首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The aim of the study was to determine the relation between peak oxygen uptake V(O2)peak), peak work rate (WRpeak), fiber-type composition, and lower extremity strength and endurance during a maximal incremental cycle test. Thirty-nine healthy sedentary men, aged 30-46, participated in the study. Subjects performed a maximal incremental cycle test and isokinetic knee extension (KE) and flexion (KF) strength and endurance tests at velocities of 60 and 180° · s(-1). Muscle biopsies were taken from m. vastus lateralis and analyzed for fiber-type composition. A significant correlation existed between KE strength and V(O2)peak and WRpeak. Also, KF endurance correlated significantly to V(O2)peak and WRpeak. The KE endurance correlated significantly to WRpeak (rp = 0.32, p < 0.05) and almost significantly to V(O2)peak (rp = 0.28, p = 0.06). Stepwise multiple regression analyses showed that KE strength, KF endurance, and the percentage of type I fibers could explain up to 40% of the variation in V(O2) and WRpeak. The performance of sedentary subjects in a maximal incremental cycle test is highly affected by knee muscle strength and endurance. Fiber-type composition also contributes but to a smaller extent.  相似文献   

2.
3.
It has been shown that the content of G and A immunoglobulin (IgG, IgA) in blood serum increases with human age. IgM quantity is maximum at child age and at old age (about 80 years old and elder), at the age of 15-20 it is minimum. Immunoglobulin concentration is higher in female's blood serum than in male's, particularly at middle and old ages. The role of X-chromosome in regulation of serum IgM concentration is being discussed.  相似文献   

4.
High-performance muscles such as the shaker muscles in the tails of western diamond-backed rattlesnakes (Crotalus atrox) are excellent systems for studying the relationship between contractile performance and metabolic capacity. We observed that shaker muscle contraction frequency increases dramatically with growth in small individuals but then declines gradually in large individuals. We tested whether metabolic capacity changed with performance, using shaker muscle contraction frequency as an indicator of performance and maximal activities of citrate synthase and lactate dehydrogenase as indicators of aerobic and anaerobic capacities, respectively. Contraction frequency increased 20-fold in 20-100-g individuals but then declined by approximately 30% in individuals approaching 1,000 g. Mass-independent aerobic capacity was positively correlated with contractile performance, whereas mass-independent anaerobic capacity was slightly but negatively correlated with performance; body mass was not correlated with performance. Rattle mass increased faster than the ability to generate force. Early in ontogeny, shaker muscle performance appears to be limited by aerobic capacity, but later performance becomes limited equally by aerobic capacity and the mechanical constraint of moving a larger mass without proportionally thicker muscles. This high-performance muscle appears to shift during ontogeny from a metabolic constraint to combined metabolic and mechanical constraints.  相似文献   

5.
Anuran larvae undergo water-to-land transition during late metamorphosis. We investigated the development of the iliofibularis muscle in bullfrog tadpoles (Rana catesbeiana) between Gosner's stage 37 and stage 46 (the last stage). The tadpoles began staying in shallow water at least as early as stage 37, kicking from stage 39, active hindlimb swimming from stage 41, and emerging onto shore from stage 42. For control tadpoles kept in water throughout metamorphosis, muscle mass and length increased two- to threefold between stages 37 and 46, with rapid increases at stage 40. Large, steady increases were found in femur mass, tetanic tension, contraction rate, and power between stages 37 and 46. Concentrations of ATP and creatine phosphate and rates of the phosphagen depletion and the activity of creatine kinase increased significantly, mainly after stage 43. Shortening velocity, tetanic rise time, and half-relaxation time varied little. Energy charge (the amount of metabolically available energy stored in the adenine nucleotide pool) remained unchanged until stage 43 but decreased at stage 46. Compared with the control, experimental tadpoles that were allowed access to both water and land exhibited 1.2- to 1.8-fold greater increases in femur mass, tetanic tension, power, phosphagen depletion rates, and creatine kinase activities at late metamorphic stages but no significant differences for other parameters measured. In sum, most hindlimb development proceeds on the basis of the increasingly active use of limbs for locomotion in water. The further increases in tension, mechanical power, and "chemical power" on emergence would be advantageous for terrestrial antigravity performance.  相似文献   

6.
At present, the putative clinical use of the musculocutaneous and ostomusculocutaneous serratus anterior flaps has been compromised by the risk of partial or total necrosis of the skin overlying the lower part of the serratus anterior muscle. Therefore, the aim of this study was to delineate a skin area vascularized by perforant musculocutaneous branches of arteries stemming from the lower segment of the anterior serrated muscle. Black ink was injected in thoracodorsal artery branches for the serratus anterior muscle in 50 human cadavers before the autopsies (the study was approved by the Institutional Review Board). The surface area of the labeled skin was determined and its borders delineated by means of transparent millimeter grid. Planimetry data were subsequently analyzed with the aid of PC computer program. The results show that the calculated mean surface area (143.79 +/- 2.68 x 2.077; range 138.22-149.36 cm2) of the skin vascularized by perforant musculocuaneous branches stemming from the lower segment of the anterior serrated muscle, can serve as a reliable guide for taking serratus anterior flap in any patient. Therefore, appropriately sized musculocutaneous or osteomusculocutaneous serratus anterior flap can be safely and efficiently used in plastic and reconstructive surgery.  相似文献   

7.
Preservation of muscle function, known to decline in microgravity and simulation (bed rest), is important for successful spaceflight missions. Hence, there is great interest in developing interventions to prevent muscle-function loss. In this study, 20 males underwent 56 days of bed rest. Ten volunteers were randomized to do resistive vibration exercise (RVE). The other 10 served as controls. RVE consisted of muscle contractions against resistance and concurrent whole-body vibration. Main outcome parameters were maximal isometric plantar-flexion force (IPFF), electromyography (EMG)/force ratio, as well as jumping power and height. Measurements were obtained before and after bed rest, including a morning and evening assessment on the first day of recovery from bed rest. IPFF (-17.1%), jumping peak power (-24.1%), and height (-28.5%) declined (P < 0.05) in the control group. There was a trend to EMG/force ratio decrease (-20%; P = 0.051). RVE preserved IPFF and mitigated the decline of countermovement jump performance (peak power -12.2%; height -14.2%). In both groups, IPFF was reduced between the two measurements of the first day of reambulation. This study indicates that bed rest and countermeasure exercises differentially affect the various functions of skeletal muscle. Moreover, the time course during recovery needs to be considered more thoroughly in future studies, as IPFF declined not only with bed rest but also within the first day of reambulation. RVE was effective in maintaining IPFF but only mitigated the decline in jumping performance. More research is needed to develop countermeasures that maintain muscle strength as well as other muscle functions including power.  相似文献   

8.
We tested whether adenosine mediates nitric oxide (NO)-dependent and NO-independent dilation in coronary and aortic smooth muscle and whether age selectively impairs NO-dependent adenosine relaxation. Responses to adenosine and the relatively nonselective analog 5'-N-ethylcarboxamidoadenosine (NECA) were studied in coronary vessels and aortas from immature (1-2 mo), mature (3-4 mo), and moderately aged (12-18 mo) Wistar and Sprague-Dawley rats. Adenosine and NECA induced biphasic concentration-dependent coronary vasodilation, with data supporting high-sensitivity (pEC(50) = 5.2-5.8) and low-sensitivity (pEC(50) = 2.3-2.4) adenosine sites. Although sensitivity to adenosine and NECA was unaltered by age, response magnitude declined significantly. Treatment with 50 microM N(G)-nitro-L-arginine methyl ester (L-NAME) markedly inhibited the high-sensitivity site, although response magnitude still declined with age. Aortic sensitivity to adenosine declined with age (pEC(50) = 4.7 +/- 0.2, 3.5 +/- 0.2, and 2.9 +/- 0.1 in immature, mature, and moderately aged aortas, respectively), and the adenosine receptor transduction maximum also decreased (16.1 +/- 0.8, 12.9 +/- 0.7, and 9.6 +/- 0.7 mN/mm(2) in immature, mature, and moderately aged aortas, respectively). L-NAME decreased aortic sensitivity to adenosine in immature and mature tissues but was ineffective in the moderately aged aorta. Data collectively indicate that 1) adenosine mediates NO-dependent and NO-independent coronary and aortic relaxation, 2) maturation and aging reduce NO-independent and NO-dependent adenosine responses, and 3) the age-related decline in aortic response also involves a reduction in the adenosine receptor transduction maximum.  相似文献   

9.
The aim of the study was to explore if changes in muscle and plasma amino acid concentrations developed during growth and differed from levels seen in adults. The gradient and concentrations of free amino acids in muscle and plasma were investigated in relation to age in metabolic healthy children. Plasma and specimens from the abdominal muscle were obtained during elective surgery. The children were grouped into three groups (group 1: < 1 year, n = 8; group 2: 1–4 years, n = 13 and group 3: 5–15 years, n = 15). A reference group of healthy adults (21–38 years, n = 22) was included in their comparisons and reflected specific differences between children and adults. In muscle the concentrations of 8 out of 19 amino acids analysed increased with age, namely taurine, aspartate, threonine, alanine, valine, isoleucine, leucine, histidine, as well as the total sums of branched chain amino acids (BCAA), basic amino acids (BAA) and total sum of amino acids (P < 0.05). In plasma the concentrations of threonine, glutamine, valine, cysteine, methionine, leucine, lysine, tryptophane, arginine, BCAA, BAA and the essential amino acids correlated with age (P < 0.05). These results indicate that there is an age dependency of the amino acid pattern in skeletal muscle and plasma during growth.  相似文献   

10.
11.
12.
Thirty-seven pineal bodies have been studied. They have been obtained from persons of both sex at the age of 18 up to 88 years, perished from accidental causes. Specific volumes of the epiphyseal tissues and vascular constructions of all types have been determined in histological preparations. In young age (up to 40-45 years) the volume of the intraorganic epiphyseal vascular bed is greater, and its blood supply is better than in persons of elderly and old age, when the sclerosing process in the organ occurs at the expense of outgrowth of fibrous elements of the connective tissue carcass. During the pineal body involution, the volume of its intraorganic vascular bed decreases essentially. This results in certain disturbances of blood supply and affects functional activity of the organ.  相似文献   

13.
Increase of anisotropy of F-actin fluorescence of balanus and rabbit muscle fibers under the influence of ATP, AMP and pyrophosphate in EGTA presence was detected by means of the polarized ultraviolet (UV) fluorescent microscopy methods. The fluorescence anisotropy changes are assumed to be associated with the conformational changes in the actin. ATP cause more noticeable changes of actin structure, than pyrophosphate and AMP. The conformational changes in the actin of balanus and rabbit muscle fibres were similar. ATP and its analogs induced also decrease of UV fluorescence anisotropy of A-band which appears to be associated with conformational changes in myosin. It was siggested that the changes in fluorescence of anisotropy of A-bands are due to structural changes in both HMM and LMM parts of myosin molecule.  相似文献   

14.
Previous studies have increased antioxidant capacity in skeletal muscle to attenuate oxidative stress and muscle atrophy during limb immobilization (Appell HJ, Duarte JAR, and Soares JMC. Int J Sports Med 18: 157-160, 1997; Kondo H, Miura M, Nakagaki I, Sasaki S, and Itokawa Y. Am J Physiol Endocrinol Metab 262: E583-E590, 1992). The purpose of this study was to determine the level of oxidative stress in muscle during hindlimb unweighting (HLU) and whether antioxidant supplementation can attenuate the atrophy and changes in contractile properties resulting from 14 days of unweighting. Muscle unweighting caused a 44% decrease in soleus (Sol) and a 30% decrease in gastrocnemius (GS) mass, a 7% decrease in body weight, and 28% decrease in tetanic force in the GS. Protein carbonyls increased by 44% in the Sol with HLU. Antioxidant supplementation did not attenuate the GS or Sol atrophy or the decrease in GS force generation during HLU. Sol and GS protein concentration was not different between groups. The GS was also subjected to three different oxidative challenges to determine whether the supplement increased the antioxidant capacity of the muscle. In all cases, muscles exhibited an increased antioxidant capacity. These data indicate that antioxidant supplementation was not an effective countermeasure to the atrophy associated with HLU.  相似文献   

15.
16.
Energy for muscle contractions is supplied by ATP generated from 1) the net hydrolysis of phosphocreatine (PCr) through the creatine kinase reaction, 2) oxidative phosphorylation, and 3) anaerobic glycolysis. The effect of old age on these pathways is unclear. The purpose of this study was to examine whether age may affect ATP synthesis rates from these pathways during maximal voluntary isometric contractions (MVIC). Phosphorus magnetic resonance spectroscopy was used to assess high-energy phosphate metabolite concentrations in skeletal muscle of eight young (20-35 yr) and eight older (65-80 yr) men. Oxidative capacity was assessed from PCr recovery after a 16-s MVIC. We determined the contribution of each pathway to total ATP synthesis during a 60-s MVIC. Oxidative capacity was similar across age groups. Similar rates of ATP synthesis from PCr hydrolysis and oxidative phosphorylation were observed in young and older men during the 60-s MVIC. Glycolytic flux was higher in young than older men during the 60-s contraction (P < 0.001). When expressed relative to the overall ATP synthesis rate, older men relied on oxidative phosphorylation more than young men (P = 0.014) and derived a smaller proportion of ATP from anaerobic glycolysis (P < 0.001). These data demonstrate that although oxidative capacity was unaltered with age, peak glycolytic flux and overall ATP production from anaerobic glycolysis were lower in older men during a high-intensity contraction. Whether this represents an age-related limitation in glycolytic metabolism or a preferential reliance on oxidative ATP production remains to be determined.  相似文献   

17.
Total tRNA was purified from skeletal muscle of young, adult and old female albino rats. Age-dependent variation of total tRNA was the same with respect to tRNA content and biological activity as measured by amino acid acceptor capacity. The tRNA content was more in young rats and showed a gradual decrease in the adult and old rats. The relative abundancy of eleven aminoacyl-tRNAs were checked at each age and during aging. Arginyl, glutamyl and tyrosyl-tRNAs do not show any quantitative or qualitative change with age.  相似文献   

18.
19.
The evidence presented here supports the concept that multiple, complex controls of gene regulation underlie the adaptive changes in protein quantity associated with alterations of the inherent amount of contractile activity in adult skeletal muscle. Investigations of increased contractile activity by running and resistance exercise, as well by recovery from the reduced contractile activity of limb immobilization suggest that control of the alterations of gene expression are initially (one day) at the level of translation. Likewise, experimental models which do not closely mimic human physical training (i.e. electrical stimulation and chronic overload) produce early alterations in the translational control of gene expression. More prolonged changes in contractile activity, brought about by either physical training or experimental models, produce altered gene expression via changes in pre-, post- and translational control.  相似文献   

20.
Substantial evidence exists for the age-related decline in maximal strength and strength development. Despite the importance of knee extensor strength for physical function and mobility in the elderly, studies focusing on the underlying neuromuscular mechanisms of the quadriceps muscle weakness are limited.The aim of this study was to investigate the contributions of age-related neural and muscular changes in the quadriceps muscle to decreases in isometric maximal voluntary torque (iMVT) and explosive voluntary strength. The interpolated twitch technique and normalized surface electromyography (EMG) signal during iMVT were analyzed to assess changes in neural drive to the muscles of 15 young and 15 elderly volunteers. The maximal rate of torque development as well as rate of torque development, impulse and neuromuscular activation in the early phase of contraction were determined. Spinal excitability was estimated using the H reflex technique. Changes at the muscle level were evaluated by analyzing the contractile properties and lean mass.The age-related decrease in iMVT was accompanied by a decline in voluntary activation and normalized surface EMG amplitude. Mechanical parameters of explosive voluntary strength were reduced while the corresponding muscle activation remained primarily unchanged. The spinal excitability of the vastus medialis was not different while M wave latency was longer. Contractile properties and lean mass were reduced.In conclusion, the age-related decline in iMVT of the quadriceps muscle might be due to a reduced neural drive and changes in skeletal muscle properties. The decrease in explosive voluntary strength seemed to be more affected by muscular than by neural changes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号