support translation initiation in planta, which suggests their potential role in the regulation of plant growth.  相似文献   

3.
mRNA translation in crude extracts from the yeast Saccharomyces cerevisiae is stimulated by the cap structure and the poly(A) tail through the binding of the cap-binding protein eukaryotic translation initiation factor 4E (eIF4E) and the poly(A) tail-binding protein Pab1p. These proteins also bind to the translation initiation factor eIF4G and thereby link the mRNA to the general translational apparatus. In contrast, uncapped, poly(A)-deficient mRNA is translated poorly in yeast extracts, in part because of the absence of eIF4E and Pab1p binding sites on the mRNA. Here, we report that uncapped-mRNA translation is also repressed in yeast extracts due to the binding of eIF4E to eIF4G. Specifically, we find that mutations which weaken the eIF4E binding site on the yeast eIF4G proteins Tif4631p and Tif4632p lead to temperature-sensitive growth in vivo and the stimulation of uncapped-mRNA translation in vitro. A mutation in eIF4E which disturbs its ability to interact with eIF4G also leads to a stimulation of uncapped-mRNA translation in vitro. Finally, overexpression of eIF4E in vivo or the addition of excess eIF4E in vitro reverses these effects of the mutations. These data support the hypothesis that the eIF4G protein can efficiently stimulate translation of exogenous uncapped mRNA in extracts but is prevented from doing so as a result of its association with eIF4E. They also suggest that some mRNAs may be translationally regulated in vivo in response to the amount of free eIF4G in the cell.  相似文献   

4.
The eukaryotic cap-binding proteins belonging to the eIF4E family are generally involved in mediating the recruitment of ribosomes to capped mRNA. We described previously a cap-binding protein (now called eIF4E1) in Schizosaccharomyces pombe that appears to have all of the usual structural and functional attributes of an eIF4E. We have now characterised a new type of cap-binding protein (eIF4E2) from this organism, which at the amino acid sequence level, is 52% identical and 59% similar to eIF4E1. eIF4E2 is not essential in S.pombe but has some novel properties that may be related to a special function in the cell. The ratio of eIF4E2:eIF4E1 in the cell shifts in favour of eIF4E2 at higher temperatures. Despite having all of the dorsal face amino acids that have so far been associated with eIF4G binding to eIF4E1, eIF4E2 binds the eIF4E-binding domain of S.pombe eIF4G >102-times weaker than eIF4E1 in vitro. The eIF4E2 cap-binding affinity is in the typical micromolar range. The results suggest that eIF4E2 is not active on the main pathway of translation initiation in fission yeast but might play a role in the adaptation strategy of this organism under specific growth conditions. Moreover, they provide insight into the molecular characteristics required for tight binding to eIF4G.  相似文献   

5.
6.
The eukaryotic translation initiation factor 4E (eIF4E) controls gene expression through its effects on mRNA export and cap‐dependent translation, both of which contribute to its oncogenic potential. In contrast to its translation function, the mRNA export function of eIF4E is poorly understood. Using an RNP isolation/mass spectrometry approach, we identified candidate cofactors of eIF4E mRNA export including LRPPRC. This protein associates with mRNAs containing the eIF4E‐sensitivity element (4E‐SE), and its overexpression alters the nuclear export of several eIF4E‐sensitive mRNAs. LRPPRC‐mediated alteration of eIF4E's mRNA export function requires the integrity of its eIF4E‐binding site and it coincides with the subcellular re‐distribution of eIF4E. The eIF4E export RNP is distinct in composition from the bulk mRNA export pathway, in that eIF4E‐ and eIF4E‐sensitive mRNAs do not associate with general mRNA export factors such as TAP/NXF1 or REF/Aly. Our data indicate that mRNA export pathways have evolved for specific mRNAs enabling the differential regulation of biochemical pathways by modulating the expression of groups of genes at the level of their export.  相似文献   

7.
The eukaryotic translation initiation factor eIF4E is dysregulated in many cancers. eIF4E, through its mRNA export and translation functions, combinatorially modulates the expression of genes involved in Akt dependent survival signaling. For these activities, eIF4E must bind the 7-methyl guanosine (m7G) cap moiety on the 5′-end of mRNAs. We demonstrate that a physical mimic of the m7G cap, ribavirin, inhibits eIF4E dependent Akt survival signaling. Specifically, ribavirin impairs eIF4E mediated Akt activation via inhibiting the production of an upstream activator of Akt, NBS1. Consequently, ribavirin impairs eIF4E dependent apoptotic rescue. A ribavirin analog with distinct physico-chemical properties, tiazofurin, does not impair eIF4E activity indicating that only analogs that mimic the m7G cap will inhibit eIF4E function. Ribavirin represents a first-in-class strategy to inhibit eIF4E dependent cancers, through competition for m7G cap binding. Thus, ribavirin coordinately impairs eIF4E dependent pathways and thereby, potently inhibits its biological effects.  相似文献   

8.
The evolutionary origin of eukaryotes spurred the transition from prokaryotic-like translation to a more sophisticated, eukaryotic translation. During this process, successive gene duplication of a single, primordial eIF4E gene encoding the mRNA cap-binding protein eukaryotic translation initiation factor 4E (eIF4E) gave rise to a plethora of paralog genes across eukaryotes that underwent further functional diversification in RNA metabolism. The ability to take different roles is due to eIF4E promiscuity in binding many partner proteins, rendering eIF4E a highly versatile and multifunctional player that functions as a molecular wildcard. Thus, in metazoans, eIF4E paralogs are involved in various processes, including messenger RNA (mRNA) processing, export, translation, storage, and decay. Moreover, some paralogs display differential expression in tissues and developmental stages and show variable biochemical properties. In this review, we discuss recent advances shedding light on the functional diversification of eIF4E in metazoans. We emphasise humans and two phylogenetically distant species which have become paradigms for studies on development, namely the fruit fly Drosophila melanogaster and the roundworm Caenorhabditis elegans.  相似文献   

9.
Eukaryotic translation initiation factor 4E (eIF4E) is an essential component of the translational machinery that binds m(7)GTP and mediates the recruitment of capped mRNAs by the small ribosomal subunit. Recently, a number of proteins with homology to eIF4E have been reported in plants, invertebrates, and mammals. Together with the prototypical translation factor, these constitute a new family of structurally related proteins. To distinguish the prototypical translation factor eIF4E from other family members, it has been termed eIF4E-1 (Keiper, B. D., Lamphear, B. J., Deshpande, A. M., Jankowska-Anyszka, M., Aamodt, E. J., Blumenthal, T., and Rhoads, R. E. (2000) J. Biol. Chem. 275, 10590-10596). We describe the characterization of two eIF4E family members in the zebrafish Danio rerio. Based on their relative identities with human eIF4E-1, these zebrafish proteins are termed eIF4E-1A (82%) and eIF4E-1B (66%). eIF4E-1B, originally termed eIF4E(L), has been reported previously as the zebrafish eIF4E-1 counterpart (Fahrenkrug, S. C., Dahlquist, M. O., Clark, K., and Hackett, P. B. (1999) Differentiation 65, 191-201; Fahrenkrug, S. C., Joshi, B., Hackett, P. B., and Jagus, R. (2000) Differentiation 66, 15-22). Sequence comparisons suggest that the two genes probably evolved from a duplication event that occurred during vertebrate evolution. eIF4E-1A is expressed ubiquitously in zebrafish, whereas expression of eIF4E-1B is restricted to early embryonic development and to gonads and muscle of the tissues investigated. The ability of these two zebrafish proteins to bind m(7)GTP, eIF4G, and 4E-BP, as well as to complement yeast conditionally deficient in functional eIF4E, show that eIF4E-1A is a functional equivalent of human eIF4E-1. Surprisingly, although eIF4E-1B possesses all known residues thought to be required for interaction with the cap structure, eIF4G, and 4E-BPs, it fails to interact with any of these components, suggesting that this protein serves a role other than that assigned to eIF4E.  相似文献   

10.
Cup is an eIF4E-binding protein (4E-BP) that plays a central role in translational regulation of localized mRNAs during early Drosophila development. In particular, Cup is required for repressing translation of the maternally contributed oskar, nanos, and gurken mRNAs, all of which are essential for embryonic body axis determination. Here, we present the 2.8 Å resolution crystal structure of a minimal eIF4E–Cup assembly, consisting of the interacting regions of the two proteins. In the structure, two separate segments of Cup contact two orthogonal faces of eIF4E. The eIF4E-binding consensus motif of Cup (YXXXXLΦ) binds the convex side of eIF4E similarly to the consensus of other eIF4E-binding proteins, such as 4E-BPs and eIF4G. The second, noncanonical, eIF4E-binding site of Cup binds laterally and perpendicularly to the eIF4E β-sheet. Mutations of Cup at this binding site were shown to reduce binding to eIF4E and to promote the destabilization of the associated mRNA. Comparison with the binding mode of eIF4G to eIF4E suggests that Cup and eIF4G binding would be mutually exclusive at both binding sites. This shows how a common molecular surface of eIF4E might recognize different proteins acting at different times in the same pathway. The structure provides insight into the mechanism by which Cup disrupts eIF4E–eIF4G interaction and has broader implications for understanding the role of 4E-BPs in translational regulation.  相似文献   

11.
Eukaryotic initiation factor (eIF) 4E, the mRNA 5'-cap-binding protein, mediates the association of eIF4F with the mRNA 5'-cap structure to stimulate cap-dependent translation initiation in the cytoplasm. The assembly of eIF4E into the eIF4F complex is negatively regulated through a family of repressor proteins, called the eIF4E-binding proteins (4E-BPs). eIF4E is also present in the nucleus, where it is thought to stimulate nuclear-cytoplasmic transport of certain mRNAs. eIF4E is transported to the nucleus via its interaction with 4E-T (4E-transporter), but it is unclear how it is retained in the nucleus. Here we show that a sizable fraction (approximately 30%) of 4E-BP1 is localized to the nucleus, where it binds eIF4E. In mouse embryo fibroblasts (MEFs) subjected to serum starvation and/or rapamycin treatment, nuclear 4E-BPs sequester eIF4E in the nucleus. A dramatic loss of nuclear 4E-BP1 occurs in c-Ha-Ras-expressing MEFs, which fail to show starvation-induced nuclear accumulation of eIF4E. Therefore, 4E-BP1 is a regulator of eIF4E cellular localization.  相似文献   

12.
The eukaryotic translation initiation factor 4E (eIF4E) (the cap-binding protein) is involved in natural resistance against several potyviruses in plants. In lettuce, the recessive resistance genes mo11 and mo12 against Lettuce mosaic virus (LMV) are alleles coding for forms of eIF4E unable, or less effective, to support virus accumulation. A recombinant LMV expressing the eIF4E of a susceptible lettuce variety from its genome was able to produce symptoms in mo11 or mo12 varieties. In order to identify the eIF4E amino acid residues necessary for viral infection, we constructed recombinant LMV expressing eIF4E with point mutations affecting various amino acids and compared the abilities of these eIF4E mutants to complement LMV infection in resistant plants. Three types of mutations were produced in order to affect different biochemical functions of eIF4E: cap binding, eIF4G binding, and putative interaction with other virus or host proteins. Several mutations severely reduced the ability of eIF4E to complement LMV accumulation in a resistant host and impeded essential eIF4E functions in yeast. However, the ability of eIF4E to bind a cap analogue or to fully interact with eIF4G appeared unlinked to LMV infection. In addition to providing a functional mutational map of a plant eIF4E, this suggests that the role of eIF4E in the LMV cycle might be distinct from its physiological function in cellular mRNA translation.  相似文献   

13.
14.
mRNP remodeling events required for the transition of an mRNA from active translation to degradation are currently poorly understood. We identified protein factors potentially involved in this transition, which are present in mammalian P bodies, cytoplasmic foci enriched in 5' --> 3' mRNA degrading enzymes. We demonstrate that human P bodies contain the cap-binding protein eIF4E and the related factor eIF4E-transporter (eIF4E-T), suggesting novel roles for these proteins in targeting mRNAs for 5' --> 3' degradation. Furthermore, fluorescence resonance energy transfer (FRET) studies indicate that eIF4E interacts with eIF4E-T and the putative DEAD box helicase rck/p54 in the P bodies in vivo. RNAi-mediated knockdowns revealed that a subset of P body factors, including eIF4E-T, LSm1, rck/p54, and Ccr4 are required for the accumulation of each other and eIF4E in P bodies. In addition, treatment of HeLa cells with cycloheximide, which inhibits translation, revealed that mRNA is also required for accumulation of mRNA degradation factors in P bodies. In contrast, knockdown of the decapping enzyme Dcp2, which initiates the actual 5' --> 3' mRNA degradation did not abolish P body formation, indicating it first functions after mRNPs have been targeted to these cytoplasmic foci. These data support a model in which mRNPs undergo several successive steps of remodeling and/or 3' trimming until their composition or structural organization promotes their accumulation in P bodies.  相似文献   

15.
16.
Translation efficiency of viral mRNAs is a key factor defining both cytopathogenicity and virulence of viruses, which are entirely dependent on the cellular translation machinery to synthesize their proteins. This dependence has led them to develop different translational reprogramming strategies to ensure viral mRNAs can effectively compete with cellular mRNAs. Junin virus (JUNV) is a member of the family Arenaviridae, whose mRNAs are capped but not polyadenylated. In this work we evaluated the relevance to JUNV replication of the main components of the eIF4F complex: eIF4A, eIF4GI and eIF4E. We found the viral nucleoprotein (N) of JUNV colocalized with eIF4A and eIF4GI but not with eIF4E. Moreover, N could be immunoprecipitated in association with eIF4A and eIF4GI but not with eIF4E. Accordingly, functional impairment of eIF4A as well as eIF4GI reduced JUNV multiplication. By contrast, inhibition of eIF4E did not show a significant effect on JUNV protein synthesis. A similar situation was observed for another two members of arenaviruses: Tacaribe (TCRV) and Pichinde (PICV) viruses. Finally, the nucleoproteins of JUNV, TCRV and PICV were able to interact with 7 methyl‐guanosine (cap), suggesting that the independence of JUNV multiplication on eIF4E, the cap‐binding protein, may be due to the replacement of this factor by N protein.  相似文献   

17.
18.
This study demonstrates that the eukaryotic translation initiation factor eIF4E is a critical node in an RNA regulon that impacts nearly every stage of cell cycle progression. Specifically, eIF4E coordinately promotes the messenger RNA (mRNA) export of several genes involved in the cell cycle. A common feature of these mRNAs is a structurally conserved, approximately 50-nucleotide element in the 3' untranslated region denoted as an eIF4E sensitivity element. This element is sufficient for localization of capped mRNAs to eIF4E nuclear bodies, formation of eIF4E-specific ribonucleoproteins in the nucleus, and eIF4E-dependent mRNA export. The roles of eIF4E in translation and mRNA export are distinct, as they rely on different mRNA elements. Furthermore, eIF4E-dependent mRNA export is independent of ongoing RNA or protein synthesis. Unlike the NXF1-mediated export of bulk mRNAs, eIF4E-dependent mRNA export is CRM1 dependent. Finally, the growth-suppressive promyelocytic leukemia protein (PML) inhibits this RNA regulon. These data provide novel perspectives into the proliferative and oncogenic properties of eIF4E.  相似文献   

19.
Eukaryotic translation initiation factor 4E (eIF4E) is a key factor involved in different aspects of mRNA metabolism. Drosophila melanogaster genome encodes eight eIF4E isoforms, and the canonical isoform eIF4E-1 is a ubiquitous protein that plays a key role in mRNA translation. eIF4E-3 is specifically expressed in testis and controls translation during spermatogenesis. In eukaryotic cells, translational control and mRNA decay is highly regulated in different cytoplasmic ribonucleoprotein foci, which include the processing bodies (PBs). In this study, we show that Drosophila eIF4E-1 and eIF4E-3 occur in PBs along the DEAD-box RNA helicase Me31B. We show that Me31B interacts with eIF4E-1 and eIF4E-3 by means of yeast two-hybrid system, FRET in D. melanogaster S2 cells and coimmunoprecipitation in testis. Truncation and point mutations of Me31B proteins show two eIF4E-binding sites located in different protein domains. Residues Y401-L407 (at the carboxy-terminus) are essential for interaction with eIF4E-1, whereas residues F63-L70 (at the amino-terminus) are critical for interaction with eIF4E-3. The residue W117 in eIF4E-1 and the homolog position F103 in eIF4E-3 are necessary for Me31B-eIF4E interaction suggesting that the change of tryptophan to phenylalanine provides specificity. Me31B represents a novel type of eIF4E-interacting protein with dual and specific interaction domains that might be recognized by different eIF4E isoforms in different tissues, adding complexity to the control of gene expression in eukaryotes.  相似文献   

20.

Background

The eukaryotic translation initiation factor eIF4E plays a key role in plant-potyvirus interactions. eIF4E belongs to a small multigenic family and three genes, eIF4E1, eIF4E2 and eIF(iso)4E, have been identified in tomato. It has been demonstrated that eIF4E-mediated natural recessive resistances against potyviruses result from non-synonymous mutations in an eIF4E protein, which impair its direct interaction with the potyviral protein VPg. In tomato, the role of eIF4E proteins in potyvirus resistance is still unclear because natural or induced mutations in eIF4E1 confer only a narrow resistance spectrum against potyviruses. This contrasts with the broad spectrum resistance identified in the natural diversity of tomato. These results suggest that more than one eIF4E protein form is involved in the observed broad spectrum resistance.

Methodology/Principal Findings

To gain insight into the respective contribution of each eIF4E protein in tomato-potyvirus interactions, two tomato lines silenced for both eIF4E1 and eIF4E2 (RNAi-4E) and two lines silenced for eIF(iso)4E (RNAi-iso4E) were obtained and characterized. RNAi-4E lines are slightly impaired in their growth and fertility, whereas no obvious growth defects were observed in RNAi-iso4E lines. The F1 hybrid between RNAi-4E and RNAi-iso4E lines presented a pronounced semi-dwarf phenotype. Interestingly, the RNAi-4E lines silenced for both eIF4E1 and eIF4E2 showed broad spectrum resistance to potyviruses while the RNAi-iso4E lines were fully susceptible to potyviruses. Yeast two-hybrid interaction assays between the three eIF4E proteins and a set of viral VPgs identified two types of VPgs: those that interacted only with eIF4E1 and those that interacted with either eIF4E1 or with eIF4E2.

Conclusion/Significance

These experiments provide evidence for the involvement of both eIF4E1 and eIF4E2 in broad spectrum resistance of tomato against potyviruses and suggest a role for eIF4E2 in tomato-potyvirus interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号