共查询到20条相似文献,搜索用时 15 毫秒
1.
The interaction of antipsychotic drugs (AP) with lipids and the subsequent lipid reorganization on model membranes was assessed using a combination of several complementary biophysical approaches (calorimetry, plasmon resonance, fluorescence microscopy, X-ray diffraction and molecular modeling). The effect of haloperidol (HAL), risperidone (RIS), and 9-OH-risperidone (9-OH-RIS) was examined on single lipid and mixtures comprising lipids of biological origin. All APs interact with lipids and induced membrane reorganization. APs showed higher affinity for sphingomyelin than for phosphatidylcholine. Cholesterol increased AP affinity for the lipid bilayer and led to the following AP ranking regarding affinity and structural changes: RIS >9-OH-RIS >HAL. Liquid-ordered domain formation and bilayer thickness were differentially altered by AP addition. Docking calculations helped understanding the observed differences between the APs and offer a representation of their conformation in the lipid bilayer. Present results indicate that AP drugs may change membrane compartmentalization which could differentially modulate the signaling cascade of the dopamine D2 receptor for which APs are ligands. 相似文献
2.
The lipid dependence of melittin action investigated by dual-color fluorescence burst analysis
下载免费PDF全文

Dual-color fluorescence-burst analysis was used to study melittin-induced leakage of macromolecules from liposomes of various lipid compositions. To perform dual-color fluorescence-burst analysis, fluorescently labeled size-marker molecules were encapsulated into liposomes, labeled with a second lipid-attached fluorophore. By correlating the fluorescence bursts, resulting from the liposomes diffusing through the detection volume of a dual-color confocal microscope, the distribution of size-marker molecules over the liposomes was determined. It was found that melittin causes leakage via two different mechanisms: 1), For liposomes composed of neutral bilayer-forming lipids, low melittin concentrations induced pore formation with the pore size depending on the melittin concentration. 2), For liposomes containing anionic and/or nonbilayer forming lipids, melittin induced fusion or aggregation of liposomes accompanied by a-specific leakage. Experiments with liposomes prepared from Escherichia coli lipid extracts and intact cells of Lactococcus lactis indicate that both mechanisms are physiologically relevant. 相似文献
3.
Radek Macháň 《生物化学与生物物理学报:生物膜》2010,1798(7):1377-2739
Investigation of lipid lateral mobility in biological membranes and their artificial models provides information on membrane dynamics and structure; methods based on optical microscopy are very convenient for such investigations. We focus on fluorescence correlation spectroscopy (FCS), explain its principles and review its state of the art versions such as 2-focus, Z-scan or scanning FCS, which overcome most artefacts of standard FCS (especially those resulting from the need for an external calibration) making it a reliable and versatile method. FCS is also compared to single particle tracking and fluorescence photobleaching recovery and the applicability and the limitations of the methods are briefly reviewed. We discuss several key questions of lateral mobility investigation in planar lipid membranes, namely the influence which membrane and aqueous phase composition (ionic strength and sugar content), choice of a fluorescent tracer molecule, frictional coupling between the two membrane leaflets and between membrane and solid support (in the case of supported membranes) or presence of membrane inhomogeneities has on the lateral mobility of lipids. The recent FCS studies addressing those questions are reviewed and possible explanations of eventual discrepancies are mentioned. 相似文献
4.
Dr. W. D. Seufert 《Radiation and environmental biophysics》1973,10(4):281-292
Summary The time course of the reaction of anionic surfactants with lipid bilayers is followed and analyzed. The distribution of detergents in the membrane phase gives rise to an asymmetry potential followed by a diffusion potential. Detergent-doped membranes are cation-permselective. It is postulated that a variable profile of mobile charges in the membrane account for the cation-permselectivity, the intercation selectivity, and the voltage-dependent gating phenomena observed in excitable membranes.Supported by a grant from the Medical Research Council of Canada.I thank Mr. G. Beauchesme for his technical assistance in part of this work. 相似文献
5.
The interaction of bee melittin with lipid bilayer membranes 总被引:8,自引:0,他引:8
The influence of melittin and the related 8-26 peptide on the stability and electrical properties of bilayer lipid membranes is reported. Melittin, unlike the 8-26 peptide, has a dramatic influence on lipid membranes, causing rupture at dilute concentrations. The circular dichroism of melittin demonstrated that under physiological conditions, in water, melittin is in extended conformation, which is enhanced in aqueous ethanol. However in 'membrane-like' conditions it is essentially alpha-helical. Secondary structure predictions were used to locate possible alpha-helical nucleation centres and a model of melittin was built according to these predictions. It is postulated that melittin causes a wedge effect in membranes. 相似文献
6.
L. J. Bruner 《The Journal of membrane biology》1975,22(1):125-141
Summary Electrical relaxation studies have been made on lecithin bilayer membranes of varying chain length and degree of unsaturation, in the presence of dipicrylamine. Results obtained are generally consistent with a model for the transport of hydrophobic ions previously proposed by Ketterer, Neumcke, and Läuger (J. Membrane Biol.
5:225, 1971). This model visualizes as three distinct steps the interfacial adsorption, translocation, and desorption of ions. Measurements at high electric field yield directly the density of ions adsorbed to the membrane-solution interface. Variation of temperature has permitted determination of activation enthalpies for the translocation step which are consistent with the assumption of an electrostatic barrier in the hydrocarbon core of the membrane. The change of enthalpy upon adsorption of ions is, however, found to be negligible, the process being driven instead by an increase of entropy. It is suggested that this increase may be due to the destruction, upon adsorption, of a highly ordered water structure which surrounds the hydrophobic ion in the aqueous phase. Finally, it is shown that a decrease of transient membrane conductance observed at high concentration of hydrophobic ions, previously interpreted in terms of interfacial saturation, must instead be attributed to a more complex effect equivalent to a reduction of membrane fluidity.Research performed while on sabbatical leave April-September, 1974. 相似文献
7.
H Van Zutphen A J Merola G P Brierley D G Cornwell 《Archives of biochemistry and biophysics》1972,152(2):755-766
8.
9.
The effects of local anaesthetics lidocaine, benzocaine, carbisocaine and carbisocaine derivatives, KaQ-7 and Ka-O, in perturbing bovine brain lipid membranes or egg lecithin membranes were compared at pH 6.0; 7.0; and 8.0. The electron spin resonance method with stearic acid labeled at carbon position 16 as the spin probe was employed. The perturbation effects of lidocaine and Ka-O were found to increase with increasing pH of the sample, whereas the effect of carbisocaine decreased with increasing pH. The perturbation effects of benzocaine and KaQ-7 were independent of pH. The pH-dependent perturbation effects of the local anaesthetics tested on lipid membrane fairly corresponded with their pH-dependent potency to block nerve action potentials. 相似文献
10.
11.
Osmotic jump experiments were used to measure the ionic permeability induced in lipid vesicles by Megathura crenulata hemocyanin. It was found that this protein strongly increases the conductance of K+ and Cl- through these membranes but not that of SO
4
=
. These effects were attributed to the formation of ionic channels in the vesicles. We have found that a simple first-order binding model can explain the dependence of the number of pore-containing vesicles both on the time after exposure to hemocyanin and on the protein concentration. Milder effects were attributed to a non-specific adhesion of the protein to the membrane surface. Consistent with the hypothesis of reversible association, vesicles which retained hemocyanin after step sucrose density gradient centrifugation at low ionic strength, lost most of the protein upon recentrifugation at high ionic strength. Consistent with the hypothesis of channel formation bot the above vesicle preparations transferred voltage-dependent hemocyanin channels into planar bilayers when they were made to fuse with them. It is concluded that hemocyanin can interact both specifically, by forming pores within the hydrophobic core of lipid membranes, and non-specifically, probably by means of electrostatic interaction with the surface of the same membrane.Abbreviations Hepes
N-2-hydroxyethylpiperazine-N-2-ethanesulfonic acid
- PC
phosphatidylcholine
- PE
phosphatidylethanolamine
- PS
phosphatidylserine
- DOC
sodium deoxycholate 相似文献
12.
Petra C. Gufler 《生物化学与生物物理学报:生物膜》2004,1661(2):154-165
In the present work, S-layer supported lipid membranes formed by a modified Langmuir-Blodgett technique were investigated by electrochemical impedance spectroscopy (EIS). Basically two intermediate hydrophilic supports for phospholipid- (DPhyPC) and bipolar tetraetherlipid- (MPL from Thermoplasma acidophilum) membranes have been applied: First, the S-layer protein SbpA isolated from Bacillus sphaericus CCM 2177 recrystallized onto a gold electrode; and second, as a reference support, an S-layer ultrafiltration membrane (SUM), which consists of a microfiltration membrane (MFM) with deposited S-layer carrying cell wall fragments. The electrochemical properties and the stability of DPhyPC and MPL membranes were found to depend on the used support. The specific capacitances were 0.53 and 0.69 μF/cm2 for DPhyPC bilayers and 0.75 and 0.77 μF/cm2 for MPL monolayers resting on SbpA and SUM, respectively. Membrane resistances of up to 80 MΩ cm2 were observed for DPhyPC bilayers on SbpA. In addition, membranes supported by SbpA exhibited a remarkable long-term robustness of up to 2 days. The membrane functionality could be demonstrated by reconstitution of membrane-active peptides such as valinomycin and alamethicin. The present results recommend S-layer-supported lipid membranes as promising structures for membrane protein-based biosensor technology. 相似文献
13.
In the present work, S-layer supported lipid membranes formed by a modified Langmuir-Blodgett technique were investigated by electrochemical impedance spectroscopy (EIS). Basically two intermediate hydrophilic supports for phospholipid- (DPhyPC) and bipolar tetraetherlipid- (MPL from Thermoplasma acidophilum) membranes have been applied: first, the S-layer protein SbpA isolated from Bacillus sphaericus CCM 2177 recrystallized onto a gold electrode; and second, as a reference support, an S-layer ultrafiltration membrane (SUM), which consists of a microfiltration membrane (MFM) with deposited S-layer carrying cell wall fragments. The electrochemical properties and the stability of DPhyPC and MPL membranes were found to depend on the used support. The specific capacitances were 0.53 and 0.69 microF/cm(2) for DPhyPC bilayers and 0.75 and 0.77 microF/cm(2) for MPL monolayers resting on SbpA and SUM, respectively. Membrane resistances of up to 80 mega Ohm cm(2) were observed for DPhyPC bilayers on SbpA. In addition, membranes supported by SbpA exhibited a remarkable long-term robustness of up to 2 days. The membrane functionality could be demonstrated by reconstitution of membrane-active peptides such as valinomycin and alamethicin. The present results recommend S-layer-supported lipid membranes as promising structures for membrane protein-based biosensor technology. 相似文献
14.
Mons S Veretout F Carlier M Erk I Lepault J Trudel E Salesse C Ducray P Mioskowski C Lebeau L 《Biochimica et biophysica acta》2000,1468(1-2):381-395
Colchicine is a potent antimitotic poison which is well known to prevent microtubule assembly by binding tubulin very tightly. Colchicine also possesses anti-inflammatory properties which are not well understood yet. Here we show that colchicine tightly interacts with lipid layers. The physical and biological properties of three different lipid derivatives of colchicine are investigated parallel to those of membrane lipids in the presence of colchicine. Upon insertion in the fatty alkyl chains, colchicine rigidifies the lipid monolayers in a fluid phase and fluidifies rigid monolayers. Similarly X-ray diffraction data show that lecithin-water phases are destabilized by colchicine. In addition, an unexpectedly drastic enhancement of the photoisomerization rate of colchicine into lumicolchicine in the lipid environment is observed and further supports insertion of the alkaloid in membranes. Finally the interaction of colchicine with lipids makes the drug inaccessible to tubulin. The possible in vivo significance of these results is discussed. 相似文献
15.
For modeling the interaction of myoglobin with mitochondrial membranes, the adsorption of different ligand forms, the physiologically active reduced MbO2 and inactive oxidized met-Mb, on one of the surfaces of artificial bilayer lipid membrane (BLM) was studied using potentiodynamic technique known as the "capacity minimization" method. As mitochondrial membranes are negatively charged, BLM from the negatively charged palmitoyl-2-oleil-phosphatidyl glycerol (POPG) and neutral soybean phosphatidylcholine (lecithin) were used. It is shown that both myoglobins strongly interact with BLM in the pH range 6-8. The dependence of the potential difference between cis-and trans-surfaces of the lipid membrane (deltaE, mV) on the protein concentration is characteristic for the Langmuir adsorption isotherm, and the saturation level (deltaEmax, mV) corresponds to monolayer of myoglobin. The protein adsorption is essentially electrostatic in nature, as adsorption activity increases sharply in the case of the membrane from POPG: in a approximately 15-fold in the case of MbO2 and in a approximately 2.5 times for the met-Mb. The parameters of the MbO2 and met-Mb adsorption on BLM from lecithin and POPG do not change in the pH 6-8 range. It can be assumed that the anionic groups of phospholipids associate with the cationic groups of the protein, the charge state of those does not change in the pH 6-8 range. The most likely candidates for interaction with phospholipids of BLM are invariant lysines and arginines in the environment of the myoglobin heme cavity. 相似文献
16.
For modeling the interaction of myoglobin with mitochondrial membranes, the adsorption of different ligand forms, the physiologically active reduced MbO2 and inactive oxidized met-Mb, on one of the surfaces of artificial bilayer lipid membrane (BLM) was studied using a potentiodynamic technique known as the “capacity minimization” method. As mitochondrial membranes are negatively charged, BLM of the negatively charged palmitoyl-2-oleyl-phosphatidyl glycerol (POPG) and neutral soybean phosphatidylcholine (lecithin) were used. It is shown that both myoglobins strongly interact with BLM in the pH range 6–8. The dependence of the potential difference between cis-and trans-surfaces of the lipid membrane (ΔE, mV) on the protein concentration is characteristic of the Langmuir adsorption isotherm, and the saturation level (ΔE max, mV) corresponds to monolayer of myoglobin. The protein adsorption is essentially electrostatic in nature, as adsorption activity increases sharply in the case of the membrane from POPG: ∼15-fold in the case of MbO2 and ∼2.5 times for met-Mb. The parameters of the MbO2 and met-Mb adsorption on BLM of lecithin and POPG do not change in the pH 6–8 range. It can be assumed that the anionic groups of phospholipids associate with the cationic groups of the protein, the charge state of those does not change in the pH 6–8 range. The most likely candidates for interaction with phospholipids of BLM are invariant lysines and arginines in the environment of the myoglobin heme cavity. 相似文献
17.
18.
Kahya N Scherfeld D Bacia K Poolman B Schwille P 《The Journal of biological chemistry》2003,278(30):28109-28115
Confocal fluorescence microscopy and fluorescence correlation spectroscopy (FCS) have been employed to investigate the lipid spatial and dynamic organization in giant unilamellar vesicles (GUVs) prepared from ternary mixtures of dioleoyl-phosphatidylcholine/sphingomyelin/cholesterol. For a certain range of cholesterol concentration, formation of domains with raft-like properties was observed. Strikingly, the lipophilic probe 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate (DiI-C18) was excluded from sphingomyelin-enriched regions, where the raft marker ganglioside GM1 was localized. Cholesterol was shown to promote lipid segregation in dioleoyl-phosphatidylcholine-enriched, liquid-disordered, and sphingomyelin-enriched, liquid-ordered phases. Most importantly, the lipid mobility in sphingomyelin-enriched regions significantly increased by increasing the cholesterol concentration. These results pinpoint the key role, played by cholesterol in tuning lipid dynamics in membranes. At cholesterol concentrations >50 mol%, domains vanished and the lipid diffusion slowed down upon further addition of cholesterol. By taking the molecular diffusion coefficients as a fingerprint of membrane phase compositions, FCS is proven to evaluate domain lipid compositions. Moreover, FCS data from ternary and binary mixtures have been used to build a ternary phase diagram, which shows areas of phase coexistence, transition points, and, importantly, how lipid dynamics varies between and within phase regions. 相似文献
19.
Prion protein structure is affected by pH-dependent interaction with membranes: a study in a model system 总被引:2,自引:0,他引:2
Re F Sesana S Barbiroli A Bonomi F Cazzaniga E Lonati E Bulbarelli A Masserini M 《FEBS letters》2008,582(2):215-220
Interaction of full length recombinant hamster prion protein with liposomes mimicking lipid rafts or non-raft membrane regions was studied by circular dichroism, chemical cross-linking and sucrose gradient ultracentrifugation. At pH 7.0, the protein bound palmitoyloleoylphosphatidylcholine/cholesterol/sphingomyelin/monosialoganglioside GM1 (GM1) ganglioside liposomes but not palmitoyloleoylphosphatidylcholine alone (bound/free=0.33 and 0.01, respectively), maintaining the native alpha-helical structure and monomeric form. At pH 5.0, though still binding to quaternary mixtures, in particular GM1, the protein bound also to palmitoyloleoylphosphatidylcholine (bound/free 0.35) becoming unfolded and oligomeric. The pH-dependent interaction with raft or non-raft membranes might have implication in vivo, by stabilizing or destabilizing the protein. 相似文献
20.
In response to a low environmental pH and with the help of the B fragment (DTB) the catalytic domain of diphtheria toxin (DTA) crosses the endosomal membrane to inhibit protein synthesis. In this study, we investigated the interaction of DTA with lipid membranes by biochemical and biophysical approaches. Data obtained from proteinase K and trypsin digestion experiments of membrane-inserted DTA suggested that residues 134-157 may adopt a transmembrane orientation and residues 77-100 could be membrane-associated, adopting either a surface or a transmembrane orientation. Fourier transform infrared spectroscopy analysis (FTIR) was used to characterize the secondary and tertiary structure of DTA along its pathway, from the native secreted form at pH 7.2 to the refolded structure at neutral pH after interaction with and desorption from a lipid membrane. We found that the association of DTA with lipid membranes at low pH was characterized by an increase of β-sheet structures and that the refolded structure at neutral pH after interaction with the membrane was identical to the native structure at the same pH. We also investigated the desorption of DTA from the membrane at neutral pH as a function of temperature. Although a complete desorption was observed at 37 °C, no desorption took place at 4 °C. A model of translocation involving the possibility that DTA might insert one or several transient transmembrane domains during translocation is discussed. 相似文献