首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Adenylate cyclase (EC 4.6.1.1) activity in mouse liver plasma membranes is increased fivefold when animals are pretreated with cholera toxin. The increase in activity is detectable within 20 min of an intravenous injection of the toxin. The response of the control and cholera-toxin-activated adenylate cyclase to hormones, GTP, and NaF is complex. GTP causes the same fold stimulation of control and toxin-activated cyclase, but glucagon and NaF remain the most potent activators of liver adenylate cyclase irrespective of whether the enzyme is activated by cholera toxin. Determination of kinetic parameters of adenylate cyclase indicates that cholera toxin, hormones, and NaF do not change the affinity of the enzyme for ATP-Mg nor do they alter the Ka for free Mg2+. High concentrations of Mg2+ inhibit adenylate cyclase that is stimulated by either cholera toxin, glucagon, or NaF. These same Mg2+ concentrations have no effect on the basal activity of the enzyme or its activity in the presence of GTP.  相似文献   

2.
Hepatocyte membranes from both lean and obese Zucker rats exhibited adenylate cyclase activity that could be stimulated by glucagon, forskolin, NaF and elevated concentrations of p[NH]ppG. In membranes from lean animals, functional Gi was detected by the ability of low concentrations of p[NH]ppG to inhibit forskolin-activated adenylate cyclase. This activity was abolished by treatment of hepatocytes with either pertussis toxin or the phorbol ester TPA, prior to making membranes for assay of adenylate cyclase activity. In hepatocyte membranes from obese animals no functional Gi activity was detected. Quantitative immunoblotting, using an antibody able to detect the alpha subunit of Gi, showed that hepatocyte plasma membranes from both lean and obese Zucker rats had similar amounts of Gi-alpha subunit. This was 6.2 pmol/mg plasma membrane for lean and 6.5 pmol/mg plasma membrane for obese animals. Using thiol pre-activated pertussis toxin and [32P]-NAD+, similar degrees of labelling of the 40 kDa alpha subunit of Gi were found using plasma membranes of both lean and obese Zucker rats. We suggest that liver plasma membranes from obese Zucker rats express an inactive Gi alpha subunit. Thus lesions in liver Gi functioning are seen in insulin-resistant obese rats and in alloxan- and streptozotocin-induced diabetic rats which also show resistance as regards the acute actions of insulin. Liver plasma membranes of obese animals also showed an impairment in the coupling of glucagon receptors to Gs-controlled adenylate cyclase, with the Kd values for activation by glucagon being 17.3 and 126 nM for lean and obese animals respectively. Membranes from obese animals also showed a reduced ability for high concentration of p[NH]ppG to activate adenylate cyclase. The use of [32P]-NAD+ and thiol-preactivated cholera toxin to label the 43 kDa and 52 kDa forms of the alpha-subunit of Gs showed that a reduced labelling occurred using liver plasma membranes from obese animals. It is suggested that abnormalities in the levels of expression of primarily the 52 kDa form of alpha-Gs may give rise to the abnormal coupling between glucagon receptors and adenylate cyclase in liver membranes from obese (fa/fa) Zucker rats.  相似文献   

3.
Adenylate cyclase activity from human renal cortical plasma membranes remained in the 100,000 xg supernatant (2 hrs) following treatment with 0.25% Lubrol PX in 10mM Tris buffer (pH 7.45), 1 mM EDTA, 0.25 M sucrose, and 5 mM NaF. Solubilization decreased total adenylate cyclase activity by at least one-half; responsiveness to calcitonin, glucagon and guanyl nucleotides, but not to parathyroid hormone, was preserved. Glucagon and calcitonin-stimulated adenylate cyclase eluted near the void volume on Sephadex G200 columns; two other peaks of non-hormone stimulated activity eluted later.  相似文献   

4.
The hormonal responsiveness of plasma membrane-bound enzymes (Na-+-K-+)-ATPase and adenylate cyclase has been investigated in normal and regenerating rat liver. (Na-+-K-+)-ATPase basal activity is not affected by surgery and only slightly affected by partial hepatectomy; its response to epinephrine and cyclic AMP is decreased only 15 h after hepatectomy. Adenylate cyclase activity of plasma membranes from untreated animals is stimulated by parathyroid hormone and thyroxine; partial hepatectomy increased basal activity as well as the stimulation exerted by the aforementioned hormones, when glucagon and epinephrine sensitivity is essentially unaltered.  相似文献   

5.
The effect of adenosine in insulin secretion and adenylate cyclase activity of rat islets of Langerhans was investigated. Adenosine inhibited insulin secretion stimulated by glucose, glucagon, prostaglandin E2, tolbutamine and theophylline. Adenosine decreased basal adenylate cyclase activity of the islets as well as that stimulated by glucagon prostaglandin E2 and GTP, although fluoride-stimulated activity was not affected. Neither insulin secretion nor adenylate cyclase activity of the islets was affected by adenine, AMP or ADP. The inhibitory effect of adenosine on adenylate cyclase activity was not altered by either phenoxybenzamine (alpha-adrenergic blocker) or propranolol (beta-adrenergic blocker), suggesting that the effect is not mediated through the adrenergic receptors of the islet cells. These results suggest that the intracellular concentration of adenosine in the beta-cell may play a role in regulating insulin secretion and that this effect may be mediated via alterations in the activity of adenylate cyclase in the beta-cell.  相似文献   

6.
Treatment of intact hepatocytes with islet-activating protein, from Bordatella pertussis, led to a pronounced increase in the ability of glucagon to raise intracellular cyclic AMP concentrations. Islet-activating protein, however, caused no apparent increase in the intracellular concentration of cyclic AMP under basal conditions. These effects were attributed to an enhanced ability of adenylate cyclase, in membranes from hepatocytes treated with islet-activating protein, to be stimulated by glucagon. When forskolin was used to amplify the basal adenylate cyclase activity, elevated GTP concentrations were shown to inhibit adenylate cyclase activity in membranes from control hepatocytes. This inhibitory effect of GTP was abolished if the hepatocytes had been pre-treated with islet activating protein. In isolated liver plasma membranes, islet-activating protein caused the NAD-dependent ribosylation of a Mr-40000 protein, the putative inhibitory guanine nucleotide regulatory protein, Ni. This effect was inhibited if guanosine 5'-[beta-thio]diphosphate rather than GTP was present in the ribosylation incubations. The ability of glucagon to uncouple or desensitize the activity of adenylate cyclase in intact hepatocytes was also blocked by pre-treating hepatocytes with islet-activating protein. Islet-activating protein thus heightens the response of hepatocytes to the stimulatory hormone glucagon. It achieves this by both inhibiting the expression of desensitization and also removing a residual inhibitory input expressed in the presence of glucagon.  相似文献   

7.
1. The lipids composition of rat liver plasma membranes was substantially altered by introducing synthetic phosphatidylcholines into the membrane by the techniques of lipid substitution or lipid fusion. 40-60% of the total lipid pool in the modified membranes consisted of a synthetic phosphatidylcholine. 2. Lipid substitution, using cholate to equilibrate the lipid pools, resulted in the irreversible loss of a major part of the adenylate cyclase activity stimulated by F-, GMP-P(NH)P or glucagon. However, fusion with presonicated vesicles of the synethic phosphatidylcholines causes only small losses in adenylate cyclase activity stimulated by the same ligands. 3. The linear form of the Arrhenius plots of adenylate cyclase activity stimulated by F- or GMP-(NH)P was unaltered in all of the membrane preparations modified by substitution or fusion, with very similar activation energies to those observed with the native membrane. The activity of the enzyme therefore appears to be very insensitive to its lipid environment when stimulated by F- or gmp-p(nh)p. 4. in contrast, the break at 28.5 degrees C in the Arrhenius plot of adenylate cyclase activity stimulated by glucagon in the native membrane, was shifted upwards by dipalmitoyl phosphatidylcholine, downwards by dimyristoyl phosphatidylcholine, and was abolished by dioleoyl phosphatidylcholine. Very similar shifts in the break point were observed for stimulation by glucagon or des-His-glucagon in combination with F- or GMP-P(NH)P. The break temperatures and activation energies for adenylate cyclase activity were the same in complexes prepared with a phosphatidylcholine by fusion or substitution. 5. The breaks in the Arrhenius plots of adenylate cyclase activity are attributed to lipid phase separations which are shifted in the modified membranes according to the transition temperature of the synthetic phosphatidylcholine. Coupling the receptor to the enzyme by glucagon or des-His-glucagon renders the enzyme sensitive to the lipid environment of the receptor. Spin-label experiments support this interpretation and suggest that the lipid phase separation at 28.5 degrees C in the native membrane may only occur in one half of the bilayer.  相似文献   

8.
Hepatocytes and Kupffer cells were separated from rat liver after prelabeling the Kupffer cells with colloidal iron and perfusion of the liver with digestive enzymes. The activity of several enzymes from Kupffer cells and hepatocytes was compared to validate this method of cell separation. The ratios of hepatocyte to Kupffer cell specific activities of glucose-6-phosphatase, 5'-nucleotidase, adenylate cyclase, and acid phosphatase were 20, 0.39, 0.18, and 0.078, respectively. Adenylate cyclases from hepatocytes and Kupffer cells were stimulated by fluoride ion, GTP, and catecholamines. Hepatocyte adenylate cyclase was also stimulated by glucagon, secretin, vasoactive intestinal polypeptide, and by prostaglandin E1, whereas, the Kupffer cell enzyme was completely insensitive to these hormones. The stimulation of hepatocyte adenylate cyclase by combinations of glucagon plus secretin, or glucagon plus vasoactive intestinal polypeptide, were equivalent to the sum of the individual stimulations. This suggests that the hepatocyte has specific receptors for glucagon and for vasoactive intestinal polypeptide and secretin. Prostaglandin E1 stimulation of hepatocyte adenylate cyclase was not additive to the stimulation caused by polypeptide hormones or catecholamines, nor did prostaglandin E1 decrease stimulation caused by these hormones. Although prostaglandin-sensitive adenylate cyclase was recovered with hepatocytes, 40 to 50% of the total liver prostaglandin-sensitive activity was recovered in a fraction of cell debris mixed with small cells which did not phagocytize colloidal iron.  相似文献   

9.
Acylation of the alpha- and epsilon-amino groups of histidine-1 and lysine-12 in glucagon with citraconic anhydride resulted in the formation of amide bonds which displayed different stabilities to hydrolysis under mild acid conditions. Treatment of N alpha,epsilon-dicitraconyl glucagon at pH 4.0 and room temperature regenerated the free epsilon-amino group within 16 h, while the citraconyl-alpha-amino group was stable. N alpha-Citraconyl glucagon was purified by anion-exchange chromatography and was a weak partial agonist in stimulating adenylate cyclase in rat liver plasma membranes. The derivative exhibited 1% of the biological potency and 35-40% of the maximal stimulation of glucagon. Binding affinity to plasma membranes was also reduced, but not to as great an extent as adenylate cyclase activity. Removal of the alpha-citraconyl group by treatment with 10 mM HCl at 40 degrees C restored full potency and stimulation to glucagon. These results suggest that the N-terminal histidine of glucagon is involved in both binding to plasma membranes and transduction of the signal to adenylate cyclase.  相似文献   

10.
Vasoactive intestinal polypeptide (VIP), a peptide hormone that is chemically and biologically related to glucagon and secretin, stimulates the activity of adenylate cyclase in liver and fat cell membranes. Effects of combinations of VIP with glucagon and secretin at concentrations that maximally activate adenylate cyclase suggest that in adipose tissue, the three hormones act on the same enzyme, whereas in liver, VIP and secretin activate a common enzyme that is distinct from that responding to glucagon. Studies with radioiodinated derivatives of VIP and glucagon indicate that these hormones interact with separate receptors. Secretin, which gives a maximal stimulation of adenylate cyclase activity virtually identical to that elicited by VIP, inhibits the binding of the latter to its receptor. However, the apparent affinity of secretin for adenylate cyclase and for the VIP receptor is about two order of magnitude lower than that of VIP. It is suggested that VIP and secretin may activate adenylate cyclase via a common receptor.  相似文献   

11.
1. The irradiation-inactivation procedure was used to study changes in the state of association of the protein components of adenylate cyclase in intact rat liver plasma membranes by measurement of alterations in the target size determined from the catalytic activity of the enzyme. 2. A decrease in target size at 30 degrees C in response to p[NH]ppG (guanosine 5'-[betagamma-imido]triphosphate) or GTP was demonstrated, which we take to reflect the dissociation of a regulatory subunit. The effect of GTP is potentiated by glucagon. This effect is not observed at 0 degrees C. 3. An increase in target size was observed in response to glucagon in the absence of guanine nucleotides, which we take to reflect the association of glucagon receptor with adenylate cyclase. 4. We propose a model for the activation of adenylate cyclase by glucagon in which the binding of the hormone to its receptor causes an initial association of the receptor with the catalytic unit of the enzyme and a regulatory subunit to form a ternary complex. The subsequent activation of the adenylate cyclase results from the dissociation of the ternary complex to leave a free catalytic unit in the activated state. This dissociation requires the binding of a guanine nucleotide to the regulatory subunit. 5. The effects of variation of temperature on the activation of adenylate cyclase by glucagon and guanine nucleotides were examined and are discussed in relation to the irradiation-activation data. 6. The effectiveness of hormones, guanine nucleotides and combinations of hormone and guanine nucleotides as activators of adenylate cyclase in both rat liver and rat fat-cell plasma membranes was studied and the results are discussed in relation to the model proposed, which is also considered in relation to the observations published by other workers.  相似文献   

12.
W E Criss  T K Pradhan  J Wolff 《Enzyme》1976,21(6):507-515
Adenylate cyclase (EC 4.6.1.1) activities were examined in membrane preparations from two rat liver cell lines (62 and 3C4) which were grown in monolayer cultures. The cells were epithelial-like in growth character. Adenylate cyclase from the line 62 was stimulated by epinephrine, Gpp(NH)p, and prostaglandins A1,A2,E1,E2, and F2alpha, but not by glucagon. Arrhenius plots of adenylate cylase activity from line 62 gave straight lines, except when epinephrine was present in the assay; epinephrine-stimulated activity gave a distinct break at 20 degrees C. Adenylate cyclase activity in line 3C4 was stimulated by glucagon ten times greater than by epinephrine. It was responsive to Gpp(NH)p and all the prostaglandins. Arrhenius plots of adenylate cyclase activity of line 3C4 always gave straight line curves. Prostaglandins flattened the straight line curves (allowed temperature independence) of adenylate cyclase activity in membranes from both cell lines.  相似文献   

13.
Rabbit heart membranes possessing the adenylate cyclase activity were isolated and purified by extraction with high ionic strength solutions and centrifugation in the sucrose density gradient. It was shown that the membranes are characterized by a high percentage of cholesterol (molar ratio cholesterol/phospholipids is 0.24) and an increased activity of Na, K-ATPase, which suggests the localization of adenylate cyclase in the sarcolemma. During centrifugation in the sucrose density gradient the activities of andenylate cyclase and Na,K-ATPase are not separated. Treatment of heart sarcolemma with a 0.3% solution of lubrol WX results in 10--20% solubilization of adenylate cyclase. Purification of the enzyme in the membrane fraction is accompanied by a decrease in the activity of phosphodiesterase; however, about 2% of the heart diesterase total activity cannot be removed from the sarcolemma even after its treatment with 0.3% lubrol WX. Epinephrine and NaF activate adenylate cyclase without changing the pH dependence of the enzyme. The alpha-adrenergic antagonist phentolamine has no effect on the adenylate cyclase activation by catecholamines, glucagon and histamine; the beta-adrenergic antagonist alprenolol competitively inhibits the effects of isoproterenol, epinephrine and norepinephrine, having no effect on the enzyme activation by glucagon and histamine. There is no competition between epinephrine, glucagon and histamine for the binding site of the hormone; however, there may occur a competition between the hormone receptors for the binding to the enzyme. A combined action of several hormones on the membranes results in the averaging of their individual activating effects. When the hormones were added one after another, the extent of adenylate cyclase activation corresponded to that induced by the first hormone; the activation was insensitive to the effect of the second hormone added. It is assumed that the outer membrane of myocardium cells contains a adenylate cyclase and three types of receptors, each being capable to interact with the same form of enzyme. The activity of adenylate cyclase is determined by the type of the receptor, to which it is bound and by the amount of the enzyme-receptor complex.  相似文献   

14.
Adenylate cyclase activity was assayed in a crude particulate fraction of one benign and one malignant human insulinoma. Adenylate cyclase of both tumours responded to 5'-guanylyl-imidodiphosphate, sodium fluoride, glucagon and prostaglandin E2, and in addition the adenylate cyclase of the benign tumour responded to isoprenaline. Glucose and prostaglandin I2 (prostacyclin) did not stimulate the adenylate cyclase in either tumour, although prostaglandin I2 stimulated insulin secretion in cultures of the benign tumour. The in vitro responsiveness of the adenylate cyclase to glucagon did not correlate closely with the effect of glucagon on insulin secretion in vivo.  相似文献   

15.
Effects of chronic oestrogen treatment on catecholamine- and glucagon-sensitive adenylate cyclase activity and glucose output in hepatocytes of castrated male rats were studied. In hepatocytes from male intact or castrated rats, the beta-adrenergic agonist isoprenaline did not stimulate adenylate cyclase activity and glycogenolysis, but glucagon markedly stimulated all these activities. Treatment of castrated animals with 17 beta-oestradiol for 7 days led to the appearance of beta-adrenergic-stimulated increases in both cyclic AMP generation and glucose output. The basal, glucagon- or fluoride-stimulated activities of adenylate cyclase of hepatic membranes prepared from oestrogen-treated rats were similar to those of control animals. Treatment with oestrogen did not influence the number or affinity of beta-adrenergic receptors. In hepatic plasma membranes from control rats, GTP failed to decrease the affinity of beta-adrenergic receptors for agonists, whereas the GTP-induced shift was apparently observed in those from oestrogen-treated animals. These results suggest that oestrogen is able to facilitate the coupling of hepatic beta-adrenergic receptors to the enzyme by increasing the effectiveness of receptor-guanine nucleotide regulation.  相似文献   

16.
Sex hormone-binding globulin (SHBG) is a plasma glycoprotein that binds a number of circulating steroid hormones (testosterone, dihydrotestosterone and estradiol) with high affinity, thus regulating their free concentration in plasma. In addition to binding steroids, SHBG itself binds to receptor sites on plasma membranes with somewhat unusual kinetics. Both the off and on rates are quite slow. The steroid-binding and membrane-binding functions are interwined in what is clearly an allosteric relationship. Occupation of SHBG's steroid-binding site by a steroid inhibits its ability to bind to its membrane receptor-binding site. This inhibition is not related to a steroid's biological activity. Metabolites of steroids without biological activity, e.g. 2-methoxyestradiol, actively inhibit SHBG's interaction with its membrane receptor. However, if unliganded SHBG is allowed to bind to its receptor on intact cells, and an appropriate steroid hormone then is introduced, adenylate cyclase is activated and intracellular cAMP increases. This function is specific for steroids with biological activity, 2-methoxyestradiol has no activity in this arena. These observations demonstrate a potentially important role for SHBG as a regulator of cell function. They also demonstrate an additional mode of action of steroid hormones, one that does not require that the steroid interact with a steroid receptor.  相似文献   

17.
The phorbol ester TPA (12-O-tetradecanoyl phorbol-13-acetate) causes a dose-dependent inhibition of the glucagon-stimulated adenylate cyclase activity expressed in plasma membranes isolated from TPA-treated hepatocytes. However, no observable inhibitory effect of TPA on adenylate cyclase activity was observed in cells which had been exposed to glucagon for 5 min, prior to isolation, to desensitise adenylate cyclase. The degree of inhibition of adenylate cyclase elicited by both glucagon desensitisation and TPA treatment of hepatocytes was identical. Pre-treatment of hepatocytes with TPA was also found to prevent glucagon from blocking insulin's activation of the peripheral plasma membrane cyclic AMP phosphodiesterase in intact hepatocytes. TPA treatment also inhibited the ability of cholera toxin to activate the peripheral cyclic AMP phosphodiesterase in intact hepatocytes. It is suggested that in these particular instances TPA and glucagon elicit mutually exclusive processes rather than TPA mimicking glucagon desensitisation per se.  相似文献   

18.
The effects of [leucine]enkephalin and angiotensin on hepatic carbohydrate and cyclic nucleotide metabolism are compared. Both peptides stimulated glycogenolysis as a result of an increase in phosphorylase a activity and enhanced glucose synthesis from [2-14C]pyruvate, although neither had any significant effect on pyruvate kinase activity. Although the magnitudes of the effects of both peptides on glycogenolysis were comparable and unaffected by the presence of insulin. [Leu]enkephalin proved to be more efficacious in enhancing gluconeogenesis, the response being comparable with that to glucagon. Both effectors decreased the intracellular concentration of cyclic AMP in hepatocytes when incubated under control conditions and after addition of sub-optimal concentrations of glucagon. This was correlated with the ability of the two peptides to inhibit both basal and hormone-stimulated adenylate cyclase activity in purified liver plasma membranes.  相似文献   

19.
B G Nair  T B Patel 《Life sciences》1991,49(12):915-923
Adenylate cyclase activity in isolated rat liver plasma membranes was inhibited by NADH in a concentration-dependent manner. Half-maximal inhibition of adenylate cyclase was observed at 120 microM concentration of NADH. The effect of NADH was specific since adenylate cyclase activity was not altered by NAD+, NADP+, NADPH, and nicotinic acid. The ability of NADH to inhibit adenylate cyclase was not altered when the enzyme was stimulated by activating the cyclase was not altered when the enzyme was stimulated by activating the Gs regulatory element with either glucagon or cholera toxin. Similarly, inhibition of Gi function by pertussis toxin treatment of membranes did not attenuate the ability of NADH to inhibit adenylate cyclase activity. Inhibition of adenylate cyclase activity to the same extent in the presence and absence of the Gpp (NH) p suggested that NADH directly affects the catalytic subunit. This notion was confirmed by the finding that NADH also inhibited solubilized adenylate cyclase in the absence of Gpp (NH)p. Kinetic analysis of the NADH-mediated inhibition suggested that NADH competes with ATP to inhibit adenylate cyclase; in the presence of NADH (1 mM) the Km for ATP was increased from 0.24 +/- 0.02 mM to 0.44 +/- 0.08 mM with no change in Vmax. This observation and the inability of high NADH concentrations to completely inhibit the enzyme suggest that NADH interacts at a site(s) on the enzyme to increase the Km for ATP by 2-fold and this inhibitory effect is overcome at high ATP concentrations.  相似文献   

20.
Secretin, a gut-brain peptide, elicited cyclic AMP production in a clone of neuroblastoma cells derived from the C1300 mouse tumor. Adenylate cyclase (EC 4.6.1.1) in plasma membranes from these cells was stimulated by secretin greater than vasoactive intestinal peptide greater than peptide histidine isoleucine amide, but not by the related peptides glucagon, gastric inhibitory polypeptide, or human growth hormone releasing factor. Hill coefficients for stimulation approximated one and the response to submaximal peptide concentrations was additive, as expected for hormones competing for a single receptor associated with the enzyme. Binding of 125I-labeled secretin to the neuroblastoma plasma membranes was saturable, time-dependent, and reversible. The KD determined from kinetic and equilibrium binding studies approximated 1 nM. The binding site displayed marked ligand specificity that paralleled that for stimulation of adenylate cyclase. The secretin receptor was regulated by guanine nucleotides, with guanosine 5'-(beta, gamma-imino)-triphosphate being the most potent to accelerate the rate of dissociation of bound secretin. These findings demonstrate the functional association of the secretin receptor with adenylate cyclase in neuronally derived cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号