首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A series of 6-aryl-2,4-dioxo-5-hexenoic acids, were synthesized and tested against HIV-1 in cell-based assays and against recombinant HIV-1 integrase (rIN) in enzyme assays. Compound 8a showed potent antiretroviral activity (EC(50)=1.5 microM) and significant inhibition against rIN (strand transfer: IC(50)=7.9 microM; 3'-processing: IC(50)=7.0 microM). A preliminary molecular modeling study was carried out to compare the spatial conformation of 8a with those of L-731988 (4) and 5CITEP (7) in the IN core.  相似文献   

2.
A series of naphthyridinone HIV-1 integrase strand-transfer inhibitors have been designed based on a psdeudo-C2 symmetry element present in the two-metal chelation pharmacophore. A combination of two distinct inhibitor binding modes resulted in potent inhibition of the integrase strand-transfer reaction in the low nM range. Effects of aryl and N1 substitutions are disclosed including the impact on protein binding adjusted antiviral activity.  相似文献   

3.
Thiazolothiazepines are among the smallest and most constrained inhibitors of human immunodeficiency virus type-1 integrase (HIV-1 IN) inhibitors (J. Med. Chem. 1999, 42, 3334). Previously, we identified two thiazolothiazepines lead IN inhibitors with antiviral activity in cell-based assays. Structural optimization of these molecules necessitated the design of easily synthesizable analogs. In order to design similar molecules with least number of substituent, herein we report the synthesis of 10 novel analogs. One of the new compounds (1) exhibited similar potency as the reference compounds, confirming that a thiazepinedione fused to a naphthalene ring system is the best combination for the molecule to accommodate into the IN active site. Thus, the replacement of sulfur in the thiazole ring with an oxygen does not seem considerably affect potency. On the other hand, the introduction of an extra methyl group at position 1 of the polycyclic system or the shift from a thiazepine to an oxazepine skeleton decreased potency. In order to understand their mode of interactions with IN active site, we docked all the compounds onto the previously reported X-ray crystal structure of IN. We observed that compounds 7-9 occupied an area close to D64 and Mg(2+) and surrounded by amino acid residues K159, K156, N155, E152, D116, H67, and T66. The oxygen atom of the oxazolo ring of 7 and 8 could chelate Mg(2+). These results indicate that the new analogs potentially interact with the highly conserved residues important for IN catalytic activities.  相似文献   

4.
The previously discovered salicylhydrazide class of compounds displayed potent HIV-1 integrase (IN) inhibitory activity. The development of this class of compounds as antiretroviral agents was halted due to cytotoxicity in the nanomolar to sub-micromolar range. We identified a novel class of non-cytotoxic hydrazide IN inhibitors utilizing the minimally required salicylhydrazide substructure as a template in a small-molecule database search. The novel hydrazides displayed low micromolar IN inhibitory activity and are several hundred-fold less cytotoxic than previously disclosed salicylhydrazide IN inhibitors.  相似文献   

5.
Effect of substitution on novel tricyclic HIV-1 integrase inhibitors   总被引:1,自引:0,他引:1  
A series of novel tricyclic inhibitors of HIV-1 integrase enzyme was prepared. The effect of substitution at C-6 of the 9-hydroxy-6,7-dihydropyrrolo[3,4-g]quinolin-8-one compounds was studied in vitro. Inhibitors with small side chains at C-6 were generally well tolerated by the enzyme, and the physicochemical properties of the inhibitors were improved by substitution of a small alkyl group at this position. A second series of analogs bearing a sulfamate at the C-5 position with various C-6 substituents were prepared to explore the interplay between the two groups. The SAR of the two classes are not parallel; modification at C-5 impacts the effect of substitutions at C-6.  相似文献   

6.
A novel series of CXCR4 antagonists were identified based on the substantial redesign of AMD070. These compounds possessed potent anti-HIV-1 activity and showed excellent pharmacokinetics in rat and dog.  相似文献   

7.
Integration of viral DNA into host cell DNA is an essential step in retroviral (HIV-1) replication and is catalyzed by HIV-1 integrase. HIV-1 integrase is a novel therapeutic target and is the focus of efforts to identify effective inhibitors that will prevent/or cure HIV infections. Four novel naphtho-gamma-pyrones, belonging to the chaetochromin and ustilaginoidin family, were discovered as inhibitors of HIV-1 integrase from the screening of fungal extracts using a recombinant in vitro assay. These compounds inhibit both the coupled and strand transfer activity of HIV-1 integrase with IC(50) values of 1-3 and 4-12 microM, respectively. The discovery, structure elucidation, chemical modification and the structure-activity relationship of these compounds are described.  相似文献   

8.
Insights into the binding modes on HIV-1 integrase of our novel dinucleotide inhibitors (pisodApdC and pdCpisodU) have been obtained using molecular docking experiments. In contrast to their base-stacked unbound state, these dinucleotides in their integrase-bound state prefer unstacked conformations for a more extensive interaction with the active site. The calculated free energies of binding are in concert with the experimentally acquired anti-HIV-1 integrase data.  相似文献   

9.
Molecular interaction field, density functional, and docking studies of novel potential ferrocene inhibitors of HIV-1 integrase (IN) are reported. The high docking scores, analysis of the ligand-receptor interactions in the active site as well as the molecular interaction potential calculations at the binding site of the receptor indicate important features for novel HIV-1 IN inhibitors. We also confirm in this work a novel binding trench in HIV-1 integrase, recently reported in a theoretical work by other authors. This observation may be interesting since the lack of detailed structural information about IN-ligand interactions has hampered the design of IN inhibitors. Our proposed ligands are open to experimental synthesis and testing.  相似文献   

10.
New nucleic base derivatives were obtained by alkylation of uracil, thymine, cytosine, adenine, 6-chloropurine, and 2-amino-6-chloropurine with 5-chloro-1-(4-halogenophenyl)-1-pentanones, and their physical and chemical properties were studied. The influence of the compounds synthesized on the HIV-1 integrase activity was studied.  相似文献   

11.
A series of novel pyrimidone analogues have been designed and synthesized as HIV-1 integrase (IN) inhibitors. This study demonstrated that introducing a substituent in the N1-position of the pyrimidone scaffold does not significantly influence IN inhibitory activity. Molecular docking studies showed these compounds could occupy the IN active site and form pi–pi interactions with viral DNA nucleotides DC16 and DA17 to displace reactive viral DNA 3′OH and block intasome activity.  相似文献   

12.
Fifteen 2,4-dioxaspiro[5.5]undecane ketone and 2,4-dioxa-spiro[5.5]undec-8-ene (spiroundecane(ene)) derivatives were synthesized using the Diels-Alder reaction. Inhibition of human immunodeficiency virus integrase (IN) was examined. Eight spiroundecane(ene) derivatives inhibited both 3'-processing and strand transfer reactions catalyzed by IN. SAR studies showed that the undecane core with at least one furan moiety is preferred for IN inhibition. Moreover, crosslinking experiments showed that spiroundecane derivatives did not affect IN-DNA binding at concentrations that block IN catalytic activity, indicating spiroundecane derivatives inhibit preformed IN-DNA complex. The moderate toxicity of spiroundecane(ene) derivatives encourages the further design of therapeutically relevant analogues based on this novel chemotype of IN inhibitors.  相似文献   

13.
An early lead from the AMD070 program was optimized and a structure-activity relationship was developed for a novel series of heterocyclic containing compounds. Potent CXCR4 antagonists were identified based on anti-HIV-1 activity and Ca2+ flux inhibition that displayed good pharmacokinetics in rat and dog.  相似文献   

14.
A novel compound inhibiting HIV-1 integrase has been identified by means of virtual screening techniques. A small family of structurally related molecules has been synthesized and biologically evaluated with some of the compounds possessing micromolar activity both in enzymatic and cellular assays.  相似文献   

15.
The human immunodeficiency virus (HIV) has been shown to be the causative agent for AIDS. The HIV virus encodes for a unique aspartyl protease that is essential for the production of enzymes and proteins in the final stages of maturation. Protease inhibitors have been useful in combating the disease. The inhibitors incorporate a variety of isosteres including the hydroxyethylurea at the protease cleavage site. We have shown that the replacement of t-butylurea moiety by benzothiazolesulfonamide provided inhibitors with improved potency and antiviral activities. Some of the compounds have shown good oral bioavailability and half-life in rats. The synthesis of benzothiazole derivatives led us to explore other heterocycles. During the course of our studies, we also developed an efficient synthesis of benzothiazole-6-sulfonic acid via a two-step procedure starting from sulfanilamide.  相似文献   

16.
Previously, we discovered linomide analogues as novel HIV-1 integrase (IN) inhibitors. Here, to make possible structure–activity relationships, we report on the design and synthesis of a series of substituted dihydroquinoline-3-carboxylic acids. The crystal structure of the representative compound 2c has also been solved. Among the eight new analogues, 2e showed a potency in inhibiting IN strand transfer catalytic activity similar to the reference diketo acid inhibitor L-731,988 (IC50 = 0.9 μM vs. 0.54 μM, for 2e and L-731,988, respectively). Furthermore, none of the compounds showed significant cytotoxicity in two tested cancer cell lines. These compounds represent an interesting prototype of IN inhibitors, potentially involved in a metal chelating mechanism, and further optimization is warranted.  相似文献   

17.
The identification of a novel hit compound as integrase binding inhibitor has been accomplished by means of virtual screening techniques. A small family of structurally related molecules has been synthesized and biologically evaluated with one of the compounds showing an IC(50)=12 microM.  相似文献   

18.
19.
In recent years, HIV-1 integrase (IN) has become an established target in the field of antiretroviral drug discovery. However, its sole clinically approved inhibitor, the integrase strand transfer inhibitor (INSTI) raltegravir, has a surprisingly low genetic barrier for resistance. Furthermore, the only two other integrase inhibitors currently in advanced clinical trials, elvitegravir and dolutegravir, share its mechanism of action and certain resistance pathways. To maintain a range of treatment options, drug discovery efforts are now turning toward allosteric IN inhibitors, which should be devoid of cross-resistance with INSTIs. As IN requires a precise and dynamic equilibrium between several oligomeric species for its activities, the modulation of this equilibrium presents an interesting allosteric target. We report on the development, characterization, and validation of an AlphaScreen-based assay for high-throughput screening for modulators of HIV-1 IN dimerization. Compounds identified as hits in this assay proved to act as allosteric IN inhibitors. Additionally, the assay offers a flexible platform to study IN dimerization.  相似文献   

20.
Betulinic acid is a natural product possessing abundant and favourable biological activity, including anti-cancer, anti-malarial, anti-inflammatory and anti-HIV properties, while causing minimal toxicity to unaffected cells. The full biological potency of betulinic acid cannot be fully unlocked, however, for a number of reasons, a primary one being its limited solubility in aqueous and biologically pertinent organic media. Aiming to improve the water solubility of betulinic acid without disrupting its structurally related bioactivity, we have prepared different ionic derivatives of betulinic acid. Inhibition bioassays on HIV-1 protease-catalysed peptide hydrolysis indicate significantly improved performance resulting from converting the betulinic acid to organic salt form. Indeed, for one particular cholinium-based derivative, its water solubility is improved more than 100 times and the half maximal inhibitory concentration (IC(50)) value (22 μg mL(-1)) was one-third that of wide-type betulinic acid (60 μg mL(-1)). These encouraging results advise that additional studies of ionic betulinic acid derivatives as a therapeutic solution against HIV-1 infection are warranted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号