首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of sperm freezing concentration (40 × 106 mL−1 vs. 400 × 106 mL−1), straw size (0.25 mL vs. 0.5 mL) and freezing method (liquid nitrogen vapour in a Styrofoam® box vs. programmable freezing machine) were evaluated in a 2 × 2 × 2 factorial experimental design using 3 split ejaculates from each of 4 stallions. Immediately after thawing, the total motility and forward progressive motility of spermatozoa frozen at a concentration of 40 × 106 mL−1 was higher than for spermatozoa frozen at 400 × 106 mL−1. No significant differences were observed in the semen parameters assessed after cryopreservation in either 0.25 or 0.5 mL straws. However, the programmable freezer provided a more consistent and reliable freezing rate than liquid nitrogen vapour. We conclude that an effective protocol for the cryopreservation of stallion spermatozoa at low concentrations would include concentrations of 40 × 106 mL−1 in 0.25 mL straws using a programmable freezer. This freezing protocol would be suitable for emerging sperm technologies such as sex-preselection of stallion spermatozoa as the sorting process yields only low numbers of spermatozoa in a small volume available for either immediate insemination or cryopreservation.  相似文献   

2.
You Wang  Xuexi Tang   《Harmful algae》2008,7(1):65-75
Interactions between Prorocentrum donghaiense Lu and Scrippsiella trochoidea (Stein) Loeblich III, two species of causative bloom dinoflagellates in China, were investigated using bi-algal cultures under controlled laboratory conditions. The growth of P. donghaiense and S. trochoidea were significantly suppressed when the initial cell densities were set at 1.9 × 104 cells mL−1 or 1.9 × 105 cells mL−1 for P. donghaiense and 1.0 × 104 cells mL−1 for S. trochoidea when the initial size/density ratio was 1:1 or 10:1, respectively, but no out-competement was observed in either bi-algal culture by the end. The simultaneous assay on the culture filtrate showed that P. donghaiense filtrate prepared at a lower initial density (1.9 × 104 cells mL−1) stimulated the co-cultured S. trochoidea at a density of 1.0 × 104 cells mL−1, but filtrate at a higher density (1.9 × 105 cells mL−1) depressed its growth. Differently, the filtrate of S. trochoidea at a density of 1.0 × 104 cells mL−1 significantly suppressed the growth of P. donghaiense at a density of 1.9 × 104 cells mL−1, but had little stimulatory effect on P. donghaiense at a density of 1.9 × 105 cells mL−1compared to the control (P > 0.05). It is likely that these two species of microalgae interact with each other mainly by releasing allelochemical substance(s) into the culture medium, and a direct cell-to-cell contact was not necessary for their mutual interaction. We then quantify their interactions in the bi-algal culture by using a mathematical model. The estimated parameters from the model showed that the inhibition exerted by S. trochoidea on P. donghaiense was about 43 and 24 times stronger than the inhibitory effect that P. donghaiense exerted on S. trochoidea when the initial size/density were 1:1 and 10:1, respectively. S. trochoidea seemed to have a survival strategy that was superior to P. donghaiense in the bi-algal culture under controlled laboratory conditions. We also observed a closely positive relationship between the initial cell density and its effect on the co-cultured microalga by measuring the fluorenscence: filtrate prepared from higher initial cell density had stronger interference on the co-cultured microalga. Moreover, pre-treated under different temperature conditions (30 °C, 60 °C and 100 °C) would significantly changed the effect of culture filtrate on the co-cultured microalga. Result inferred that P. donghaiense or S. trochoidea would release allelochemicals into the bi-algal culture medium and the allelochemicals might be a mixture with temperature-sensitive components in it.  相似文献   

3.
The aim of the present study was to establish a protocol of sperm cryopreservation in Misgurnus anguillicaudatus and verify the applicability of the obtained protocol in other loach species. We evaluated the following parameters: inseminating dose, thawing temperatures (20, 25 and 30 °C for 10 s), extenders (loach or cyprinid extenders), internal cryoprotectants (dimethyl sulfoxide (DMSO), dimethylacetamide (DMA), glycerol (Gly), ethylene glycol (EG), and methanol (MeOH) at 0, 5, 10 and 15%), external cryoprotectants (bovine serum albumin 1 and 2%; sucrose 0.5 and 1%; glucose 0.5 and 1%; glycine 0.5 and 1%), activating solutions (distilled water, dechlorinated tap water, 25 mM NaCl and 50 mM NaCl), and hatchability of the eggs when fertilized with fresh or cryopreserved sperm. After the evaluation of these parameters, we optimized the cryopreservation using the following procedure: thawing temperature at 25 °C for 10 s; loach or cyprinid extenders; methanol at 10 or 15% as internal cryoprotectants; glycine 0.5% or bovine serum albumin 1% as external cryoprotectants and 50 mM NaCl for sperm activation. Using this procedure, the fertilizability of the post-thawed sperm was 47% in comparison to the fresh sperm, at the minimum inseminating dose (687.65 spermatozoa egg−1 mL−1). Based on this protocol, sperm from other loach species Lefua nikkonis, Misgurnus mizolepis and Barbatula toni were cryopreserved successfully.  相似文献   

4.
In this study, the hydraulic conductivity (Lp), Me2SO permeability ( Me2SO), and the reflection coefficients (ς) and their activation energies were determined for Metaphase II (MII) mouse oocytes by exposing them to 1.5 M Me2SO at temperatures of 30, 20, 10, 3, 0, and −3°C. These data were then used to calculate the intracellular concentration of Me2SO at given temperatures. Individual oocytes were immobilized using a holding pipette in 5 μl of an isosmotic PBS solution and perfused with precooled or prewarmed 1.5 M Me2SO solutions. Oocyte images were video recorded. The cell volume changes were calculated from the measurement of the diameter of the oocytes, assuming a spherical shape. The initial volume of the oocytes in the isoosmotic solution was considered 100%, and relative changes in the volume of the oocytes after exposure to the Me2SO were plotted against time. Mean (means ± SEM) Lpvalues in the presence of Me2SO ( Me2SOp) at 30, 20, 10, 3, 0, and −3°C were determined to be 1.07 ± 0.03, 0.40 ± 0.02, 0.18 ± 0.01, 7.60 × 10−2± 0.60 × 10−2, 5.29 × 10−2± 0.40 × 10−2, and 3.69 × 10−2± 0.30 × 10−2μm/min/atm, respectively. The Me2SOvalues were 3.69 × 10−3± 0.3 × 10−3, 1.07 × 10−3± 0.1 × 10−3, 2.75 × 10−4± 0.15 × 10−4, 7.83 × 10−5± 0.50 × 10−5, 5.24 × 10−5± 0.50 × 10−5, and 3.69 × 10−5± 0.40 × 10−5cm/min, respectively. The ς values were 0.70 ± 0.03, 0.77 ± 0.04, 0.81 ± 0.06, 0.91 ± 0.05, 0.97 ± 0.03, and 1 ± 0.04, respectively. The estimated activation energies (Ea) for Me2SOp, Me2SO, and ς were 16.39, 23.24, and −1.75 Kcal/mol, respectively. These data may provide the fundamental basis for the development of more optimal cryopreservation protocols for MII mouse oocytes.  相似文献   

5.
A biotinylated mannotriose (Man3-bio) was dispersively immobilized in the matrix of biotinylated lactose (Gal-Glc-bio) on a streptavidin-covered, 27-MHz quartz crystal microbalance (QCM), and binding kinetics of concanavalin A (Con A) to Man3-bio in the Gal-Glc-bio matrix could be obtained from frequency decreases (mass increases) of the QCM. Association constants (Ka) and binding and dissociation rate constants (kon and koff) could be determined separately as the 1:1 and 1:2 bindings of Con A to Man3-bio on the surface. When Man3-bio was immobilized with content of 1 to 5 mol% in the matrix, the 1:1 binding of Con A to Man3-bio was obtained as Ka = (4 ± 1) × 106 M−1, kon = (4 ± 1) × 104 M−1 s−1, and koff = (12 ± 2) × 10–3 s−1. On the contrary, when Man3-bio was immobilized with content of 20 to 100 mol% in the matrix, the 1:2 binding of Con A to Man3-bio was obtained as Ka = (14 ± 2) × 106 M−1, kon = (14 ± 2) × 104 M−1 s−1, and koff = (7 ± 2) × 10–3 s−1. Thus, Ka for the 1:2 binding was 10 times larger than that for the 1:1 binding, with a three times larger binding rate constant (kon) and a three times smaller dissociation rate constant (koff). This is the first example to obtain separate kinetic parameters for the 1:1 and 1:2 bindings of lectins to carbohydrates on the surface.  相似文献   

6.
Having an effective means to cryopreserve human oocytes would offer more flexibility in healthcare services for infertility patients, and obviate cryopreservation of preimplantation embryos. It is essential to establish good animal models for human oocyte cryopreservation and the rabbit is a good candidate. Attempts to improve oocyte cryopreservation are often empirical, with results often being irreproducible. Cryopreservation protocols may be optimized by modeling the changes in oocyte volume and the associated damages incurred during the addition and dilution of cryoprotective agents (CPA). The objectives of the current study were to determine cryobiological properties of rabbit oocytes, including the isotonic volume, osmotically inactive cell fraction (Vb), hydraulic conductivity (Lp), permeability (Ps) to dimethylsulfoxide (Me2SO), ethylene glycol (EG), and glycerol (GLY) and to examine the correlation between cell volume excursions and viability. This has led to the development of the accumulative osmotic damage (AOD) model associated with the processes of CPA addition/dilution. Mature rabbit oocytes were perfused with 15% (V/V) CPA medium (dissolved in 1× PBS). The osmotic responses of the oocytes were videotaped. A two-parameter model was fit to the experimental data to determine the values of Lp and Ps. Oocyte volumes reached upon equilibration with 285, 600, 900, and 1200 mOsm (milliosmolal) solutions of non-permeating compounds were plotted in a Boyle van’t Hoff plot. The average radius of rabbit oocytes in an isotonic solution was determined to be 55.7 ± 1.2 μm (n = 16). The rabbit oocyte exhibited an “ideal” osmotic response in the range from iso-osmolity to 1200 mOsm. The Vb was determined to be 20% of the isotonic value with r2 = 0.97. The values of Lp were determined to be 0.79 ± 0.26, 0.82 ± 0.22, and 0.64 ± 0.16 μm min−1 atm−1 and the Ps values were determined to be 2.9 ± 1.3, 2.7 ± 1.3, and 0.27 ± 0.18 × 10−3 cm min−1 for Me2SO, EG and GLY, respectively. There were no significant differences (p > 0.05) between values for Lp and PS in the presence of the Me2SO and EG. However, these values were significantly different from the values in presence of GLY. We calculated the AOD values of those oocytes that experienced the process of CPA additions/dilutions and found that these values were highly correlated to the development rates of these oocytes after parthenogenetic activation (r = −0.98).  相似文献   

7.
Laccase-catalyzed oxidation of phenolic compounds in organic media   总被引:1,自引:0,他引:1  
Rhus vernificera laccase-catalyzed oxidation of phenolic compounds, i.e., (+)-catechin, (−)-epicatechin and catechol, was carried out in selected organic solvents to search for the favorable reaction medium. The investigation on reaction parameters showed that optimal laccase activity was obtained in hexane at 30 °C, pH 7.75 for the oxidation of (+)-catechin as well as for (−)-epicatechin, and in toluene at 35 °C, pH 7.25 for the oxidation of catechol. Ea and Q10 values of the biocatalysis in the reaction media of the larger log p solvents like isooctane and hexane were relatively higher than those in the reaction media of lower log p solvents like toluene and dichloromethane. Maximum laccase activity in the organic media was found with 6.5% of buffer as co-solvent. A wider range of 0–28 μg protein/ml in hexane than that of 0–16.7 μg protein/ml in aqueous medium was observed for the linear increasing conversion of (+)-catechin. The kinetic studies revealed that in the presence of isooctane, hexane, toluene and dichloromethane, the Km values were 0.77, 0.97, 0.53 and 2.9 mmol/L for the substrate of (+)-catechin; 0.43, 0.34, 0.14 and 3.4 mmol/L for (−)-epicatechin; 2.9, 1.8, 0.61 and 1.1 mmol/L for catechol, respectively, while the corresponding Vmax values were 2.1 × 10−2, 2.3 × 10−2, 0.65 × 10−2 and 0.71 × 10−2 δA/μg protein min); 1.8 × 10−2, 0.88 × 10−2, 0.19 × 10−2 and 1.0 × 10−2 δA/μg protein min); 0.48 × 10−2, 0.59 × 10−2, 0.67 × 10−2 and 0.54 × 10−2 δA/μg protein min), respectively. FT-IR indicated the formation of probable dimer from (+)-catechin in organic solvent. These results suggest that this laccase has higher catalytic oxidation capacity of phenolic compounds in suitable organic media and favorite oligomers could be obtained.  相似文献   

8.
The present paper reports the graft copolymerization of N-vinylformamide onto sodium carboxymethylcellulose by free radical polymerization using potassium peroxymonosulphate/thiourea redox system in an inert atmosphere. The reaction conditions for maximum grafting have been optimized by varying the reaction variables, including the concentration of N-vinylformamide (12.0 × 10−2–28.0 × 10−2 mol dm−3), potassium peroxymonosulphate (4.0 × 10−3–12.0 × 10−3 mol dm−3), thiourea (1.2 × 10−3–4.4 × 10−3 mol dm−3), sulphuric acid (2.0 × 10−3–10.0 × 10−3 mol dm−3), sodium carboxymethylcellulose (0.2–1.8 g dm−3) along with time duration (60–180 min) and temperature (25–45° C). Water swelling capacity, metal ion sorption and flocculation studies of synthesized graft copolymer have been performed with respect to the parent polymer. The graft copolymer has been characterized by FTIR spectroscopy and thermogravimetric analysis.  相似文献   

9.
A biosensor based on the ionic liquid 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (BMI·Tf2N) and a novel source of peroxidase (tissue from the pine nuts of Araucaria angustifolia) was constructed. This enzyme was immobilized on chitosan crosslinked with citrate and the biosensor used for the determination of rosmarinic acid by square-wave voltammetry. The peroxidase in the presence of hydrogen peroxide catalyzes the oxidation of rosmarinic acid to quinone and the electrochemical reduction of the product was obtained at a potential of +0.15 V vs. Ag/AgCl. Different analytical parameters influencing the biosensor response, that is, peroxidase units, pH, hydrogen peroxide concentration and parameters for the square-wave voltammetry (frequency, pulse amplitude and scan increment), were investigated. The best performance was observed for the biosensor under the following conditions: 1000 units mL−1 peroxidase, pH 7.0 and 8.3 × 10−4 mol L−1 hydrogen peroxide with a frequency of 30 Hz, pulse amplitude of 100 mV and scan increment of 5.0 mV. The biosensor gave a linear response to rosmarinic acid over the concentration range of 9.07 × 10−7 to 4.46 × 10−6 mol L−1 with a detection limit of 7.25 × 10−8 mol L−1. The recovery of rosmarinic acid in plant extracts ranged from 97.0% to 109.6% and the determination of this substance in these samples using the biosensor compared favorably with that using the capillary electrophoresis method.  相似文献   

10.
A sensitive, selective, and rapid enzymatic method is proposed for the quantification of hydrogen peroxide (H2O2) using 3-methyl-2-benzothiazolinonehydrazone hydrochloride (MBTH) and 10,11-dihydro-5H-benz(b,f)azepine (DBZ) as chromogenic cosubstrates catalyzed by horseradish peroxidase (HRP) enzyme. MBTH traps free radical released during oxidation of H2O2 by HRP and gets oxidized to electrophilic cation, which couples with DBZ to give an intense blue-colored product with maximum absorbance at 620 nm. The linear response for H2O2 is found between 5 × 10−6 and 45 × 10−6 mol L−1 at pH 4.0 and a temperature of 25 °C. Catalytic efficiency and catalytic power of the commercial peroxidase were found to be 0.415 × 106 M−1 min−1 and 9.81 × 10−4 min−1, respectively. The catalytic constant (kcat) and specificity constant (kcat/Km) at saturated concentration of the cosubstrates were 163.2 min−1 and 4.156 × 106 L mol−1 min−1, respectively. This method can be incorporated into biochemical analysis where H2O2 undergoes catalytic oxidation by oxidase. Its applicability in the biological samples was tested for glucose quantification in human serum.  相似文献   

11.
Galactomannans isolated from legume seed endosperms, including those of commercial interest, have been characterized by multidetection aqueous SEC. Galactomannans derived from seeds of the Faboideae subfamily had substantially higher Mw than those from Caesalpinioideae seeds (Mw,Fab = 2.4–3.1 × 106 g/mol, Mw,Caes. = 0.86–2.1 × 106 g/mol) and within the latter botanical subfamily, an apparent correlation between Mw and the degree of galactose substitution DG was found. The molar mass distributions were unimodal and differed primarily by a scale factor, with distributional widths narrower than a true Flory ‘most-probable distribution’; good fits to Schulz–Zimm model were obtained. Across subfamilies no differences were found in the exponents of [η]–M and RvM relationships (0.61 ± 0.02, 0.54 ± 0.01, respectively), the Flory chain stiffness ratio (C = 20 ± 1 (BSF analysis)), or the persistence length (Lp = 5.5 ± 0.2 nm) obtained from SEC fraction data. However, it was found that prefactors in the [η]–M and RvM relationships as well as the unperturbed parameter KΘ decrease in proportion to DG and therefore chain density. Generalized relationships incorporating galactose-dependent prefactors were therefore developed to model SEC fraction data of native galactomannans ([η]GM = (1800 ± 200) × Mo−1.61 × M0.61±0.02, Rv,GM = 0.63 ± 0.05 × Mo−0.54 × M0.54±0.01) as well as lower-M fractions obtained by ultrasonication ([η]GM = (730 ± 100) × Mo−1.71 × Mw0.71±0.02, Rv,GM = 0.49 ± 0.05 × Mo−0.57 × Mw0.57±0.01, M ≈ 1 × 105-native). As a consequence of this dependence and the observed patterns in molar mass variation, [η] varies within a narrow range for galactomannans as a whole despite substantial Mw differences.  相似文献   

12.
Quantitative detection of the oil-degrading bacterium Acinetobacter sp. strain MUB1 was performed using the SoilMaster DNA Extraction Kit (Epicentre, Madison, Wisconsin) and hybridization probe based real-time PCR. The detection target was the alkane hydroxylase gene (alkM). Standard curve construction showed a linear relation between log values of cell concentrations and real-time PCR threshold cycles over five orders of magnitude between 5.4±3.0×106 and 5.4±3.0×102 CFU ml−1 cell suspension. The detection limit was about 540 CFU ml−1, which was ten times more sensitive than conventional PCR. The quantification of Acinetobacter sp. strain MUB1 cells in soil samples resulted in 46.67%, 82.41%, and 87.59% DNA recovery with a detection limit of 5.4±3.0×104 CFU g−1 dry soil. In this study, a method was developed for the specific, sensitive, and rapid quantification of the Acinetobacter sp. strain MUB1 in soil samples.  相似文献   

13.
The kinetics of fungal peroxidase-catalyzed phenolic compounds (PCs) oxidation was investigated in presence of acetylenic-based surfactant Dynol 604 at pH 5.5 and 25 °C. It was shown that the presence of ppm concentrations of surfactant did not influence initial rate of PCs oxidation. The calculated apparent bimolecular rate constants were (1.8 ± 0.2) × 105 M−1 s−1, (1.4 ± 0.4) × 107 M−1 s−1, (1.30 ± 0.06) × 107 M−1 s−1 and 1.1 × 108 M−1 s−1 for phenol, 1-naphthol, 2-naphthol and 1-hydroxypyrene, respectively.During an extensive substrates conversion Dynol 604 showed diverse action for different PCs. The oxidation of phenol practically did not change, whereas the surfactant enhanced the conversion of 1- and 2-naphthol and 1-hydroxypyrene in dose response manner. The results accounted by a scheme, which contains a stadium of enzyme inhibition by oligomeric PC oxidation products. The action of the surfactant was explained by avoidance the enzyme active center clothing with the oligomers. The results acquired demonstrate a remarkable increase of substrates conversion in the presence of Dynol 604.  相似文献   

14.
An unreported graft copolymer of N,N-dimethylacrylamide (DMA) with chitosan has been synthesized under nitrogen atmosphere using peroxymonosulphate/mandelic acid redox pair. The effect of reaction conditions on grafting parameters i.e. grafting ratio, efficiency, conversion, add on and homopolymer has been studied. Experimental results show that maximum grafting has been obtained at 1.0 g dm−3 concentration of chitosan, 30 × 10−2 mol dm−3 concentration of N,N-dimethylacrylamide and 7.0 × 10−3 mol dm−3 concentration of hydrogen ion. It has also been observed that grafting ratio, add on, conversion and efficiency increase upto 3.2 × 10−3 mol dm−3 of mandelic acid, 12.0 × 10−3 mol dm−3 of potassium peroxymonosulphate, 150 min of time and 40 °C of temperature. Grafted polymer has been characterized by FTIR spectroscopy and thermogravimetric analysis. Water swelling capacity of chitosan-g-N,N-dimethylacrylamide has been determined. It has been observed that the graft copolymer is thermally more stable than parent backbone.  相似文献   

15.
The short-term dynamics of virus-like particles (VLPs) abundance, bacterioplankton, ciliates and flagellates were analyzed in a small tropical lake, during a rainy day (June 9–10, 2003) and a dry day (February 18–19, 2004), with intervals of 3 h between the samplings. Frequent sampling in intervals of 15 min were conducted. During the rainy day, the VLP mean abundance was 7.0×108 mL−1 and bacterial density was 5.75×107 mL−1. During the dry day, VLP and bacterial mean were 5.78×108 and 4.1×107 mL−1, respectively. The virus/bacterium rate (VBR) varied from 11 to 18 on the rainy day and from 4 to 22 on the dry day. The density of VLP was higher during the night, especially on the dry day, suggesting a virucidal action of the solar radiation on them. When registered in intervals of 15 min, the densities were not associated with the fluctuations of bacteria or chlorophyll a (Chl a), but a strong negative correlation between VLP and protozooplankton was observed (Spearman: R=−0.71; p=0.04), possibly associated with the occurrence of viral lyses on these organisms. The variations of VBR in the system, indicate that the elevated densities and fluctuations of VLP is suggestive of an active and important participation of these biological entities in the dynamics of the microbial communities in the studied environment.  相似文献   

16.
Renoguanylin (REN) is a recently described member of the guanylin family, which was first isolated from eels and is expressed in intestinal and specially kidney tissues. In the present work we evaluate the effects of REN on the mechanisms of hydrogen transport in rat renal tubules by the stationary microperfusion method. We evaluated the effect of 1 μM and 10 μM of renoguanylin (REN) on the reabsorption of bicarbonate in proximal and distal segments and found that there was a significant reduction in bicarbonate reabsorption. In proximal segments, REN promoted a significant effect at both 1 and 10 μM concentrations. Comparing control and REN concentration of 1 μM, JHCO3, nmol cm− 2 s− 1 − 1,76 ± 0,11control × 1,29 ± 0,08REN 10 μM; P < 0.05, was obtained. In distal segments the effect of both concentrations of REN was also effective, being significant e.g. at a concentration of 1 μM (JHCO3, nmol cm− 2 s− 1 − 0.80 ± 0.07control × 0.60 ± 0.06REN 1 μM; P < 0.05), although at a lower level than in the proximal tubule. Our results suggest that the action of REN on hydrogen transport involves the inhibition of Na+/H+exchanger and H+-ATPase in the luminal membrane of the perfused tubules by a PKG dependent pathway.  相似文献   

17.
The soybean (Glycine max) urease was immobilized on alginate and chitosan beads and various parameters were optimized and compared. The best immobilization obtained were 77% and 54% for chitosan and alginate, respectively. A 2% chitosan solution (w/v) was used to form beads in 1N KOH. The beads were activated with 1% glutaraldehyde and 0.5 mg protein was immobilized per ml of chitosan gel for optimum results. The activation and coupling time were 6 h and 12 h, respectively. Further, alginate and soluble urease were mixed to form beads and final concentrations of alginate and protein in beads were 3.5% (w/v) and 0.5 mg/5 ml gel. From steady-state kinetics, the optimum temperature for urease was 65 °C (soluble), 75 °C (chitosan) and 80 °C (alginate). The activation energies were found to be 3.68 kcal mol−1, 5.02 kcal mol−1, 6.45 kcal mol−1 for the soluble, chitosan- and alginate-immobilized ureases, respectively. With time-dependent thermal inactivation studies, the immobilized urease showed improved stability at 75 °C and the t1/2 of decay in urease activity was 12 min, 43 min and 58 min for soluble, alginate and chitosan, respectively. The optimum pH of urease was 7, 6.2 and 7.9 for soluble, alginate and chitosan, respectively. A significant change in Km value was noticed for alginate-immobilized urease (5.88 mM), almost twice that of soluble urease (2.70 mM), while chitosan showed little change (3.92 mM). The values of Vmax for alginate-, chitosan-immobilized ureases and soluble urease were 2.82 × 102 μmol NH3 min−1 mg−1 protein, 2.65 × 102 μmol NH3 min−1 mg−1 protein and 2.85 × 102 μmol NH3 min−1 mg−1 protein, respectively. By contrast, reusability studies showed that chitosan–urease beads can be used almost 14 times with only 20% loss in original activity while alginate–urease beads lost 45% of activity after same number of uses. Immobilized urease showed improved stability when stored at 4 °C and t1/2 of urease was found to be 19 days, 80 days and 121 days, respectively for soluble, alginate and chitosan ureases. The immobilized urease was used to estimate the blood urea in clinical samples. The results obtained with the immobilized urease were quite similar to those obtained with the autoanalyzer®. The immobilization studies have a potential role in haemodialysis machines.  相似文献   

18.
19.
We studied the process of conversion of microcrystalline-cellulose into fermentable glucose in the formic acid reaction system using cross polarization/magic angle spinning 13C-nuclear magnetic resonance, X-ray diffraction and Fourier transform infrared spectroscopy. The results indicated that formic acid as an active agent was able to effectively penetrate into the interior space of the cellulose molecules, thus collapsing the rigid crystalline structure and allowing hydrolysis to occur easily in the amorphous zone as well as in the crystalline zone. The microcrystalline-cellulose was hydrolyzed using formic acid and 4% hydrochloric acid under mild conditions. The effects of hydrochloric acid concentration, the ratio of solid to liquid, temperature (55–75 °C) and retention time (0–9 h), and the concentration of glucose were analyzed. The hydrolysis velocities of microcrystalline-cellulose were 6.14 × 10− 3 h− 1 at 55 °C, 2.94 × 10− 2 h− 1 at 65 °C, and 6.84 × 10− 2 h− 1 at 75 °C. The degradation velocities of glucose were 0.01 h− 1 at 55 °C, 0.14 h− 1 at 65 °C, 0.34 h− 1 at 75 °C. The activation energy of microcrystalline-cellulose hydrolysis was 105.61 kJ/mol, and the activation energy of glucose degradation was 131.37 kJ/mol.  相似文献   

20.
Ty1 is a retrotransposon of the yeast Saccharomyces cerevisiae whose transposition at new locations in the host genome is activated by stress conditions, such as exposure to UV light, X-rays, nitrogen starvation. In this communication, we supply evidence that cooling for 2 h at +4 °C followed by freezing for 1 h at −10 °C and 16 h at −20 °C also increased Ty1 transposition. The mobility of Ty1 was induced by cooling at slow rates (3 °C/min) and the accumulation of trehalose inside cells or the cooling at high rates (100 °C/min) inhibited significantly the induction of the transposition. The freeze-induced Ty1 transposition did not occur in mitochondrial mutants (rho) and in cells with disrupted SCO1 gene (Δsco1 cells) evidencing that the Ty1 transposition induced by cooling depends on the mitochondrial oxidative phosphorylation. We also found that the freeze induced Ty1 transposition is associated with increased synthesis and accumulation of superoxide anions (O2) into the cells. Accumulation of O2 and activation of Ty1 transposition were not observed after cooling of cells with compromised mitochondrial functions (rho, Δsco1), or in cells pretreated with O2 scavengers. It is concluded that (i) elevated levels of reactive oxygen species (ROS) have a key role in activation the transposition of Ty1 retrotransposon in yeast cells undergoing freezing and (ii) given the deleterious effect of increased ROS levels on cells, special precautions should be taken to avoid ROS production and accumulation during cryopreservation procedures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号