首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
The cryostability of Saccharomyces cerevisiae cells decreased when they were cultivated under anaerobic conditions in a liquid growth medium YEPD as compared to the culture grown under aerobic conditions. The effect of cultivation conditions on the different cryostability of S. cerevisiae cells is discussed. The initial state of their bioenergetics was shown to influence the cryostability of yeast cells.  相似文献   

2.
3.
4.
Use of reduced sulfur compounds by Beggiatoa sp.   总被引:12,自引:1,他引:11       下载免费PDF全文
A strain of Beggiatoa cf. leptomitiformis (OH-75-B, clone 2a) was isolated which is unique among reported strains in its ability to deposit internal sulfur granules from thiosulfate. It also deposited these characteristic granules (as all BEggiatoa species do) from sulfide. In cultures where growth was limited by exhaustion of organic substrates, these granules generally comprised about 20% of the total cell weight. With medium containing acetate and thiosulfate, no measurable utilization of thiosulfate or deposition of elemental sulfur (S0) took place until after the exponential growth phase. Neither sulfide nor thiosulfate added an increment to heterotrophic growth yield except for the weight of the deposited S0. The deposition of S0 from thiosulfate was probably a disproportionation in which S0 and sulfate were produced in a 1:1 ratio. Some of the S0 was further oxidized to sulfate. No autotrophic or mixotrophic growth was demonstrated for this strain. When inoculated in small, well-dispersed quantities into yeast extract medium, this strain grew only after long lags. Addition of the enzyme catalase eliminated initial lags and increased growth rates slightly. In contrast, catalase had no influence on growth rate when added to mineral medium containing acetate. In yeast extract medium, the inhibition of growth rate was presumably because of peroxides. Addition of thiosulfate was almost as effective as catalase in eliminating this inhibition. The S0 granules which, in this case, were deposited during the exponential growth phase, appeared to be partly responsible for this relief. This strain of Beggiatoa sp. remained active for at least 5 days under strictly anaerobic conditions, and under those conditions, it increased its dry weight by about 2.5-fold. Anaerobic "growth" and maintenance required the presence of an energy source, such as acetate. When cells containing much internal S0 were transferred to an organic anaerobic medium, a substantial portion of the internal S0 was eventually converted to sulfide.  相似文献   

5.
A strategy for sequential hydrocarbon bioremediation is proposed. The initial O(2)-requiring transformation is effected by aerobic resting cells, thus avoiding a high oxygen demand. The oxygenated metabolites can then be degraded even under anaerobic conditions when supplemented with a highly water-soluble alternative electron acceptor, such as nitrate. To develop the new strategy, some phenomena were studied by examining Pseudomonas aeruginosa fermentation. The effects of dissolved oxygen (DO) concentration on n-hexadecane biodegradation were investigated first. Under microaerobic conditions, the denitrification rate decreased as the DO concentration decreased, implying that the O(2)-requiring reactions were rate limiting. The effects of different nitrate and nitrite concentrations were examined next. When cultivated aerobically in tryptic soy broth supplemented with 0 to 0.35 g of NO(2)(-)-N per liter, cells grew in all systems, but the lag phase was longer in the presence of higher nitrite concentrations. However, under anaerobic denitrifying conditions, even 0.1 g of NO(2)(-)-N per liter totally inhibited cell growth. Growth was also inhibited by high nitrate concentrations (>1 g of NO(3)(-)-N per liter). Cells were found to be more sensitive to nitrate or nitrite inhibition under denitrifying conditions than under aerobic conditions. Sequential hexadecane biodegradation by P. aeruginosa was then investigated. The initial fermentation was aerobic for cell growth and hydrocarbon oxidation to oxygenated metabolites, as confirmed by increasing dissolved total organic carbon (TOC) concentrations. The culture was then supplemented with nitrate and purged with nitrogen (N(2)). Nitrate was consumed rapidly initially. The live cell concentration, however, also decreased. The aqueous-phase TOC level decreased by about 40% during the initial active period but remained high after this period. Additional experiments confirmed that only about one-half of the derived TOC was readily consumable under anaerobic denitrifying conditions.  相似文献   

6.
Strains of Saccharomyces cerevisiae transformed with a yeast multicopy expression vector carrying the cDNA for Aspergillus niger secretory beta-galactosidase under the control of ADH1 promoter and terminator were studied for their fermentation properties on lactose (V. Kumar, S. Ramakrishnan, T. T. Teeri, J. K. C. Knowles, and B. S. Hartley, Biotechnology 10:82-85, 1992). Lactose was hydrolyzed extracellularly into glucose and galactose, and both sugars were utilized simultaneously. Diauxic growth patterns were not observed. However, a typical biphasic growth was observed on a mixture of glucose and galactose under aerobic and anaerobic conditions with transformants of a haploid S. cerevisiae strain, GRF167. Polyploid distiller's yeast (Mauri) transformants were selected simply on the basis of the cloned gene expression on X-Gal (5-bromo-4-chloro-3-indolyl-beta-D-galactopyranoside) plates. Rapid and complete lactose hydrolysis and higher ethanol (0.31 g/g of sugar) and biomass (0.24 g/g of sugar) production were observed with distiller's yeast grown under aerobic conditions. A constant proportion (10%) of the population retained the plasmid throughout the fermentation period (48 h). Nearly theoretical yields of ethanol were obtained under anaerobic conditions on lactose, glucose, galactose, and whey permeate media. However, the rate and the amount of lactose hydrolysis were lower under anaerobic than aerobic conditions. All lactose-grown cells expressed partial galactokinase activity.  相似文献   

7.
Mutants of Saccharomyces cerevisiae, in which one or both of the genes encoding the two isoforms of NAD-dependent glycerol-3-phosphate dehydrogenase had been deleted, were studied in aerobic batch cultures and in aerobic-anaerobic step change experiments. The respirofermentative growth rates under aerobic conditions with semisynthetic medium (20 g of glucose per liter) of two single mutants, gpd1 delta and gpd2 delta, and the parental strain (mu = 0.5 h-1) were almost identical, whereas the growth rate of a double mutant, gpd1 delta gpd2 delta, was approximately half that of the parental strain. Upon a step change from aerobic to anaerobic conditions in the exponential growth phase, the specific carbon dioxide evolution rates (CER) of the wild-type strain and the gpd1 delta strain were almost unchanged. The gpd2 delta mutant showed an immediate, large (> 50%) decrease in CER upon a change to anaerobic conditions. However, after about 45 min the CER increased again, although not to the same level as under aerobic conditions. The gpd1 delta gpd2 delta mutant showed a drastic fermentation rate decrease upon a transition to anaerobic conditions. However, the CER values increased to and even exceeded the aerobic levels after the addition of acetoin. High-pressure liquid chromatographic analyses demonstrated that the added acetoin served as an acceptor of reducing equivalents by being reduced to butanediol. The results clearly show the necessity of glycerol formation as a redox sink for S. cerevisiae under anaerobic conditions.  相似文献   

8.
The microbial and enzymatic degradation of a new energetic compound, 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane (CL-20), is not well understood. Fundamental knowledge about the mechanism of microbial degradation of CL-20 is essential to allow the prediction of its fate in the environment. In the present study, a CL-20-degrading denitrifying strain capable of utilizing CL-20 as the sole nitrogen source, Pseudomonas sp. strain FA1, was isolated from a garden soil. Studies with intact cells showed that aerobic conditions were required for bacterial growth and that anaerobic conditions enhanced CL-20 biotransformation. An enzyme(s) involved in the initial biotransformation of CL-20 was shown to be membrane associated and NADH dependent, and its expression was up-regulated about 2.2-fold in CL-20-induced cells. The rates of CL-20 biotransformation by the resting cells and the membrane-enzyme preparation were 3.2 +/- 0.1 nmol h(-1) mg of cell biomass(-1) and 11.5 +/- 0.4 nmol h(-1) mg of protein(-1), respectively, under anaerobic conditions. In the membrane-enzyme-catalyzed reactions, 2.3 nitrite ions (NO(2)(-)), 1.5 molecules of nitrous oxide (N(2)O), and 1.7 molecules of formic acid (HCOOH) were produced per reacted CL-20 molecule. The membrane-enzyme preparation reduced nitrite to nitrous oxide under anaerobic conditions. A comparative study of native enzymes, deflavoenzymes, and a reconstituted enzyme(s) and their subsequent inhibition by diphenyliodonium revealed that biotransformation of CL-20 is catalyzed by a membrane-associated flavoenzyme. The latter catalyzed an oxygen-sensitive one-electron transfer reaction that caused initial N denitration of CL-20.  相似文献   

9.
Mucor circinelloides is being investigated as a possible host for the production of heterologous proteins. Thus, the environmental conditions defining the physiology and morphology of this dimorphic fungus have been investigated in submerged batch cultivation. The optimal conditions for growth of each form have been defined. Pure cultures of the multi-polar budding yeast form could be obtained under anaerobic conditions (with 70% N2/30% CO2 or 100% N2 as the sparge gas and without aeration). The highest maximum specific growth rate (0.30 h(-1)) was obtained in anaerobic cultivation, the yield of biomass on glucose (Y(SX)) was 0.12 (c-mole basis). A high maximum specific growth rate was obtained when the organism grew as the filamentous form under aerobic conditions (0.25 h(-1)), with a Y(SX) of 0.24 (c-mole basis). The maximum specific growth rates achieved are comparable to most industrial filamentous fungi under similar growth conditions. High levels of ethanol were observed with all growth conditions. The overriding effector of morphological development was found to be oxygen. In batch cultures it was therefore possible to induce the dimorphic shift by controlling the influent gas atmosphere. A specific growth rate of 0.19 h(-1) was maintained during the shift from the yeast to the filamentous form.  相似文献   

10.
Treponema denticola, a periodontal pathogen, has recently been shown to exhibit properties of a facultative anaerobic spirochete, in contrast to its previous recognition as an obligate anaerobic bacterium. In this study, the capacity and possible mechanism of T. denticola survival and growth under aerobic conditions were investigated. Factors detrimental to the growth of T. denticola ATCC 33405, such as oxygen concentration and hydrogen sulfide (H(2)S) levels as well as the enzyme activities of gamma-glutamyltransferase, cysteinylglycinase, and cystalysin associated with the cells were monitored. The results demonstrated that T. denticola grew only at deeper levels of broth (>or=3 ml in a 10-ml tube), high inoculation ratios (>or=20% of culture in medium), and short cultivation times (相似文献   

11.
Ring-U-[14C]methoxychlor [1,1-bis(p-methoxyphenyl)-2,2,2-trichloroethane] was incubated in soil under aerobic and anaerobic conditions. Primary degradation of methoxychlor occurred under anaerobic conditions, but not under aerobic conditions, after 3 months of incubation. Analysis of soil extracts, using gas chromatography, demonstrated that only 10% of the compound remained at initial concentrations of 10 and 100 ppm (wt/wt) of methoxychlor. Evidence is presented that a dechlorination reaction was responsible for primary degradation of methoxychlor. Analysis of soils treated with 100 ppm of methoxychlor in the presence of 2% HgCl2 showed that 100% of the compound remained after 3 months, indicating that degradation in the unpoisoned flasks was biologically mediated. Methanogenic organisms, however, are probably not involved, as strong inhibition of methane production was observed in all soils treated with methoxychlor. During the 3-month incubation period, little or no evaluation of 14CO2 or 14CH4 occurred under either aerobic or anaerobic conditions. Cometabolic processes may be responsible for the extensive molecular changes which occurred with methoxychlor because the rate of its disappearance from soil was observed to level off after exhaustion of soil organic matter. After this incubation period, soils previously incubated under anaerobic conditions were converted to aerobic conditions. The rates of 14CO2 evolution from soils exposed to anaerobic and aerobic sequences of environments ranged from 10- to 70-fold greater than that observed for soils exposed solely to an aerobic environment.  相似文献   

12.
The in vivo and in vitro activity of alcohol dehydrogenase from baker's yeast maintained under aerobic and anaerobic conditions was measured. In vivo measurements were made in cells "permeabilised" with toluene. Michaelis constants (NAD+ as substrate) were found to be almost identical as those reported for purified preparations. In addition the Km of the enzyme from cells incubated under anaerobic conditions was virtually identical to that from cells from aerobic conditions. The activity of the enzyme was found to be greater (in both "permeabilised" cells and extracts) in cells maintained under nitrogen than air. Cells metabolizing glucose in N2 produced greater levels of ethanol than in air and the rate of NAD+ reduction was also found to be greater in N2 than in air. The results indicate that it was feasible to determine rates of this enzyme in vivo and that the difference in activity of alcohol dehydrogenase under N2 and air may conceivably account for differences in rates of glucose utilisation, ethanol production and NAD+ reduction in air and nitrogen.  相似文献   

13.
Catabolite repression of beta-galactosidase synthesis in E. coli 3000A1 (adenine-) was studied under a variety of growth conditions. The differential rate of induced beta-galactosidase synthesis was maximal at the growth rate of 0.75 division per h, irrespective of whether growth conditions were aerobic or anaerobic. The addition of cyclic AMP (cAMP) to the medium partly restored the repressed synthesis of beta-galactosidase under some growth conditions, but showed little or no effect on the enzyme synthesis under other conditions. Although growth rate and profile of beta-galactosidase synthesis in glucose-grown cells were similar to those in arabinose-grown cells, the acceleration of beta-galactosidase synthesis upon the addition of cAMP was found only in glucose-grown cells. The cells aerobically grown in the presence of glycerol, xylose, or arabinose showed a high synthetic rate of cAMP and were insensitive to exogenously supplied cAMP as regards beta-galactosidase synthesis. Although the cells grown with glucose showed similar rates of cAMP synthesis under aerobic and anaerobic conditions, the differential rate of beta-galactosidase synthesis was much higher in the anaerobic state than in the aerobic state. These findings support the idea that catabolite repression found in the strain is caused through two mechanisms, i.e., cAMP-mediated and cAMP-independent ones.  相似文献   

14.
15.
The extent of differential gene expression during morphogenesis of Mucor racemosus was investigated by two-dimensional polyacrylamide gel electrophoresis of neutral and acidic polypeptides. Cellular proteins were labeled with [35S]methionine in cells growing in either the yeast or hyphal form, or in yeast cells undergoing the transition of hyphae. The results showed that of the 400 to 500 polypeptides resolved by electrophoresis, relatively few were specific to one or the other morphological form. The major change in the patterns of proteins synthesized during morphogenesis was a change in rates of synthesis of individual polypeptides. Experiments in which morphogenesis was affected under aerobic or anaerobic conditions showed that the majority of changes in the protein patterns were associated with morphogenesis and were not a specific response to O2.  相似文献   

16.
17.
Kwon YM  Ricke SC 《Anaerobe》1998,4(6):251-256
Propionic acid is commonly found as a fermentation product in the gastrointestinal tracts of food animals and has also been used to limit the microbial contaminants in animal feeds. Because propionic acid is known to have antibacterial activity, the propionic acid encountered by foodborne pathogens during their life cycles may play an important role in inhibiting the survival of the pathogens. The survival patterns of Salmonella typhimurium poultry isolate were determined both in aerobic and anaerobic tryptic soy broth (TSB; pH 5.0 or 7.0) containing various concentrations of propionic acid (0-200 mM). The levels of recovered cells were consistently greater at pH 7.0 compared to those at pH 5.0. For the first 4 days, the levels were significantly decreased by incubation under anaerobic conditions as compared to aerobic condition at pH 7.0 (P<0.05). However, there were fluctuations of cell populations with different patterns depending on both concentrations and growth conditions. To characterize the nature of the capability which allowed the cell multiplication following decreases in cell population during incubation at pH 7.0, the cells isolated from the outgrowth cultures were tested for survival in aerobic or anaerobic TSB (pH 5.0 or pH 7.0) containing propionic acid (50 mM). The outgrowth isolates did not show significant differences in the level of recovered cells in the presence of propionic acid when compared to the wild type strain (P>0.05), suggesting that the cells in the outgrowth cultures did not harbour mutation(s) conferring increased resistance to propionic acid. In addition, the level of recovered cells of isogenic rpoS mutant strain of S. typhimurium was not significantly different from that of the wild type strain in the same assay conditions (P<0.05). The results of this study show that the bactericidal activity of propionic acid on S. typhimurium can be affected by environmental conditions such as acidic pH levels and anaerobiosis in food materials and gastrointestinal tracts. However, S. typhimurium is also able to multiply in the presence of sublethal concentrations of propionic acid at neutral pH during prolonged incubation under both aerobic and anaerobic conditions.  相似文献   

18.
Resting cells of baker's yeast, suspended in phosphate buffer pH 5.0 with glucose give initially a normal Pasteur reaction, which means that fermentation is repressed under aerobic conditions by the respiratory process.However, after 1 to 2 hours fermentation a disturbance of the Pasteur reaction sets in, the aerobic fermentation rising to the anaerobic level or sometimes above this level without a corresponding decrease in respiration. It is demonstrated that this disturbance is closely related to an aerobic growth pattern in which the yeast in its final growth stage before harvesting obtains its energy exclusively from the respiratory process.The interrelation of fermentation and respiration is discussed. In this discussion the aerobic fermentation is defined as the metabolism of the excess of intermediates formed along the Embden-Meyerhof pathway and unable to enter the Krebs cycle due to the limited capacity of the electron transfer system.The author is greatly indebted to Prof. Dr. T. O. Wikén for his interest in this study and for offering him the opportunity to conduct the investigations in his laboratory.  相似文献   

19.
Most yeast species can ferment sugars to ethanol, but only a few can grow in the complete absence of oxygen. Oxygen availability might, therefore, be a key parameter in spoilage of food caused by fermentative yeasts. In this study, the oxygen requirement and regulation of alcoholic fermentation were studied in batch cultures of the spoilage yeast Zygosaccharomyces bailii at a constant pH, pH 3.0. In aerobic, glucose-grown cultures, Z. bailii exhibited aerobic alcoholic fermentation similar to that of Saccharomyces cerevisiae and other Crabtree-positive yeasts. In anaerobic fermentor cultures grown on a synthetic medium supplemented with glucose, Tween 80, and ergosterol, S. cerevisiae exhibited rapid exponential growth. Growth of Z. bailii under these conditions was extremely slow and linear. These linear growth kinetics indicate that cell proliferation of Z. bailii in the anaerobic fermentors was limited by a constant, low rate of oxygen leakage into the system. Similar results were obtained with the facultatively fermentative yeast Candida utilis. When the same experimental setup was used for anaerobic cultivation, in complex YPD medium, Z. bailii exhibited exponential growth and vigorous fermentation, indicating that a nutritional requirement for anaerobic growth was met by complex-medium components. Our results demonstrate that restriction of oxygen entry into foods and beverages, which are rich in nutrients, is not a promising strategy for preventing growth and gas formation by Z. bailii. In contrast to the growth of Z. bailii, anaerobic growth of S. cerevisiae on complex YPD medium was much slower than growth in synthetic medium, which probably reflected the superior tolerance of the former yeast to organic acids at low pH.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号