首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
5.
6.
We tested for regional differences in perfusion responses, within the renal medulla and cortex, to renal nerve stimulation in pentobarbital sodium-anesthetized rabbits. Laser-Doppler flux (LDF) was monitored at various depths below the cortical surface (1-15 mm). Basal cortical LDF (1-3 mm, approximately 200-450 U) was greater than medullary LDF (5-15 mm, approximately 70-160 U), but there were no statistically significant differences in basal LDF within these regions. The background LDF signal during aortic occlusion was similar in the cortex (2 mm, 31 U) and outer medulla (7 mm, 31 U), but slightly greater in the inner medulla (12 mm, 44 U). During electrical stimulation of the renal nerves (0.5-8 Hz), cortical LDF and total renal blood flow were similarly progressively reduced with increasing stimulus frequency. Medullary LDF (measured between 5 and 15 mm) was overall less responsive than cortical LDF. For example, 4-Hz stimulation reduced inner medullary LDF (9 mm) by 19 +/- 6% but reduced cortical LDF (1 mm) by 54 +/- 11%. However, medullary LDF responses to nerve stimulation were similar at all depths measured. Our results indicate that while the vascular elements controlling medullary perfusion are less sensitive to the effects of electrical stimulation of the renal nerves than are those controlling cortical perfusion, sensitivity within these vascular territories appears to be relatively homogeneous.  相似文献   

7.
8.
Evidence for the renal paratubular transport of glutathione   总被引:1,自引:0,他引:1  
  相似文献   

9.
The renal afferent nerves in the pathogenesis of hypertension   总被引:2,自引:0,他引:2  
The renal nerves play a role in the pathogenesis of hypertension in a number of experimental models. In the deoxycorticosterone acetate - salt (DOCA-NaCl) hypertensive rat and the spontaneously hypertensive rat (SHR) of the Okamoto strain, total peripheral renal denervation delays the development and blunts the severity of hypertension and causes an increase in urinary sodium excretion, suggesting a renal efferent mechanism. Further, selective lesioning of the renal afferent nerves by dorsal rhizotomy reduces hypothalamic norepinephrine stores without altering the development of hypertension in the SHR, indicating that the renal afferent nerves do not play a major role in the development of hypertension in this genetic model. In contrast, the renal afferent nerves appear to be important in one-kidney, one-clip and two-kidney, one-clip Goldblatt hypertensive rats (1K, 1C and 2K, 1C, respectively) and in dogs with chronic coarctation hypertension. Total peripheral renal denervation attenuates the severity of hypertension in these models, mainly by interrupting renal afferent nerve activity, which by a direct feedback mechanism attenuates systemic sympathetic tone, thereby lowering blood pressure. Peripheral renal denervation has a peripheral sympatholytic effect and alters the level of activation of central noradrenergic pathways but does not alter sodium or water intake or excretion, plasma renin activity or creatinine clearance, suggesting that efferent renal nerve function does not play an important role in the maintenance of this form of hypertension. Selective lesioning of the renal afferent nerves attenuates the development of hypertension, thus giving direct evidence that the renal afferent nerves participate in the pathogenesis of renovascular hypertension.  相似文献   

10.
The relationship between renal perfusion pressure and urinary sodium is involved in arterial pressure regulation. The aim of this study was to investigate the role of renal nerves and angiotensin II in the pressure-natriuresis relationship. Experiments were performed in anaesthetised cats in which one kidney was surgically denervated. Renal perfusion pressure (RPP), renal blood flow (RBF) glomerular filtration rate (GFR, creatinine clearance), urinary volume (V) and sodium excretion (Una + V) were separately measured from both kidneys. RPP was progressively reduced in two consecutive steps by a suprarenal aortic snare. Two groups of animals were studied: the first without any pharmacological treatment (Untreated), the second during treatment with an angiotensin converting enzyme inhibitor (Captopril, 0.4 mg/Kg intravenously followed by an infusion of 0.4 mg/Kg/h). In the Untreated group RPP was reduced from 152.4 +/- 7.3 to 113.6 +/- 5.8 and 83.0 +/- 4.4 mmHg during the first and second step respectively. RBF and GFR were only slightly reduced during the second step of reduced RPP. In control conditions V and UNa + V were greater in the denervated compared to the innervated kidney. The graded decrease in RPP reduced both V and UNa + V in the innervated as well as in the denervated kidney. In the Captopril group V and UNa + V were larger than in the Untreated group in both the innervated and the denervated kidney. A decrease of RPP similar to that observed in the Untreated group, produced similar haemodynamic changes. Also in the Captopril group the graded decrease in RPP reduced both V and UNa + V in the innervated as well as in the denervated kidney. Matching UNa + V against RPP values significant correlations were found in the innervated and denervated kidneys of both groups. Both renal denervation and ACE inhibition were accompanied by an increased gain of the pressure-natriuresis curve, but only renal denervation shifted the crossing of the pressure axis to the left. In the ACE inhibited animals renal denervation only shifted the curve to the left. In conclusion our data suggest that i) at each level of RPP renal nerves and angiotensin II decrease renal sodium excretion, ii) renal nerves and angiotensin II increase the slope of the renal function curve, iii) renal nerves shift to the right the renal function curve.  相似文献   

11.
12.
13.
Summary Water transport mechanisms in rabbit proximal convoluted cell membranes were examined by measurement of: (1) osmotic (P f ) and diffusional (P d ) water permeabilities, (2) inhibition ofP f by mercurials, and (3) activation energies (E a ) forP f .P f was measured in PCT brush border (BBMV) and basolateral membrane (BLMV) vesicles, and in viable PCT cells by stopped-flow light scattering;P d was measured in PCT cells by proton NMR Ti relaxation times using Mn as a paramagnetic quencher. In BLMV,P f (0.019 cm/sec, 23°C) was inhibited 65% by 5mm pCMBS and 75% by 300 m HgCl2 (K l =42 m);E a increased from 3.6 to 7.6 kcal/mole (15–40°C) with 300 m HgCl2. In BBMV,P f (0.073 cm/sec, 23°C,E a =2.8 kcal/mole, <33°C and 13.7 kcal/mole, >33°C) was inhibited 65% with HgCl2 withE a =9.4 kcal/mole (15–45°C). Mercurial inhibition in BLMV and BBMV was reversed with 10 m mercaptoethanol. Viable PCT cells were isolated from renal cortex by Dounce homogenization and differential seiving. Impedence sizing studies show that PCT cells are perfect osmometers (100–1000 mOsm). Assuming a cell surface-to-volume ratio of 25,000 cm–1,P f was 0.010±0.002 cm/sec (37°C) andP d was 0.0032 cm/sec.P f was independent of osmotic gradient size (25–1000 mOsm) withE a 2.5 kcal/mole (<27°C) and 12.7 kcal/mole (>27°C). CellP f was inhibited 53% by 300 m HgCl2 (23°C) withE a 6.2 kcal/mole. These findings indicate that cellP f is not restricted by extracellular or cytoplasmic unstirred layers and that cellP f is not flow-dependent. The high BLMV and BBMVP f , inhibition by HgCl2, lowE a which increases with inhibition, and the measuredP f /P d >1 in cells in the absence of unstirred layers provide strong evidence for the existence of water channels in proximal tubule brush border and basolateral membranes. These channels are similar to those found in erythrocytes and are likely required for rapid PCT transcellular water flow.  相似文献   

14.
This study examines the effects of VEGF-121 therapy in an animal model of preeclampsia induced by overexpression of soluble VEGF receptor 1 (sVEGFR-1). At day 8 of gestation, CD-1 mice were implanted with subcutaneous osmotic pumps containing either VEGF-121 or vehicle and fitted with telemetric blood pressure (BP) catheters for continuous BP monitoring (days 8-18 of gestation). On day 9, the animals in the VEGF-121 group were randomly allocated for injection with adenovirus carrying sVEGFR-1 or the murine immunoglobulin G2α Fc fragment (mFc) as virus control (Adv-sVEGFR-1; Adv-mFc). Animals in the vehicle group were injected with Adv-sVEGFR-1. On day 18, mice were euthanized, placentas and pups weighted, carotid arteries isolated, and their responses studied in vitro using a wire myograph for isometric tension recording. In mice overexpressing sVEGFR-1, treatment with VEGF-121 significantly reduced BP from days 10 to 18 of gestation compared with that of vehicle. VEGF-sVEGFR-1 animals had significantly higher vasorelaxant response to sodium nitroprusside and significantly lower contractile response to the thromboxane agonist (U-46619) compared with that of the vehicle-sVEGFR-1 mice. Phenylephrine and acetylcholine responses did not significantly vary between the VEGF-sVEGFR-1 and the vehicle-sVEGFR-1 mice. Average pup weight was significantly lower in the vehicle-sVEGFR-1 group compared with the VEGF-sVEGFR-1 and VEGF-mFc groups. In conclusion, VEGF-121 therapy attenuates vascular dysfunction and diminishes intrauterine growth abnormality in an animal model of preeclampsia induced by overexpression of sVEGFR-1. Modulation of VEGF pathway turns into a promising therapeutic approach of preeclampsia.  相似文献   

15.
This study was to determine whether the presence or absence of renal nerves and vasopressin altered the diuretic and natriuretic responses to acute volume expansion. Two forms of volume expansion were used: (i) inflation of a small balloon in the veno-atrial junction and (ii) an infusion of isotonic saline at a rate of 1 ml/min for a period of 15 min, approximately 7% of body weight. Balloon inflation produced a significant diuresis from both the intact and denervated kidneys but only produced a significant natriuresis from the intact kidney. Volume expansion (infusion of saline) produced a significant diuresis and natriuresis from both intact and denervated kidneys. Blocking the V2 receptor for vasopressin with a V2-specific receptor blocker d(CH2)5[D-Ile2,Val4]AVP (40 micrograms/kg bolus dose followed by infusion of 4 micrograms/kg/min) did not alter the diuretic and natriuretic responses to volume expansion. However, the absence of renal nerves or the absence of actions of vasopressin produced a significant reduction in the capacity of the kidneys to increase the relative amount of diuresis or natriuresis, thus losing the control over output; i.e., absence of renal nerves only allowed 12-fold increase in diuresis to volume expansion compared with 25-fold in the intact state and absence of vasopressin only allowed 4.6-fold increase in diuresis to volume expansion compared with 25-fold in the intact state. Examining the "volume reflex" in terms of a control system trying to regulate fluid balance, the presence of either renal nerves or actions of vasopressin allows the volume regulating system a greater range in which to control the diuresis and natriuresis (making it possible to fine tune the output to much greater extent).  相似文献   

16.
17.
The distribution of primuline-labeled dopamine-containing neurons in the rat forebrain was investigated by combining catecholamine fluorescence and retrograde neuronal labeling techniques following injection of fluorochrome into the upper thoracic spinal cord. It was found that only diencephalic neurons of catecholamine-containing group All, located in the dorsal hypothalamus and the caudal thalamus send out direct projections to the spinal cord. Cells of nonidentified transmitter category were also primuline-labeled in this area. An average of 173±4 catecholamine-containing neurons were revealed in group All, of which 86 were retrogradely labeled with primuline. Numbers of labeled dopamine-containing neurons increased, traveling in a rostro-caudal direction. The functional role which may be played by the dopaminergic diencephalo-spinal neuronal system described is discussed.S. V. Kurashov Medical Institute, Ministry of Public Health of the RSFSR, Kazan'. Translated from Neirofiziologiya, Vol. 19, No. 6, pp. 771–779, November–December, 1987.  相似文献   

18.
Evidence for the role of megalin in renal uptake of transthyretin   总被引:4,自引:0,他引:4  
The kidney is a major organ for uptake of the thyroid hormone thyroxine (T(4)) and its conversion to the active form, triiodothyronine. In the plasma, one of the T(4) carriers is transthyretin (TTR). In the present study we observed that TTR, the transporter of both T(4) and retinol-binding protein, binds to megalin, the multiligand receptor expressed on the luminal surface of various epithelia including the renal proximal tubules. In the kidney, megalin plays an important role in tubular uptake of macromolecules filtered through the glomerulus. To evaluate the importance of megalin for renal uptake of TTR, we performed binding/uptake assays using immortalized rat yolk sac cells with high expression levels of megalin. Radiolabeled TTR, free as well as in complex with thyroxine or retinol-binding protein, was rapidly taken up by the cells, and the uptake was strongly inhibited by a polyclonal megalin antibody and by the receptor-associated protein, a chaperone-like protein inhibiting ligand binding to megalin. In cell culture, different TTR mutations presented different levels of cell association and degradation, suggesting that the structure of TTR is important for megalin recognition. Both the apo form and the T(4)-bound form were taken up by the cells. Analysis of urine from patients with Dent's disease, a renal tubular disorder that alters receptor-mediated endocytic reabsorption of proteins, identified TTR as an abundant excreted protein. Furthermore, analysis of kidney sections of megalin-deficient mice revealed no immunohistochemical TTR labeling in intracellular vesicles in the proximal tubule cells when compared with wild type control littermates. Taken together, the present data indicate that TTR represents a novel megalin ligand of importance in the thyroid hormone homeostasis.  相似文献   

19.
Renin was completely purified from human kidney cortex employing a rapid three-step procedure which included homogenization and ammonium sulfate precipitation, aminohexyl-pepstatin affinity chromatography, and affinity chromatography using a synthetic octapeptide renin inhibitor (H-77) with a reduced peptide bond (-CH2-NH- instead of -CO-NH-) between Leu5-Leu6, Three kg of cortex dissected from 10 kg of human cadaver kidney yielded 1.7 +/- 0.5 mg of protein (mean +/- S.E. for five procedures) with a specific activity of 1094 +/- 166 Goldblatt units/mg of protein and an overall recovery of 52 +/- 2%. Both gel filtration high performance liquid chromatography and sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) revealed a molecular weight of 44,000, although Mr = 22,000 and 18,000 bands were also identified by SDS-PAGE. The pH optima with sheep angiotensinogen were 5.5 and 7.8 and the Km was 0.31 microM. With pure human substrate the pH optimum was 6.0 and the Km was 1.15 microM. Enzyme activity was inhibited by two different anti-human renal renin antibodies. Amino-terminal sequencing demonstrated a leucine residue at the 1-position. Sequencing of 15 additional amino acids agreed with that predicted from the gene sequence and indicated that prorenin is converted to renin following cleavage at the carboxyl end of two basic residues, Lys-2 Arg-1. As with SDS-PAGE analysis, high performance liquid chromatography in the presence of 6 M urea demonstrated Mr = 44,000, 22,000, and 18,000 bands. Immunoblot studies revealed that all of these bands cross-reacted with antihuman renin antibody. Amino-terminal sequencing indicated the Mm = 22,000 band is the amino terminus and the Mr = 18,000 band the carboxyl terminus of Mr = 44,000 renin. In the aqueous phase, these subunits bound to H-77 suggesting that they represent components of the active enzyme complex. Unlike mouse renin, there was no evidence of disulfide bonds. These results raise the question of whether human renin circulates as a subunit aggregation as well as a single chain protein. This may serve as a possible mechanism to regulate renin activity in plasma and tissues.  相似文献   

20.
An isolated perfused kidney (IPK) preparation was used to study the functional consequences of antibody-initiated glomerular complement activation in an environment devoid of circulating inflammatory cells. Control IPK, with antibody bound to the glomerular basement membrane (GBM) (mean +/- SEM, 165.0 +/- 5.7 micrograms globulin/g renal cortex), were perfused with a 5% albumin solution. Control urinary protein excretion was 0.306 +/- 0.112 mg/min, renal vascular resistance (RVR) was 4.72 +/- 0.69 mgHg/ml/min, and the glomerular filtration rate (GFR) was 0.41 +/- 0.01 ml/min/g. To produce glomerular complement activation, IPK with equal quantities of bound antibody (167.0 +/- 6.1 micrograms/g) were perfused with fresh plasma. Glomerular complement activation was associated with linear deposition of C3 on the GBM, a significant increase in protein excretion (3.317 +/- 1.077 mg/min; p less than 0.001) and RVR (10.15 +/- 1.85 mmHg/ml/min; p less than 0.001), and a decline in GFR (0.38 +/- 0.01 ml/min/g; p less than 0.05). Equivalent IPK perfused with decomplemented plasma demonstrated neither glomerular complement deposition nor augmented renal injury. By using both complement repletion and depletion techniques, this study demonstrates that antibody-initiated glomerular complement activation produces direct, neutrophil-independent renal injury. Thus, activated complement components may directly contribute to antibody-induced immune renal injury, in addition to their well established role in the recruitment of circulating inflammatory cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号