首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We transfected rat pheochromocytoma (PC12) cells with a cDNA encoding chicken integrin beta 1 subunit. The chicken integrin beta 1 subunit produced in stable transfectants associated with two major alpha subunits of rat integrins to form interspecific chimeric receptors. These receptors mediated cell spreading and initial neurite outgrowth on laminin as did corresponding endogenous integrins, although they were slightly less effective in inducing cell adhesion to laminin. These results indicate that chicken integrin beta 1 may functionally substitute for beta 1 subunit of rat integrins in PC12 cells. Apparently, the structure of the integrin beta 1 subunit is highly conserved in the evolution of these species.  相似文献   

2.
Cells of the rat neuronal line, PC12, adhere well to substrates coated with laminin and type IV collagen, but attach poorly to fibronectin. Adhesion and neurite extension in response to these extracellular matrix proteins are inhibited by Fab fragments of an antiserum (anti-ECMR) that recognizes PC12 cell surface integrin subunits of Mr 120,000, 140,000, and 180,000 (Tomaselli, K. J., C. H. Damsky, and L. F. Reichardt. 1987. J. Cell Biol. 105:2347-2358). Here we extend our study of integrin structure and function in PC12 cells using integrin subunit-specific antibodies prepared against synthetic peptides corresponding to the cytoplasmic domains of the human integrin beta 1 and the fibronectin receptor alpha (alpha FN) subunits. Anti-integrin beta 1 immunoprecipitated a 120-kD beta 1 subunit and two noncovalently associated integrin alpha subunits of 140 and 180 kD from detergent extracts of surface-labeled PC12 cells. Immunodepletion studies using anti-integrin beta 1 demonstrated that these two putative alpha/beta heterodimers are identical to those recognized by the adhesion-perturbing ECMR antiserum. Anti-alpha FN immunoprecipitated fibronectin receptor heterodimers in human and rat fibroblastic cells, but not in PC12 cells. Thus, low levels of expression of the integrin alpha FN subunit can explain the poor attachment of PC12 cells to FN. The PC12 cell integrins were purified using a combination of lectin and ECMR antibody affinity chromatography. The purified integrins: (a) completely neutralize the ability of the anti-ECMR serum to inhibit PC12 cell adhesion to laminin and collagen IV; (b) have hydrodynamic properties that are very similar to those of previously characterized integrin alpha/beta heterodimeric receptors for ECM proteins; and (c) can be incorporated into phosphatidylcholine vesicles that then bind specifically to substrates coated with laminin or collagen IV but not fibronectin. Thus, the ligand-binding specificity of the liposomes containing the purified PC12 integrins closely parallels the substrate-binding preference of intact PC12 cells. These results demonstrate that mammalian integrins purified from a neuronal cell line can, when incorporated into lipid vesicles, function as receptors for laminin and type IV collagen.  相似文献   

3.
Extracellular matrix (ECM) plays an important role in tissue regeneration by promoting cell adhesion, migration, proliferation, and differentiation. ECM mimetics are of importance for tissue engineering because of their functions as scaffolds for cells. Previously, we developed bioactive laminin-derived peptide-conjugated chitosan membranes and demonstrated their cell- and peptide-type specific functions. Here, we conjugated twelve integrin-binding peptides derived from ECM proteins onto chitosan membranes and examined biological activity. Seven peptide-chitosan membranes promoted human foreskin fibroblast attachment. Additionally, FIB1 (YAVTGRGDSPAS; from fibronectin), A99 (AGTFALRGDNPQG; from laminin alpha1 chain), EF1zz (ATLQLQEGRLHFXFDLGKGR, X = Nle; from laminin alpha1 chain), and 531 (GEFYFDLRLKGDKY; from collagen alpha1 (IV) chain) conjugated chitosan membranes promoted integrin-dependent cell adhesion. Various integrins, including alphav, beta1, and beta3, were involved in the cell adhesion to the peptide-chitosan membranes. Further, only the FIB1- and A99-chitosan membranes promoted neurite outgrowth with PC12 rat pheochromocytoma cells. These data demonstrate that peptide-chitosan membranes can regulate specific integrin-mediated cell responses and are useful constructs as ECM mimetics.  相似文献   

4.
N-acetylglucosaminyltransferase VB (GnT-VB, -IX) is a newly discovered glycosyltransferase expressed exclusively in high levels in neuronal tissue during early development. Its homolog, GnT-V, is expressed in many tissues and modulates cell-cell and cell-matrix adhesion. The ability of GnT-VB to regulate cell-matrix interactions was initially investigated using the rat pheochromocytoma PC12 neurite outgrowth model. PC12 cells stably transfected with GnT-VB consistently showed an enhanced rate of nerve growth factor (NGF)-induced neurite outgrowth on collagen and laminin substrates. Levels of TrkA receptor phosphorylation and downstream ERK activation induced by NGF were not influenced by GnT-VB expression. No significant difference was observed in the rate of neurite outgrowth when cells were cultured on non-coated culture dishes, indicating that integrin-ECM interaction is required for the stimulatory effects. Neurite outgrowth induced by manganese-dependent activation of beta1 integrin on collagen and laminin substrates, however, showed a significant increase in neurite length for the PC12/GnT-VB cells, compared with control cells, suggesting that the enhancement is most likely mediated by alteration of beta1 integrin-ECM interaction by GnT-VB. These results demonstrate that GnT-VB expression can modulate the rate of neurite outgrowth by affecting beta1 integrin-ECM interaction.  相似文献   

5.
Receptor-mediated interactions between neurons and astroglia are likely to play a crucial role in the growth and guidance of CNS axons. Using antibodies to neuronal cell surface proteins, we identified two receptor systems mediating neurite outgrowth on cultured astrocytes. N-cadherin, a Ca2(+)-dependent cell adhesion molecule, functions prominently in the outgrowth of neurites on astrocytes by E8 and E14 chick ciliary ganglion (CG) neurons. beta 1-class integrin ECM receptor heterodimers function less prominently in E8 and not at all in E14 neurite outgrowth on astrocytes. The lack of effect of integrin beta 1 antibodies on E14 neurite outgrowth reflects an apparent loss of integrin function, as assayed by E14 neuronal attachment and process outgrowth on laminin. N-CAM appeared not to be required for neurite outgrowth by either E8 or E14 neurons. Since N-cadherin and integrin beta 1 antibodies together virtually eliminated E8 CG neurite outgrowth on cultured astrocytes, these two neuronal receptors are probably important in regulating axon growth on astroglia in vivo.  相似文献   

6.
We have examined cultures of neonatal human foreskin keratinocytes (HFKs) to determine the ligands and functions of integrins alpha 2 beta 1, and alpha 3 beta 1 in normal epidermal stratification and adhesion to the basement membrane zone (BMZ) in skin. We used three assay systems, HFK adhesion to purified extracellular matrix (ECM) ligands and endogenous secreted ECM, localization of integrins in focal adhesions (FAs), and inhibition of HFK adhesion with mAbs to conclude: (a) A new anti-alpha 3 beta 1 mAb, P1F2, localized alpha 3 beta 1 in FAs on purified laminin greater than fibronectin/collagen, indicating that laminin was the best exogeneous ligand for alpha 3 beta 1. However, in long term culture, alpha 3 beta 1 preferentially codistributed in and around FAs with secreted laminin-containing ECM, in preference to exogenous laminin. Anti-alpha 3 beta 1, mAb P1B5, detached prolonged cultures of HFKs from culture plates or from partially purified HFK ECM indicating that interaction of alpha 3 beta 1 with the secreted laminin-containing ECM was primarily responsible for HFK adhesion in long term culture. (b) In FA assays, alpha 2 beta 1 localized in FAs conincident with initial HFK adhesion to exogenous collagen, but not laminin or fibronectin. However, in inhibition assays, anti-alpha 2 beta 1 inhibited initial HFK adhesion to both laminin and collagen. Thus, alpha 2 beta 1 contributes to initial HFK adhesion to laminin but alpha 3 beta 1 is primarily responsible for long-term HFK adhesion to secreted laminin-containing ECM. (c) Serum or Ca2(+)-induced aggregation of HFKs resulted in relocation of alpha 2 beta 1 and alpha 3 beta 1 from FAs to cell-cell contacts. Further, cell-cell adhesion was inhibited by anti-alpha 3 beta 1 (P1B5) and a new anti-beta 1 mAb (P4C10). Thus, interaction of alpha 3 beta 1 with either ECM or membrane coreceptors at cell-cell contacts may facilitate Ca2(+)-induced HFK aggregation. (d) It is suggested that interaction of alpha 3 beta 1 with a secreted, laminin-containing ECM in cultured HFKs, duplicates the role of alpha 3 beta 1 in basal cell adhesion to the BMZ in skin. Further, relocation of alpha 2 beta 1 and alpha 3 beta 1 to cell-cell contacts may result in detachment of cells from the BMZ and increased cell-cell adhesion in the suprabasal cells contributing to stratification of the skin.  相似文献   

7.
A monoclonal antibody (3A3) raised against a rat neural cell line (PC12) was shown previously to bind to the surfaces of these cells, inhibiting substratum adhesion. Immunochemical and other data indicated that the heterodimer recognized by 3A3 was a member of the integrin family of adhesive receptors and had a beta 1 subunit. The relationship of the alpha subunit to other integrins was unknown. Here we show that 3A3 recognizes in rat tissues a heterodimer (approximately 185 kDa, approximately 110 kDa; unreduced) that is electrophoretically and immunochemically indistinguishable from the antigen in PC12 cells. Immunoaffinity purification of the heterodimer from neonatal rats and protein microsequencing indicate that the alpha subunit is identical at 11 or 13 N-terminal residues with VLA-1, an integrin on human hematopoietic cells. Monoclonal antibody 3A3 inhibits the attachment of rat astrocytes to laminin or collagen but not to fibronectin or polylysine. These data suggest strongly that the integrin recognized by 3A3 is the rat homologue of VLA-1, i.e., alpha 1 beta 1, and that alpha 1 beta 1 is a dual laminin/collagen receptor.  相似文献   

8.
We have examined the effects of collagen IV on the morphological development of embryonic rat sympathetic neurons in vitro. In short-term (less than or equal to 24 h) culture, collagen IV accelerated process outgrowth, causing increases in the number of neurites and total neuritic length. Analysis of proteolytic fragments of collagen IV indicated that the NC1 domain was nearly as active as the intact molecule in stimulating process outgrowth; in contrast, the 7S domain and triple helix-rich fragments of collagen IV were inactive. Moreover, anti-NC1 antiserum inhibited neuritic outgrowth on collagen IV by 79%. In long-term (up to 28 d) cultures, neurons chronically exposed to collagen IV maintained a single axon but failed to form dendrites. Thus, the NC1 domain of collagen IV can alter neuronal development by selectively stimulating axonal growth. Comparison of collagen IV's effects to those of laminin revealed that these molecules exert quantitatively different effects on the rate of initial axon growth and the number of axons extended by sympathetic neurons. Moreover, neuritic outgrowth on collagen IV, but not laminin, was blocked by cycloheximide. We also observed differences in the receptors mediating the neurite-promoting activity of these proteins. Two different antisera that recognize beta 1 integrins each blocked neuritic outgrowth on both collagen IV and laminin; however, an mAb (3A3) specific for the alpha 1 beta 1 integrin inhibited collagen IV but not laminin-induced process growth in cultures of both sympathetic and dorsal root neurons. These data suggest that immunologically distinct integrins mediate the response of peripheral neurons to collagen IV and laminin.  相似文献   

9.
Laminins are expressed in specific tissues and are involved in various biological activities including promoting cell adhesion, growth, migration, neurite outgrowth, and differentiation. The laminin alpha3 chain is mainly located in the skin and is also expressed in the floor plate of the developing neural tube. Previously, we showed that the human laminin alpha3 chain LG4 module binds to syndecan-2/4, a membrane-associated proteoglycan, and promotes human fibroblast adhesion. Here, we have evaluated the neurite outgrowth activity of the laminin alpha3 chain LG4 and LG5 modules. Three overlapping recombinant proteins, which contained LG4 and/or LG5 modules of the human laminin alpha3 chain, were prepared using a mammalian cell expression system. Two proteins, rec-alpha3LG4-5 and rec-alpha3LG4, promoted cell attachment and neurite outgrowth of rat pheochromocytoma PC12 cells, but rec-alpha3LG5 was inactive. Twenty-two peptides covering the entire LG4 module were synthesized and tested for cell attachment and neurite outgrowth activity to identify active sites of the LG4 module. A3G75 (KNSFMALYLSKG, alpha3 chain 1411-1422) and A3G83 (GNSTISIRAPVY, alpha3 chain 1476-1487) promoted PC12 cell attachment and neurite outgrowth. Additionally, A3G75 and A3G83 inhibited PC12 cell attachment to rec-alpha3LG4. These results suggest that the A3G75 and A3G83 sites are important for PC12 cell attachment and neurite outgrowth in the laminin alpha3 chain LG4 module. We also conjugated the A3G75 and A3G83 peptides on chitosan membranes to test their potential as bio-materials. These peptide-conjugated chitosan membranes were more active for neurite outgrowth than the peptide-coated plates. These results suggest that the A3G75- and A3G83-conjugated chitosan membranes are applicable as bio-medical materials for neural tissue repair and engineering.  相似文献   

10.
Laminin is a potent stimulator of neurite outgrowth in a variety of primary neurons and neuronal cell lines. Here, we investigate the role of nitric oxide in the signaling mechanism of laminin-mediated neurite outgrowth in the PC12 cell line. Within 8 s of exposure to laminin, PC12 cells produce nitric oxide. Peak laminin-induced nitric oxide levels reach 8 nM within 12 s of exposure to laminin and constitutive nitric oxide production is sustained for 1 min. A neurite outgrowth promoting synthetic peptide (AG73), derived from the laminin-1-alpha globular domain, also stimulated nitric oxide release. The nitric oxide synthase inhibitor, 1-NAME, prevents the formation of nitric oxide and here, 1-NAME inhibited both laminin-mediated and AG73-mediated neurite outgrowth by 88 and 95%, respectively. In contrast, C16, a synthetic peptide derived from the laminin-1-gamma chain, is shown here to promote PC12 cell attachment, but not neurite outgrowth. Interestingly, the C16 peptide did not activate nitric oxide release, suggesting that laminin-induced nitric oxide release in PC12 cells is associated only with neurite outgrowth promoting laminin domains and signals. In addition, the data here show that the nitric oxide released by PC12 cells in response to laminin is required as a part of the mechanism of laminin-mediated neurite outgrowth.  相似文献   

11.
We have used a quantitative cell attachment assay to compare the interactions of cranial and trunk neural crest cells with the extracellular matrix (ECM) molecules fibronectin, laminin and collagen types I and IV. Antibodies to the beta 1 subunit of integrin inhibited attachment under all conditions tested, suggesting that integrins mediate neural crest cell interactions with these ECM molecules. The HNK-1 antibody against a surface carbohydrate epitope under certain conditions inhibited both cranial and trunk neural crest cell attachment to laminin, but not to fibronectin. An antiserum to alpha 1 intergrin inhibited attachment of trunk, but not cranial, neural crest cells to laminin and collagen type I, though interactions with fibronectin or collagen type IV were unaffected. The surface properties of trunk and cranial neural crest cells differed in several ways. First, trunk neural crest cells attached to collagen types I and IV, but cranial neural crest cells did not. Second, their divalent cation requirements for attachment to ECM molecules differed. For fibronectin substrata, trunk neural crest cells required divalent cations for attachment, whereas cranial neural crest cells bound in the absence of divalent cations. However, cranial neural crest cells lost this cation-independent attachment after a few days of culture. For laminin substrata, trunk cells used two integrins, one divalent cation-dependent and the other divalent cation-independent (Lallier, T. E. and Bronner-Fraser, M. (1991) Development 113, 1069-1081). In contrast, cranial neural crest cells attached to laminin using a single, divalent cation-dependent receptor system. Immunoprecipitations and immunoblots of surface labelled neural crest cells with HNK-1, alpha 1 integrin and beta 1 integrin antibodies suggest that cranial and trunk neural crest cells possess biochemically distinct integrins. Our results demonstrate that cranial and trunk cells differ in their mechanisms of adhesion to selected ECM components, suggesting that they are non-overlapping populations of cells with regard to their adhesive properties.  相似文献   

12.
We have compared the adhesive properties and integrin expression profiles of cultured human epidermal keratinocytes and a strain of nondifferentiating keratinocytes (ndk). Both cell types adhered to fibronectin, laminin, and collagen types I and IV, but ndk adhered more rapidly and at lower coating concentrations of the proteins. Antibody blocking experiments showed that adhesion of both cell types to fibronectin was mediated by the alpha 5 beta 1 integrin and to laminin by alpha 3 beta 1 in synergy with alpha 2 beta 1. Keratinocytes adhered to collagen with alpha 2 beta 1, but an antibody to alpha 2 did not inhibit adhesion of ndk to collagen. Both cell types adhered to vitronectin by alpha v-containing integrins. Immunoprecipitation of surface-iodinated and metabolically labeled cells showed that in addition to alpha 2 beta 1, alpha 3 beta 1, and alpha 5 beta 1, both keratinocytes and ndk expressed alpha 6 beta 4 and alpha v beta 5. ndk expressed all these integrins at higher levels than normal keratinocytes. ndk, but not normal keratinocytes, expressed alpha v beta 1 and alpha v beta 3; they also expressed alpha 1 beta 1, an integrin that was not consistently detected on normal keratinocytes. Immunofluorescence experiments showed that in stratified cultures of normal keratinocytes integrin expression was confined to cells in the basal layer; terminally differentiating cells were unstained. In contrast, all cells in the ndk population were integrin positive. Our observations showed that the adhesive properties of ndk differ from normal keratinocytes and reflect differences in the type of integrins expressed, the level of expression and the distribution of integrins on the cell surface. ndk thus have a number of characteristics that distinguish them from normal basal keratinocytes.  相似文献   

13.
Monolayers of astrocytes in culture respond to a scrape wound by orienting towards the wound and extending processes that will repair it. We show here that they also upregulate the expression of extracellular matrix (ECM) proteins, laminin, and chondroitin sulfated proteoglycan, that are deposited in astrocytic scars in vivo. We have previously shown that the major functional ECM receptors on astrocytes are dystroglycan (DG) plus integrins alpha1beta1, alpha5beta1, alpha6beta1, and alphavbeta3. Consistent with this, laminin fragments that activate alpha1beta1 integrin, alpha6beta1 integrin, and DG all contribute to attachment. During astrocyte attachment, or process extension, integrins and DG are found at the leading edge of the lammelipodium, though they change in distribution with the extent of attachment and the alpha and beta subunits of DG can be spatially uncoupled. Functionally, inhibitory antibodies to DG and integrin alpha1beta1 or the RGD peptide all inhibit process extension, showing that ligand engagement of integrins and DG contribute to process extension. Astrocytes differentiated from DG or beta1 null ES cells respond very differently to wounding. The former fail to extend process and cell polarization is disrupted partially. However, beta1 null astrocytes not only fail to extend processes perpendicular to the wound, but cell polarization is completely disrupted and cells migrate randomly into the wound. We conclude that integrins are essential for astrocyte polarity.  相似文献   

14.
beta 1 integrin containing complexes have been implicated as the primary adhesion structures in many lymphocyte extracellular matrix (ECM) interactions. However, many B lymphocytes lack surface expression of the beta 1 subunit, implying that this subpopulation of lymphoid cells must employ alternate adhesion structures if they are to maintain an interactive capacity with ECM. An examination of the adherence properties of the beta 1 integrin-negative B cell line JY indicated that these cells exhibit little or no basal adherence to any of the ECM components examined. However, these cells could be induced to adhere to the ECM components fibronectin, laminin, and vitronectin following treatment with PMA. Blocking studies with monoclonal antibodies indicated the alpha v beta 3 integrin complex was involved in the attachment to each of these ligands. However, the adherence to fibronectin displayed a complex pattern of inhibition suggesting the involvement of other ECM receptors. The utilization of the alpha v beta 3 complex was not unique to the JY cell line. Other B cell lines were observed to employ alpha v beta 3, and these lines similarly lacked expression of beta 1 integrin. These results indicate that alpha v beta 3 can act as a lymphoid ECM-adhesion structure which may provide an alternative means for lymphocytes to interact with ECM. Furthermore, these studies provide evidence for the presence of lymphoid-associated alpha v beta 3 integrins with regulatable activity, which contrasts with the constitutive adhesive potential of these complexes when present on other cell types.  相似文献   

15.
Cell attachment and neurite outgrowth by embryonic neural retinal cells were measured in separate quantitative assays to define differences in substrate preference and to demonstrate developmentally regulated changes in cellular response to different extracellular matrix glycoproteins. Cells attached to laminin, fibronectin, and collagen IV in a concentration-dependent fashion, though fibronectin was less effective for attachment than the other two substrates. Neurite outgrowth was much more extensive on laminin than on fibronectin or collagen IV. These results suggest that different substrates have distinct effects on neuronal differentiation. Neural retinal cell attachment and neurite outgrowth were inhibited on all three substrates by two antibodies, cell substratum attachment antibody (CSAT) and JG22, which recognize a cell surface glycoprotein complex required for cell interactions with several extracellular matrix constituents. In addition, retinal cells grew neurites on substrates coated with the CSAT antibodies. These results suggest that cell surface molecules recognized by this antibody are directly involved in cell attachment and neurite extension. Neural retinal cells from embryos of different ages varied in their capacity to interact with extracellular matrix substrates. Cells of all ages, embryonic day 6 (E6) to E12, attached to collagen IV and CSAT antibody substrates. In contrast, cell attachment to laminin and fibronectin diminished with increasing embryonic age. Age-dependent differences were found in the profile of proteins precipitated by the CSAT antibody, raising the possibility that modifications of these proteins are responsible for the dramatic changes in substrate preference of retinal cells between E6 and E12.  相似文献   

16.
The laminin alpha4 chain is widely distributed in various mesodermal tissues, including the perineurium of peripheral nerves, dorsal root ganglion (DRG), skeletal muscle, and capillaries, and plays important roles in synaptic specialization at the neuromuscular junction and in microvascular formation. The C-terminal globular domain (G domain) of the laminin alpha4 chain was previously found to be critical for heparin binding and cell attachment activity. Here, we focused on neurite outgrowth activity of the laminin alpha4 chain G domain. We found that the recombinant alpha4 chain G domain protein (rec-alpha4G) promoted neurite outgrowth of rat pheochromocytoma PC12 cells. When 114 overlapping synthetic peptides that covered the entire G domain were tested for neurite outgrowth activity, nine peptides were active, but the 105 remaining peptides did not exhibit activity. Three of the nine active peptides, A4G6 (LAIKNDNLVYVY), A4G20 (DVISLYNFKHIY), and A4G107 (VIRDSNVVQLDV), strongly promoted neurite outgrowth of PC12 cells. A4G107 was found to form amyloid-like fibrils in Congo red, X-ray, and electron microscopy analyses. We also synthesized cyclic peptides to evaluate their conformational requirements. Cyclic peptide A4G82X (cyc-A4G82X;TLFLAHGRLVFX, where X is norleucine) significantly enhanced neurite outgrowth activity, but the rest of the cyclic peptides eliminated the activity. The A4G82 sequence is located on the loop region, suggesting that the activity of A4G82 is required for a loop conformation. These peptides also exhibited neurite outgrowth activity with dorsal root ganglion (DRG) explants and with DRG cells from E14.5 mouse embryos, indicating that they are active in both neuronal cell lines and native neuronal cells. Taken together, the data suggest that the peptides from the laminin alpha4 chain G domain promote neurite outgrowth activity via a specific conformation.  相似文献   

17.
Polymerization of the ECM proteins fibronectin and laminin has been shown to take place in close vicinity to the cell surface and be facilitated by beta(1) integrins (Lohikangas, L., Gullberg, D., and Johansson, S. (2001) Exp. Cell Res. 265, 135-144 and Wennerberg, K., Lohikangas, L., Gullberg, D., Pfaff, M., Johansson, S., and Fassler, R. (1996) J. Cell Biol. 132, 227-238). We have studied the role of collagen receptors, integrins alpha(11)beta(1) and alpha(2)beta(1), and fibronectin in collagen polymerization using fibronectin-deficient mouse embryonic fibroblast cell lines. In contrast to the earlier belief that collagen polymerization occurs via self-assembly of collagen molecules we show that a preformed fibronectin matrix is essential for collagen network formation and that collagen-binding integrins strongly enhance this process. Thus, collagen deposition is regulated by the cells, both indirectly through integrin alpha(5)beta(1)-dependent polymerization of fibronectin and directly through collagen-binding integrins.  相似文献   

18.
Integrins can mediate the attachment of cells to collagen type I. In the present study we have investigated the possible differences in collagen type I recognition sites for the alpha 1 beta 1 and alpha 2 beta 1 integrins. Different cyanogen bromide (CB) fragments of the alpha 1 (I) collagen chain were used in cell attachment experiments with three rat cell types, defined with regard to expression of collagen binding integrins. Primary rat hepatocytes expressed alpha 1 beta 1, primary rat cardiac fibroblasts alpha 1 beta 1 and alpha 2 beta 1, and Rat-1 cells only alpha 2 beta 1. All three cell types expressed alpha 3 beta 1 but this integrin did not bind to collagen--Sepharose or to immobilized collagen type I in a radioreceptor assay. Hepatocytes and cardiac fibroblasts attached to substrata coated with alpha 1(I)CB3 and alpha 1(I)CB8; Rat-1 cells attached to alpha 1(I)CB3 but only poorly to alpha 1(I)CB8-coated substrata. Cardiac fibroblasts and Rat-1 cells spread and formed beta 1-integrin-containing focal adhesions when grown on substrata coated with native collagen or alpha 1(I)CB3; focal adhesions were also detected in cardiac fibroblasts cultured on alpha 1(I)CB8. The rat alpha 1 specific monoclonal antibody 3A3 completely inhibited hepatocyte attachment to alpha 1(I)CB3 and alpha 1(I)CB8, as well as the attachment of cardiac fibroblasts to alpha 1(I)CB8, but only partially inhibited the attachment of cardiac fibroblasts to alpha 1(I)CB3. 3A3 IgG did not inhibit the attachment of Rat-1 cells to collagen type I or to alpha 1(I)CB3.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
A number of cell surface receptors bind to distinct laminin domains, thereby mediating laminin's diverse biological activities. Cell surface beta 1,4-galactosyltransferase (GalTase) functions as one of these laminin receptors, facilitating mesenchymal cell migration and PC12 cell neurite outgrowth on laminin. In this study, the GalTase binding site within laminin was identified as the E8 fragment by assaying purified fragments and by immunoprecipitating and immunoblotting galactosylated laminin using E8-reactive antibodies. Compared with intact laminin and other laminin fragments, E8 possessed the highest GalTase binding activity, using both membrane-bound and solubilized GalTase. More significantly, the neurite-promoting activity of fragment E8 was shown to be dependent upon its interaction with GalTase. Pregalactosylating purified E8 eliminated subsequent GalTase binding and consequently inhibited neurite initiation; parallel studies on laminin fragments E1-4 or E1 failed to affect neurite outgrowth. Furthermore, anti-GalTase IgG inhibited neurite initiation on purified E8 substrates; control IgG had no effect. These results localize the predominant GalTase binding domain in laminin to fragment E8 and demonstrate that the neurite-promoting activity of E8 is dependent upon its interaction with GalTase.  相似文献   

20.
The carboxy-terminal globular domain (G-domain) of the laminin alpha1 chain has been shown to promote heparin binding, cell adhesion, and neurite outgrowth. In this study, we defined the potential sequences originating from the G-domain of laminin alpha1 chain which possess these functional activities. A series of peptides were synthesized from the G-domain, termed LG peptides (LG-1 to LG-6) and were tested for their various biological activities. In the direct [3H] heparin binding assays, LG-6 (residues 2,335-2,348: KDFLSIELVRGRVK) mediated high levels of [3H]heparin binding, and this peptide also directly promoted cell adhesion and spreading, including B16F10, M2, HT1080, and PC12 cells. The peptide LG-6 also promoted the neurite outgrowth of PC12 cells, mouse granule cells, and chick telencephalic cells. An anti-peptide LG-6 antibody inhibited laminin-1 and peptide LG-6-mediated cell adhesion and neurite outgrowth. Furthermore, an anti-integrin alpha2 antibody also inhibited the cell adhesion activity. These results suggest that peptide LG-6 plays a functional role as a heparin binding site in the G-domain of the laminin alpha1 chain, and this sequence was thus concluded to play a crucial role in regulating cell adhesion and spreading and neurite out-growth which is related to integrin alpha2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号