首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The process of cellular fusion induced by Sendai virus in Chinese hamster cells (Don line) afforded us the opportunity to study nuclear envelope formation around metaphase sets in the presence of interphase nuclei, when chromosome pulverization failed to occur in such multinucleate cells. Morphologically, the enveloped metaphase chromosomes resembled a normal telophase nucleus, though minor differences prompted us to call it telophase-like. Electron microscopic observations demonstrated that the membranes enveloping the chromosomes appeared to be identical with a normal nuclear envelope. The longer the cells were incubated with Colcemid before fusion, the higher was the number of cells with telophase-like nuclei and the lower the percentage of cells with pulverizations. Furthermore, the number of pulverizations bore a somewhat direct relationship to the ratio of metaphase to interphase nuclei in multinucleate cells, and the number of telophase-like nuclei was inversely proportional to this ratio. A hypothesis is advanced in which a balance between the activities of a chromosome pulverization factor and a nuclear envelope formation factor, the former in metaphase cells and the latter in interphase cells, is decisive as to the nature of morphologic events observed in virus-induced fused cells.  相似文献   

2.
INDUCTION OF PROPHASE IN INTERPHASE NUCLEI BY FUSION WITH METAPHASE CELLS   总被引:9,自引:7,他引:2  
Fusion of an interphase cell with a metaphase cell results in profound changes in the interphase chromatin that have been called "chromosome pulverization" or "premature chromosome condensation" In addition to the usual light microscopy, the nature of the changes has been investigated in the present study with electron microscopy and biochemical techniques Metaphase and interphase cells were mixed and fused at 37°C by means of ultraviolet-inactivated Sendai virus. After cell fusion, morphological changes in interphase nuclei occurred only in binucleate cells which contained one intact set of metaphase chromosomes Irrespective of the nuclear stage at the time of cell fusion, the morphologic changes that occurred 5–20 min later simulated very closely a sequence of events that characterizes the normal G2-prophase transition. Radioautography revealed that, late in the process, substantial amounts of RNA and probably protein were transferred from the interphase nucleus into the cytoplasm of fused cells. Thus, the findings indicate the existence in metaphase cells of factor(s) which are capable of initiating biochemical and morphological events in interphase nuclei intrinsic to the normal mitotic process.  相似文献   

3.
The objective of this study was to investigate whether G1 cells could enter S phase after premature chromosome condensation resulting from fusion with mitotic cells. HeLa cell synchronized in early G1, mid-G1, late G1, and G2 and human diploid fibroblasts synchronized in G0 and G1 phases were separately fused by use of UV-inactivated Sendai virus with mitotic HeLa cells. After cell fusion and premature chromosome condensation, the fused cells were incubated in culture medium containing Colcemid (0.05 micrograms/ml) and [3H]thymidine ([3H]ThdR) (0.5 microCi/ml; sp act, 6.7 Ci/mM). At 0, 2, 4, and 6 h after fusion, cell samples were taken to determine the initation of DNA synthesis in the prematurely condensed chromosomes (PCC) on the basis of their morphology and labeling index. The results of this study indicate that PCC from G0, G1, and G2 cells reach the maximum degree of compaction or condensation at 2 h after PCC induction. In addition, the G1-PCC from normal and transformed cells initiated DNA synthesis, as indicated by their "pulverized" appearance and incorporation of [3H]ThdR. Further, the initiation of DNA synthesis in G1-PCC occurred significantly earlier than in the mononucleate G1 cells. Neither pulverization nor incorporation of label was observed in the PCC of G0 and G2 cells. These findings suggest that chromosome decondensation, although not controlling the timing of a cell's entry into S phase, is an important step for the initiation of DNA synthesis. These data also suggest that the entry of a S phase may be regulated by cell cycle phase-specific changes in the permeability of the nuclear envelope to the inducers of DNA synthesis present in the cytoplasm.  相似文献   

4.
Males of the European elm scale, Gossyparia spuria (Erioccoccidae) have two Malphigian tubules, each made up of mononucleate and binucleate cells. Both types of cells may contain heterochromatic (H) chromosomes which form an H body. The cells with H bodies (H cells) usually appeared singly anywhere along the tubule. However, when two or more H cells were present they tended to be closer to each other than would be expected by chance. The possible origin of this tendency is discussed. Following squashing, the nuclei of the binucleate cells were much larger than those of most other somatic cells, suggesting that they were highly endopolyploid. However, the H bodies of the cells of the tubules were of about the same size as those of the other cells. These observations suggested that the H chromosomes of the binucleate cells did not replicate while the euchromatic chromosomes of these cells replicated several times. The great majority of the nuclei of the H cells contained a single H body per nucleus. An analysis of the number of H bodies in binucleate cells indicated that when two H bodies were present in the same nucleus they usually did not fuse. Thus, they were believed also not to fuse in the mononucleate cells. Since almost all the mononucleate H cells had only a single H body (rather than 2) it was concluded that they did not originate from binucleate cells by nuclear fusion.  相似文献   

5.
Cultures of a pseudodiploid cell line (Don) of Chinese hamster origin were exposed to varying doses of tritiated thymidine (TdR-3H) for relatively long periods of time. In addition to previously observed chromosomal aberrations) such as breaks and reunions, a substantial number of interphasic cells with micronuclei and of metaphases associated with pulverized chromosomes was found; both phenomena were dependent on exposure time to and concentration of TdR-3H. The former phenomenon appeared to result from the effects of the β-emissions originating in the TdR-3H. A possible interpretation for chromosome pulverization induction is presented, emphasizing the derivation of the pulverized material from micronuclei in a common cytoplasm with a metaphase nucleus. These observations further substantiate our previously advanced hypothesis regarding the essential role played by substances present in a mitotic cell in the induction of chromosome pulverization and nuclear membrane dissolution.  相似文献   

6.
In non-hypotonically treated mitoses from tissue cultures of Microtus agrestis, both the constitutive heterochromatin of the sex chromosomes and the spindle apparatus were stained by the Giemsa C-banding technique. By means of counting the heterochromatic chromosomes, we determined the cell ploidy and studied the number of centrioles and the spindle arrangement of diploid, triploid, tetraploid and octoploid mitoses. Diploid and triploid prophases contained 2 centrioles in most cases, tetraploid prophases 4, binucleate cells with 2 diploid nuclei likewise 4 and binucleate cells with 2 tetraploid nuclei 8 centrioles. Nearly 99% of diploid and triploid metaphases were bipolar. Of the tetraploid metaphases only 45% were bipolar, 29.5% tripolar, 7.5% quadripolar and 18% formed as a parallel mitosis. In all examined binucleate cells that had had an asynchronous DNA synthesis, a multipolar mitosis was found.  相似文献   

7.
NUCLEAR MEMBRANE FUSION IN FERTILIZED LYTECHINUS VARIEGATUS EGGS   总被引:3,自引:2,他引:1       下载免费PDF全文
Fusion of apposed nuclear envelopes is frequently seen at telophase during postmitotic reorganization of the nucleus, but only rarely at other times in the cell cycle. We attempted to define an experimental system for studying changes in the nuclear envelope related to the cell cycle by varying the time of pronuclear apposition in fertilized Lytechinus variegatus eggs. This approach was based on the assumption that the period from fertilization to metaphase of the first cleavage division corresponds to the period from telophase to metaphase in the generalized cell cycle. The experimental approach used was to block the movement of the pronuclei with Colcemid and then to release this block at varying times after insemination by photochemically inactivating the Colcemid. The results show that apposed pronuclear envelopes can fuse from soon after insemination until the anticipated time of prometaphase. Fusion occurred in about 3 min as scored by light microscopy and this time did not vary significantly with the time after insemination. The potential for nuclear fusion is not restricted to pronuclei alone since diploid nuclei in binucleate cells could be fused using centrifugation in solutions of Colcemid to bring the nuclei into apposition. It is suggested that the potential for nuclear fusion is not necessarily related to the cell cycle and that modification of the nuclear envelope, possibly by association with chromatin or other fibrous material restricts nuclear fusion in most multinucleated cells.  相似文献   

8.
Summary Conventional and molecular cytogenetic analyses of three murine cancer cell lines that had been induced in male athymic mice by the injection of three different human prostate cancer cell lines revealed selective amplification of the Y chromosome. In particular, analysis of metaphase and interphase nuclei by fluorescence in situ hybridization (FISH) with the mouse Y chromosome-specific DNA painting probe revealed the presence of various numbers of Y chromosomes, ranging from one to eight, with a large majority of nuclei showing two copies (46.5–60.1%). In Interphase nuclei, the Y chromosomes showed distinct morphology, allowing identification irrespective of whether the preparations were treated for 15 min or for 5 h with Colcemid, a chemical known to cause chromosome condensation. However, FISH performed on human lymphocyte cultures with chromosome-specific DNA painting probes other than the Y chromosome did not reveal condensed chromosome morphology in interphase nuclei even after 12 h of Colcemid treatment. Our FISH results indicate that (1) the Y chromosome is selectively amplified in all three cell lines; (2) the mouse Y chromosome number is comparable in both interphase and metaphase cells; (3) the Y chromosome number varies between one and eight, with a large majority of cells showing two or three copies in most interphase nuclei; (4) the condensation of the Y chromosome is not affected by the duration of Colcemid treatment but by its inherent DNA constitution; and (5) the number of copies of the Y chromosome is increased and retained not only in human prostate tumor cell lines but also in murine tumors induced by these prostate tumor cell lines.  相似文献   

9.
The induction of premature chromosome condensation in an interphase cell immediately following fusion with a mitotic cell suggests the presence of factors in the mitotic cell that are responsible for the transformation of an interphase nucleus into prematurely condensed chromosomes (PCC). Several lines of evidence suggest that these factors are proteins present in the cytoplasm of mitotic cells. The objective of this study was to raise antibodies to the factors responsible for PCC. Cytosol from synchronized mitotic HeLa cells was injected into rabbits in order to obtain antiserum. The IgG fraction from this antiserum reacted with 98% of mitotic HeLa cells when tested by indirect immunofluorescence. Most of the fluorescence was localized on the chromosomes. About 5% of the interphase nuclei also reacted with the antiserum, but 50% of these cells were in early G1. Antigenic reactivity was induced in the condensing interphase chromatin in 31% of the interphase nuclei found in mitotic-interphase fused cells. Rodent cells did not react with the antibody by indirect immunofluorescence. Mitotic HeLa cells were able to induce antigenic reactivity in 23 % of interphase Chinese hamster ovary (CHO) cell nuclei in fused binucleate cells, whereas the converse was not true of mitotic CHO cells. Enzyme digestion and incubation with denaturing agents suggested that antigenic reactivity depended on a DNA-non-histone protein complex.  相似文献   

10.
A N Stroud  R Nathan  S Harami 《In vitro》1975,11(2):61-68
Early chromatin condensation in interphase cells (G1) of human peripheral blood lymphocytes has been induced without virus or cell fusion by exposure to allogeneic or xenogeneic mitotic cells. The event, although similar in some ways to the phenomenon described as "premature chromosome condensation," "chromosome pulverization," and "prophasing," differs in that it does not require the presence of viruses and cell fusion before mitosis proceeds in the G1 cell. Early chromatin condensation in interphase cells induced by mitotic cells only, consists of chromatids in the early or late G1 phase of the cell cycle that are not pulverized or fragmented at mitosis. Some of the chromosomes are twice as long as the metaphase chromosomes and exhibit natural bands. Almost twice as many of these bands are produced as by trypsin treatment of metaphase chromosomes. The nuclear membrane is intact and nucleoli are present, to which some chromosomes are attached. The DNA content of the precocious chromosomes in G1 is half the amount of the metaphase complement.  相似文献   

11.
In two different cell fusion experiments a synchronized population of HeLa cells, prelabeled with 3H-TdR, was fused with an unlabeled one using inactivated Sendai virus. In the first experiment, HeLa cells in early G2 phase which were exposed to either 4 °C, cycloheximide, actinomycin D or X-irradiation were fused separately with untreated and more advanced G2 cells. A comparison of the rates of mitotic accumulation (in the presence of Colcemid) for the various classes of mono- and binucleate cells revealed that the hybrid (binucleate) cells were intermediate between those of the advanced and the retarded parental types indicating that the chromosome condensing factors of the advanced component were diluted as a result of such fusion. The manner in which the retarding effects of actinomycin D and cycloheximide were reversed in the hybrid cells suggested that proteins had a major role as chromosome condensing factors in the G2 mitotic transition. In the second experiment, when S phase HeLa cells were fused with those in G2, the resulting heterophasic (S/G2) binucleate cells reached mitosis at about the same time as the homophasic (S/S) cells of the lagging parent indicating a complete dominance of the S over the G2 with regard to their progress towards mitosis. However, the addition of Mg2+ (2 × 10?2 M of MgCl2) to the medium helped the G2 nuclei to enter mitosis asynchronously, which consequently induced premature chromosome condensation (PCC) in the S phase component. These data suggested that in the heterophasic (S/G2) binucleate cells the S phase component caused decondensation of the G2 chromatin thus blocking it from entering into mitosis. This effect which did not appear to be dose-dependent could be neutralized and the G2 nuclei relieved from this repression by an external supply of Mg2+ ions.  相似文献   

12.
Anomalies of chromatin condensation, such as fragmentation, uncoiling and pulverization, were observed in XP9UV25, a xeroderma pigmentosum fibroblast clone in which a high proportion of cells carried an end-to-end dicentric chromosome, dic (5;16) (p15.2;q24), that gives rise during propagation in culture to a variety of dicentric and monocentric derivatives. The coiling anomaly affected exclusively part of a rearranged chromosome, in particular the region previously involved in breakage events. The heterochromatic 16q region, which is a preferential breakpoint in the formation of dicentric and monocentric derivatives, was consistently the limit of the uncoiled or pulverized regions. This observation suggests that the anomalous chromatin behavior could derive from alteration of a region relevant for the correct condensation of the chromosome. In XP9UV25 the frequency of nuclei with associated micronuclei increased with time in culture, in parallel with that of mitoses with dicentric chromosomes. In situ hybridization with DNA probes specific for chromosomes 5 and 16 revealed hybridization signals in about 40% of micronuclei. Since the frequency of micronuclei is about ten times less than that of dicentrics, it is probable that only the rearranged chromosomes undergoing coiling anomalies are excluded in micronuclei.  相似文献   

13.
Age-related alterations in the size of human hepatocytes   总被引:2,自引:0,他引:2  
Age-related alterations in the size of human hepatocytes (both mononuclear and binucleate forms), were studied in histological sections and in separated cells and nuclei using cytophotometrical and microspectrophotometrical methods. The following results were obtained: 1. The volume of nuclear DNA increased in proportion to nuclear size. The increase occurred in a group pattern reflecting nuclear polyploidization. 2. Cell size increased in proportion to nuclear size. Tetraploid cells (4C) were roughly two times greater than diploid cells (2C). 3. In most of the binucleate cells examined, the ploidy class of the two nuclei in a binucleate cell was observed to be equal. Heterogeneity of the ploidy class among the nuclei of a binucleate cell was present in less than 1% of total binucleate cells examined. The nuclear DNA volume of individual nuclei in binucleate cells appeared to be the same as that of mononuclear cells. 4. The cell size of binucleate cells corresponded with that of mononuclear cells whose ploidy class was the same as the sum of the ploidy classes of two nuclei of a binucleate cell. 5. The incidence of binucleate cells in the lobular periphery was about 4 to 6% in the third decade, and increased slightly with age up to 5 to 7% in the tenth decade. 6. The incidence of binucleate cells in the liver at different ages followed a similar pattern to that observed in mononuclear cells whose ploidy class was half of the sum of ploidy classes of the two nuclei of the binucleate cell.  相似文献   

14.
Summary Chromosomes were isolated in a preparative scale by synchronisation of CHO cells with a double Thymidine block followed by an arrest in the metaphase by addition of Colcemid. Under proper cultivation conditions a mitotic index of 77% total cells could be routinely achieved. Bulk chromosome preparations free of nuclei and other subcellular particles have been obtained by low speed centrifugation followed by a 60 transfer countercurrent distribution using aqueous two phase systems composed of polyethylenglycol and dextran. The partition of CHO chromosomes previously purified in aqueous two phase systems were studied further to develop a protocol for the separation and isolation of individual chromosomes. Partition experiments with chromosomes changing the electrostatic phase potential by addition of charged PEG-derivatives suggest the existence of relatively highly charged chromosome groups. Most promising results with regard to separation were obtained using two PEG-derivatives, which interact specifically with the bases in DNA. For this affinity partitioning a GC- and AT-specific macroligand were employed. Comparing CCD's using each of these ligands information on the GC and AT content of exposed DNA in the chromosomes groups could be derived, demonstrating that specific sequences of DNA are accessible at the surface of metaphase chromosomes.  相似文献   

15.
Using the cultured Chinese hamster cell line Don, G1 or S or a mixture of late-S/G2 cells were prepared by release from metaphase arrest. Metaphase (M) cells were also obtained by mitotic arrest of log-phase cultures with Colcemid and held in metaphase; such M cells remained untreated with any other compound and were termed standard M cells. When interphase (I) cells were fused at pH 8.0 and 37 degrees C with standard cells in the presence of Colcemid by means of UV-inactivated Sendai virus, binucleate interphase-metaphase (I-M) cells were obtained. In a given I-M cell there occurred within 30 min after fusion either prophasing of the I nucleus or formation of a nuclear envelope (NE) around the chromosomes. About 20% of early G1 cells, 35% of cells at the G1/S boundary, 50% of S cells, and 70% of late S/G2 cells could induce NE formation. If, before fusion, cycloheximide (CHE), an inhibitor of protein synthesis, was present during release from M arrest, the cells entered G1 but not S. About 20% of such early G1 cells, like the untreated early G1 cells, had the capacity to induce NE formation during subsequent fusion. If the cells were blocked in S with 5 mM thymidine (TdR), At least 80% of these cells could induce NE formation during subsequent fusion, but in the presence of both TdR and CHE only 35% could do so. It appeared, therefore, that protein synthesis in interphase was required for NE formation. Experiments with actinomycin D indicated that RNA synthesis was also necessary for acquisition of NE-inducing capacity. About 35% of G1 cells from confluent monolayers had the NE-inducing capacity, but prolonged exposure to CHE reduced their number to 8% . Removal of CHE restored the ability while the cells still remained in G1. This result indicated that continuing protein synthesis in the G1 cell was needed for NE formation subsequent to fusion. The fact that macromolecular synthesis must occur in the I cell before fusion if NE formation was to occur in the fused I-M cell lends further support to evidence adduced earlier that this phenomenon is a normal mitotic event. Prophasing of the I nucleus in I-M cells did not appear to be dependent on macromolecular synthesis in the I cell; earlier results from this laboratory showed, however, that protein synthesis in the prior G2 period of the M cell of the I-M pair was required for prophasing.  相似文献   

16.
The binucleate pathogen Giardia intestinalis is a highly divergent eukaryote with a semiopen mitosis, lacking an anaphase-promoting complex/cyclosome (APC/C) and many of the mitotic checkpoint complex (MCC) proteins. However, Giardia has some MCC components (Bub3, Mad2, and Mps1) and proteins from the cohesin system (Smc1 and Smc3). Mad2 localizes to the cytoplasm, but Bub3 and Mps1 are either located on chromosomes or in the cytoplasm, depending on the cell cycle stage. Depletion of Bub3, Mad2, or Mps1 resulted in a lowered mitotic index, errors in chromosome segregation (including lagging chromosomes), and abnormalities in spindle morphology. During interphase, MCC knockdown cells have an abnormal number of nuclei, either one nucleus usually on the left-hand side of the cell or two nuclei with one mislocalized. These results suggest that the minimal set of MCC proteins in Giardia play a major role in regulating many aspects of mitosis, including chromosome segregation, coordination of mitosis between the two nuclei, and subsequent nuclear positioning. The critical importance of MCC proteins in an organism that lacks their canonical target, the APC/C, suggests a broader role for these proteins and hints at new pathways to be discovered.  相似文献   

17.
Metaphase II and activated mouse oocytes were fused with 8-cell blastomeres, and morphological changes in the transferred nuclei were followed using light and electron microscopy. In metaphase II oocytes, blastomere nuclei underwent premature chromosome condensation (PCC) typical for S-phase nuclei: chromatin pulverization. Then an abortive spindle was formed without evident microtubule organizing centers. Blastomere chromosomes condensed to a lesser degree than meiotic chromosomes and lacked mature functional, trilaminar kinetochores. After parthenogenetic activation of these oocytes, blastomere chromosomes followed, in synchrony with oocyte chromatin, a similar route of changes (anaphase, telophase) and then reformed interphase nuclei of the pronuclear type. Remodeling of 8-cell nucleus thus occurred, but the integrity of the chromatin set was frequently disturbed by formation of micronuclei. If blastomere fusion with oocytes was done close to activation (either before or after parthenogenetic stimulation), the chances of remodeling of the nuclei decreased, because PCC was not regularly induced in all oocytes. In hybrids produced 60 min or later after oocyte activation, blastomere nuclei were maintained in interphase without any structural modifications. Multiple experiments in the mouse have shown that the nuclei from 8-cell stage transferred to enucleated oocytes and egg cells are not capable of substituting for pronuclear functions. Possible reasons for impaired functional reprogramming of 8-cell nucleus in the mouse are discussed in light of our present findings on the morphology of nuclei transferred before and after oocyte activation.  相似文献   

18.
Morphological changes in interphase nuclei were cytologically studied in heterophasic dinucleate cells formed by the fusion of mitotic and interphase plant protoplasts. Mitotic protoplasts were isolated from a partially synchronized suspension culture of wheat (Triticum monococcum). The mitotic cells were accumulated by colchicine after release of hydroxyurea block. Treatment of protoplast populations with polyethylene glycol-dimethyl sulphoxide solution resulted in metaphase-interphase fusion. Three hours after fusion, the appearance of chromosomes with single chromatid as well as of fragmented, pulverized chromatin in heterophasic cells indicated the induction of premature chromosome condensation (PCC) in somatic wheat cells. Condensation in interphase nuclei of mitotically inactive rice protoplasts was also detected after fusion with mitotic wheat protoplasts.  相似文献   

19.
The effects of compression and pulverization on the dehydration kinetics and hardness of creatine monohydrate tablets were studied using a variety of kinetic equations and physical models. The dehydration behavior of unpulverized and pulverized tablets was investigated by using differential scanning calorimetry (DSC) and powder X-ray diffraction (PXRD). The hardness of both unpulverized and pulverized monohydrate tablets was significantly decreased after dehydration. The relationship between the degree of dehydration and the tablet hardness of both unpulverized and pulverized monohydrate tablets formed a straight line. The results suggest that the reduction in tablet hardness is dependent on the dehydration of crystal water, and the values of the slopes indicate that the bonding energy of the unpulverized sample was stronger than that of the pulverized sample. The dehydration kinetics of the unpulverized and pulverized monohydrate tablets were evaluated by analyzing the fit of the isothermal DSC data using a variety of solid-state kinetic models. The dehydration of the unpulverized tablets at various levels of compression pressure followed the 3-dimensional growth of nuclei mechanism. In contrast, although the dehydration kinetics of pulverized monohydrate tablets compressed at 500 and 750 kg/cm2 followed the 3-dimensional diffusion mechanism, those compressed at 1000 kg/cm2 followed the 3-dimensional growth of nuclei mechanism. The PXRD analysis indicated that the diffraction intensity of the pulverized monohydrate powder was significantly lower than that of the unpulverized powder. The diffraction peaks of the (h00) planes and the micropore structure of the unpulverized monohydrate tablets were affected by pulverization and compression force, respectively. Published: October 26, 2005  相似文献   

20.
Abnormal mitosis occurs in maize tapetum, producing binucleate cells that later disintegrate, following a pattern of programmed cell death. FISH allowed us to observe chromosome nondisjunction and micronucleus formation in binucleate cells, using DNA probes specific to B chromosomes (B's), knobbed chromosomes, and the chromosome 6 (NOR) of maize. All chromosome types seem to be involved in micronucleus formation, but the B's form more micronuclei than do knobbed chromosomes and knobbed chromosomes form more than do chromosomes without knobs. Micronuclei were more frequent in 1B plants and in a genotype selected for low B transmission rate. Nondisjunction was observed in all types of FISH-labeled chromosomes. In addition, unlabeled bridges and delayed chromatids were observed in the last telophase before binucleate cell formation, suggesting that nondisjunction might occur in all chromosomes of the maize complement. B nondisjunction is known to occur in the second pollen mitosis and in the endosperm, but it was not previously reported in other tissues. This is also a new report of nondisjunction of chromosomes of the normal set (A's) in tapetal cells. Our results support the conclusion that nondisjunction and micronucleus formation are regular events in the process of the tapetal cell death program, but B's strongly increase A chromosome instability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号