首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Zhu XP  You F  Zhang PJ  Xu JH  Sun W 《Theriogenology》2007,68(6):873-881
Indirect immunofluorescence staining was used to detect cytological changes of isolated blastodisks during mitosis of flounder haploid eggs treated with hydrostatic pressure. Changes in microtubule structure and expected cleavage suppression were observed from blastodisk formation to the third cell cycle, with obvious differences between treated and control eggs. In most eggs, microtubules were disassembled and the nucleation capacity of the centrosome was temporarily inhibited after pressure treatment. Within 15-20 min after treatment, the nucleation capacity of the centrosome began to gradually recover, with slow regeneration of microtubules; approximately 25 min after treatment, the nucleation capacity of the centrosome recovered completely, regenerated distinct bipolar spindles, and the first mitosis ensued. During the second cell cycle, approximately 61% of the embryos were at the two-cell stage, with a monopolar spindle in each blastomere; that treatment was effective was based on second cleavage blockage. Approximately 15% of the eggs still remained at the one-cell stage and had a monopolar spindle (treatment was effective, according to the general model of first cleavage blockage). However, treatment was ineffective in approximately 15% of the embryos (bipolar spindle in each blastomeres) and in another 8% (bipolar spindle in one of the two blastomeres and a monopolar spindle in the other; both mechanisms operating in different parts of the embryo). This is the first report elucidating mitotic gynogenetic diploid induction by hydrostatic pressure in marine fishes and provides a cytological basis for developing an efficient method of inducing mitotic gynogenesis in olive flounder.  相似文献   

2.
A temperature-sensitive Syrian hamster mutant cell line, ts-745, exhibiting novel mitotic events has been isolated. The cells show normal growth and mitosis at 33 degrees C, the permissive temperature. At the nonpermissive temperature of 39 degrees C, mitotic progression becomes aberrant. Metaphase cells and those cells still able to form a metaphase configuration continue through and complete normal cell division. However, cells exposed to 39 degrees C for longer than 15 min can not form a normal metaphase spindle. Instead, the chromosomes are distributed in a spherical shell, with microtubules (MT) radiating to the chromosomes from four closely associated centrioles near the center of the cell. The cells progress from the spherical monopolar state to other monopolar orientations conical in appearance with four centrioles in the apex region. Organized chromosome movement is present, from the spherical shell state to the asymmetrical orientations. Chromosomes remain in the metaphase configuration without chromatid separation. Prometaphase chromosome congression appears normal, as the chromosomes and MT form a stable monopolar spindle, but bipolar spindle formation is apparently blocked in a premetaphase state. When returned from 39 degrees to 33 degrees C, the defective phenotype is readily reversible. At 39 degrees C, the mitotic abnormality lasts 3-5 h, followed by reformation of a single nucleus and cell flattening in an interphase- like state. Subsequent cell cycle events appear to occur, as the cells duplicate chromosomes and initiate a second round of abnormal mitosis. Cell cycle traversion continues for at least 5 d in some cells despite abnormal mitosis resulting in cells accumulating several hundred chromosomes.  相似文献   

3.
Mana-Hox is a synthetic analog of manzamines, which are beta-carboline alkaloids isolated from marine sponges. Mana-Hox exhibited cytotoxicity against various tumor cell lines with the IC(50) range from 1 to 5 microM. Cell cycle synchronization and flow cytometric analysis showed that Mana-Hox delayed cell cycle progression at mitosis. At the concentration that delayed mitotic progression, bipolar spindle with lagged chromosomes and multipolar spindle with disorganized chromosomes were detected. The presence of such aberrant mitotic cells accompanied by the activation of spindle checkpoint that delayed cells exit from mitosis. However, after a short delay, lagged chromosomes were able to display in the abnormal metaphase plates, and subsequent cell division resulting in chromosome missegregation. Furthermore, the aberrant mitotic cells showed lower viability, indicating that Mana-Hox-induced cell death resulting from chromosome missegregation. This study is the first to explore cytotoxic mechanism of a manzamine-related compound and understand its potential as a lead compound for the development of future anticancer agents.  相似文献   

4.
Cytoplasmic dynein plays a role in mammalian mitotic spindle formation   总被引:46,自引:21,他引:25       下载免费PDF全文
The formation and functioning of a mitotic spindle depends not only on the assembly/disassembly of microtubules but also on the action of motor enzymes. Cytoplasmic dynein has been localized to spindles, but whether or how it functions in mitotic processes is not yet known. We have cloned and expressed DNA fragments that encode the putative ATP- hydrolytic sites of the cytoplasmic dynein heavy chain from HeLa cells and from Dictyostelium. Monospecific antibodies have been raised to the resulting polypeptides, and these inhibit dynein motor activity in vitro. Their injection into mitotic mammalian cells blocks the formation of spindles in prophase or during recovery from nocodazole treatment at later stages of mitosis. Cells become arrested with unseparated centrosomes and form monopolar spindles. The injected antibodies have no detectable effect on chromosome attachment to a bipolar spindle or on motions during anaphase. These data suggest that cytoplasmic dynein plays a unique and important role in the initial events of bipolar spindle formation, while any later roles that it may play are redundant. Possible mechanisms of dynein's involvement in mitosis are discussed.  相似文献   

5.
Aurora family kinases play pivotal roles in several steps during mitosis. Specifically, Aurora A kinase is an important regulator of bipolar mitotic spindle formation and chromosome segregation. Like other members of the Aurora family, Aurora A kinase is also regulated by post-translational modifications. Here, we show that a previously undescribed E3 ligase component belonging to the SCF (Skp-Cullin1-F-box protein) E3 ligase family, SCFFBXL7, impairs cell proliferation by mediating Aurora A polyubiquitination and degradation. Both Aurora A and FBXL7 co-localize within the centrosome during spindle formation. FBXL7 ectopic expression led to G2/M phase arrest in transformed epithelia, resulting in the appearance of tetraploidy and mitotic arrest with circular monopolar spindles and multipolar spindle formation. Interestingly, FBXL7 specifically interacts with Aurora A during mitosis but not in interphase, suggesting a regulatory role for FBXL7 in controlling Aurora A abundance during mitosis.  相似文献   

6.
Mitosis in eukaryotic cells employs spindle microtubules to drive accurate chromosome segregation at cell division. Cells lacking spindle microtubules arrest in mitosis due to a spindle checkpoint that delays mitotic progression until all chromosomes have achieved stable bipolar attachment to spindle microtubules. In fission yeast, mitosis occurs within an intact nuclear membrane with the mitotic spindle elongating between the spindle pole bodies. We show here that in fission yeast interference with mitotic spindle formation delays mitosis only briefly and cells proceed to an unusual nuclear division process we term nuclear fission, during which cells perform some chromosome segregation and efficiently enter S-phase of the next cell cycle. Nuclear fission is blocked if spindle pole body maturation or sister chromatid separation cannot take place or if actin polymerization is inhibited. We suggest that this process exhibits vestiges of a primitive nuclear division process independent of spindle microtubules, possibly reflecting an evolutionary intermediate state between bacterial and Archeal chromosome segregation where the nucleoid divides without a spindle and a microtubule spindle-based eukaryotic mitosis.  相似文献   

7.
Microtubule-based motor proteins provide essential forces for bipolar organization of spindle microtubules and chromosome movement, prerequisites of chromosome segregation during the cell cycle. Here, we describe the functional characterization of a novel spindle protein, termed "CHICA," that was originally identified in a proteomic survey of the human spindle apparatus [1]. We show that CHICA localizes to the mitotic spindle and is both upregulated and phosphorylated during mitosis. CHICA-depleted cells form shorter spindles and fail to organize a proper metaphase plate, highly reminiscent of the phenotype observed upon depletion of the chromokinesin Kid, a key mediator of polar ejection forces [2-6]. We further show that CHICA coimmunoprecipitates with Kid and is required for the spindle localization of Kid without affecting its chromosome association. Moreover, upon depletion of either CHICA or Kid (or both proteins simultaneously), chromosomes collapse onto the poles of monastrol-induced monopolar spindles. We conclude that CHICA represents a novel interaction partner of the chromokinesin Kid that is required for the generation of polar ejection forces and chromosome congression.  相似文献   

8.
Aurora family kinases play pivotal roles in several steps during mitosis. Specifically, Aurora A kinase is an important regulator of bipolar mitotic spindle formation and chromosome segregation. Like other members of the Aurora family, Aurora A kinase is also regulated by post-translational modifications. Here, we show that a previously undescribed E3 ligase component belonging to the SCF (Skp-Cullin1-F-box protein) E3 ligase family, SCFFBXL7, impairs cell proliferation by mediating Aurora A polyubiquitination and degradation. Both Aurora A and FBXL7 co-localize within the centrosome during spindle formation. FBXL7 ectopic expression led to G2/M phase arrest in transformed epithelia, resulting in the appearance of tetraploidy and mitotic arrest with circular monopolar spindles and multipolar spindle formation. Interestingly, FBXL7 specifically interacts with Aurora A during mitosis but not in interphase, suggesting a regulatory role for FBXL7 in controlling Aurora A abundance during mitosis.Key words: F-box protein, centrosome, mitosis, Aurora A  相似文献   

9.
ABSTRACT: Assembly of a bipolar mitotic spindle is essential to ensure accurate chromosome segregation and prevent aneuploidy, and severe mitotic spindle defects are typically associated with cell death. Recent studies have shown that mitotic spindles with initial geometric defects can undergo specific rearrangements so the cell can complete mitosis with a bipolar spindle and undergo bipolar chromosome segregation, thus preventing the risk of cell death associated with abnormal spindle structure. Although this may appear as an advantageous strategy, transient defects in spindle geometry may be even more threatening to a cell population or organism than permanent spindle defects. Indeed, transient spindle geometry defects cause high rates of chromosome mis-segregation and aneuploidy. In this review, we summarize our current knowledge on two specific types of transient spindle geometry defects (transient multipolarity and incomplete spindle low separation) and describe how these mechanisms cause chromosome mis-segregation and aneuploidy. Finally, we discuss how these transient spindle defects may specifically contribute to the chromosomal instability observed in cancer cells.  相似文献   

10.
To characterize the control mechanisms for mitosis, we studied the relationship between the spatial organization of microtubules in the mitotic spindle and the timing of mitotic events. Spindles of altered geometry were produced in sea urchin eggs by two methods: (a) early prometaphase spindles were cut into half spindles by micromanipulation or (b) mercaptoethanol was used to indirectly induce the formation of spindles with only one pole. Cells with monopolar spindles produced by either method required an average of 3 X longer than control cells to traverse mitosis. By the time the control cells started their next mitosis, the experimental cells were usually just finishing the original mitosis. In all cases, only the time from nuclear envelope breakdown to the start of telophase was prolonged. Once the cells entered telophase, events leading to the next mitosis proceeded with normal timing. Once prolonged, the cell cycle never resynchronized with the controls. Several types of control experiments showed that were not an artifact of the experimental techniques. These results show that the spatial arrangement of spindle components plays an important role in the mechanisms that control the timing of mitotic events and the timing of the cell cycle as a whole.  相似文献   

11.
Kinesins and dyneins play important roles during cell division. Using RNA interference (RNAi) to deplete individual (or combinations of) motors followed by immunofluorescence and time-lapse microscopy, we have examined the mitotic functions of cytoplasmic dynein and all 25 kinesins in Drosophila S2 cells. We show that four kinesins are involved in bipolar spindle assembly, four kinesins are involved in metaphase chromosome alignment, dynein plays a role in the metaphase-to-anaphase transition, and one kinesin is needed for cytokinesis. Functional redundancy and alternative pathways for completing mitosis were observed for many single RNAi knockdowns, and failure to complete mitosis was observed for only three kinesins. As an example, inhibition of two microtubule-depolymerizing kinesins initially produced monopolar spindles with abnormally long microtubules, but cells eventually formed bipolar spindles by an acentrosomal pole-focusing mechanism. From our phenotypic data, we construct a model for the distinct roles of molecular motors during mitosis in a single metazoan cell type.  相似文献   

12.
Accurate chromosome segregation depends on precise regulation of mitosis by the spindle checkpoint. This checkpoint monitors the status of kinetochore-microtubule attachment and delays the metaphase to anaphase transition until all kinetochores have formed stable bipolar connections to the mitotic spindle. Components of the spindle checkpoint include the mitotic arrest defective (MAD) genes MAD1-3, and the budding uninhibited by benzimidazole (BUB) genes BUB1 and BUB3. In animal cells, all known spindle checkpoint proteins are recruited to kinetochores during normal mitoses. In contrast, we show that whereas Saccharomyces cerevisiae Bub1p and Bub3p are bound to kinetochores early in mitosis as part of the normal cell cycle, Mad1p and Mad2p are kinetochore bound only in the presence of spindle damage or kinetochore lesions that interfere with chromosome-microtubule attachment. Moreover, although Mad1p and Mad2p perform essential mitotic functions during every division cycle in mammalian cells, they are required in budding yeast only when mitosis goes awry. We propose that differences in the behavior of spindle checkpoint proteins in animal cells and budding yeast result primarily from evolutionary divergence in spindle assembly pathways.  相似文献   

13.
The ECT2 protooncogene encodes a guanine nucleotide exchange factor for the Rho family of small GTPases. ECT2 contains motifs of cell cycle regulators at its N-terminal domain. We previously showed that ECT2 plays a critical role in cytokinesis. Here, we report a potential role of XECT2, the Xenopus homologue of the human ECT2, in spindle assembly in cell-free Xenopus egg extracts. Cloned XECT2 cDNA encodes a 100 kDa protein closely related to human ECT2. XECT2 is specifically phosphorylated in M phase extracts. Affinity-purified anti-XECT2 antibody strongly inhibited mitosis in Xenopus cell-free extracts. Instead of bipolar spindles, where chromosomes are aligned at the metaphase plane in control extracts, the addition of anti-XECT2 resulted in the appearance of abnormal spindles including monopolar and multipolar spindles as well as bipolar spindles with misaligned chromosomes. In these in vitro synthesized spindle structures, XECT2 was found to tightly associate with mitotic spindles. The N-terminal half of XECT2 lacking the catalytic domain also strongly inhibited spindle assembly in vitro, resulting in the formation of mitotic spindles with a low density. Among the representative Rho GTPases, a dominant-negative form of Cdc42 strongly inhibited spindle assembly in vitro. These results suggest that the Rho family GTPase Cdc42 and its exchange factor XECT2 are critical regulators of spindle assembly in Xenopus egg extracts.  相似文献   

14.
Role of spindle microtubules in the control of cell cycle timing   总被引:14,自引:10,他引:4       下载免费PDF全文
Sea urchin eggs are used to investigate the involvement of spindle microtubules in the mechanisms that control the timing of cell cycle events. Eggs are treated for 4 min with Colcemid at prophase of the first mitosis. No microtubules are assembled for at least 3 h, and the eggs do not divide. These eggs show repeated cycles of nuclear envelope breakdown (NEB) and nuclear envelope reformation (NER). Mitosis (NEB to NER) is twice as long in Colcemid-treated eggs as in the untreated controls. Interphase (NER to NEB) is the same in both. Thus, each cycle is prolonged entirely in mitosis. The chromosomes of treated eggs condense and eventually split into separate chromatids which do not move apart. This "canaphase" splitting is substantially delayed relative to anaphase onset in the control eggs. Treated eggs are irradiated after NEB with 366-nm light to inactivate the Colcemid. This allows the eggs to assemble normal spindles and divide. Up to 14 min after NEB, delays in the start of microtubule assembly give equal delays in anaphase onset, cleavage, and the events of the following cell cycle. Regardless of the delay, anaphase follows irradiation by the normal prometaphase duration. The quantity of spindle microtubules also influences the timing of mitotic events. Short Colcemid treatments administered in prophase of second division cause eggs to assemble small spindles. One blastomere is irradiated after NEB to provide a control cell with a normal-sized spindle. Cells with diminished spindles always initiate anaphase later than their controls. Telophase events are correspondingly delayed. This work demonstrates that spindle microtubules are involved in the mechanisms that control the time when the cell will initiate anaphase, finish mitosis, and start the next cell cycle.  相似文献   

15.
The objective of the study was to clarify the effects of initiation time on chromosome set doubling induced by hydrostatic pressure shock through nuclear phase fluorescent microscopy in turbot Scophthalmus maximus. The ratio of developmentally delayed embryo and chromosome counting was used to assess induction efficiency. For the embryos subjected to a pressure of 67.5 MPa for 6 min at prometaphase (A group), chromosomes recovered to the pre-treatment condition after 11-min recovering. The first nuclear division and cytokinesis proceeded normally. During the second cell cycle, chromosomes did not enter into metaphase after prometaphase, but spread around for about 13 min, then assembled together and formed a large nucleus without anaphase separation; the second nuclear division and cytokinesis was inhibited. The ratio of developmentally delayed embryo showed that the second mitosis of 78% A group embryo was inhibited. The result of chromosome counting showed that the tetraploidization rate of A group was 72%. For the embryos subjected to a pressure of 67.5 MPa for 6 min at anaphase (B group), chromosomes recovered to the pre-treatment condition after about 31-min recovering. Afterwards, one telophase nucleus formed without anaphase separation; the first nuclear division was inhibited. The time of the first cleavage furrow occurrence of B group embryos delayed 27 min compared with that of A group embryos. With the first cytokinesis proceeding normally, 81.3% B group embryos were at two-cell stage around the middle of the second cell cycle after treatment. Those embryos were one of the two blastomeres containing DNA and the other without DNA. The first nuclear division of those embryos was inhibited. During the third cell cycle after treatment, 65.2% of those abovementioned embryos were at four-cell stage, cytokinesis occurred in both blastomeres, and nuclear division only occurred in the blastomere containing DNA. Of those abovementioned embryos, 14.0% were at three-cell stage and cytokinesis only occurred in the blastomere containing DNA. The result of chromosome counting showed that the tetraploidization rate of B group was only 7%. To summarize what had been mentioned above, mechanisms on chromosome set doubling of tetraploid induction would be different with different initiation time of hydrostatic pressure treatment. Chromosome set doubling was mainly due to inhibition of the second mitosis when hydrostatic pressure treatment was performed at prometaphase. Otherwise, chromosome set doubling was mainly due to inhibition of the first nuclear division when hydrostatic pressure treatment was performed at anaphase. Induction efficiency of tetraploidization resulted from inhibition of the second cleavage was higher than which resulted from inhibition of the first nuclear division. This study was the first to reveal biological mechanisms on the two viewpoints of chromosome set doubling through effect of initiation time of hydrostatic pressure treatment on chromosome set doubling in tetraploid induction.  相似文献   

16.
Recently, we have shown that the farnesyltransferase inhibitor FTI-2153 induces accumulation of two human lung cancer cell lines in mitosis by inhibiting bipolar spindle formation during prometaphase. Here we investigate whether this mitotic arrest depends on transformation, Ras and/or p53 mutation status. Using DAPI staining (DNA) and immunocytochemistry (microtubules), we demonstrate that in normal primary foreskin fibroblasts (HFF), as well as in several cancer cell lines of different origins including human ovarian (OVCAR3), lung (A-549 and Calu-1) and fibrosarcoma (HT1080), FTI-2153 inhibits bipolar spindle formation and induces a rosette morphology with a monopolar spindle surrounded by chromosomes. In both malignant cancer cell lines and normal primary fibroblasts, the percentage of prometaphase cells with bipolar spindles decreases from 67-92% in control cells to 2-28% in FTI-2153 treated cells. This inhibition of bipolar spindle formation correlates with an accumulation of cells in prometaphase. The ability of FTI-2153 to inhibit bipolar spindle formation is not dependent on p53 mutation status since both wild-type (HFF, HT1080 and A-549) and mutant (Calu-1 and OVCAR3) p53 cells were equally affected. Similarly, both wild-type (HFF and OVCAR3) and mutant (HT1080, Calu-1 and A-549) Ras cells accumulate monopolar spindles following treatment with FTI-2153. However, two cell lines, NIH3T3 (WT Ras and WT p53) and the human bladder cancer cell line, T-24 (mutant H-Ras and mutant p53) are highly resistant to FTI-2153 inhibition of bipolar spindle formation. Finally, the ability of FTI-2153 to inhibit tumor cell proliferation does not correlate with inhibition of bipolar spindle formation. Taken together these results demonstrate that the ability of FTI-2153 to inhibit bipolar spindle formation and accumulate cells in mitosis is not dependent on transformation, Ras or p53 mutation status. Furthermore, in some cell lines, FTIs inhibit growth by mechanisms other than interfering with the prophase/metaphase traverse.  相似文献   

17.
The oscillations of chromosomes associated with a single spindle pole in monocentric and bipolar spindles were analysed by time-lapse cinematography in mitosis of primary cultures of lung epithelium from the newt Taricha granulosa. Chromosomes oscillate toward and away from the pole in all stages of mitosis including anaphase. The duration, velocity, and amplitude of such oscillations are the same in all stages of mitosis. The movement away from the pole in monocentric spindle is rapid enough to suggest the existence of a previously unrecognized active component in chromosome movement, presumably resulting from a pushing action of the kinetochore fiber. During prometaphase oscillations, chromosomes may approach the pole even more closely than at the end of anaphase. Together, these observations demonstrate that a monopolar spindle is sufficient to generate the forces for chromosome transport, both toward and away from the pole. The coordination of the aster/centrosome migration in prophase with the development of the kinetochore fibers determines the course of mitosis. After the breaking of the nuclear envelope in normal mitosis, aster/centrosome separation is normally followed by the rapid formation of bipolar chromosomal fibers. There are two aberrant extremes that may result from a failure in coordination between these processes: (a) A monocentric spindle will arise when aster separation does not occur, and (b) an anaphaselike prometaphase will result if the aster/centrosomal complexes are already well-separated and bipolar chromosomal fibers do not form. In the latter case, the two monopolar prometaphase half-spindles migrate apart, each containing a random number of two chromatid (metaphase) monopolar-oriented chromosomes. This random segregation of prometaphase chromosome displays many features of a standard anaphase and may be followed by a false cleavage. The process of polar separation during prometaphase occurs without any visible interzonal structures. Aster/centrosomes and monopolar spindles migrate autonomously by an unknown mechanism. There are, however, firm but transitory connections between the aster center and the kinetochores as demonstrated by the occasional synchrony of centrosome-kinetochore movement. The data suggest that aster motility is important in the progress of both prometaphase and anaphase in normal mitosis.  相似文献   

18.
Mitotic spindle formation in animal cells involves microtubule nucleation from two centrosomes that are positioned at opposite sides of the nucleus. Microtubules are captured by the kinetochores and stabilized. In addition, microtubules can be nucleated independently of the centrosome and stabilized by a gradient of Ran—GTP, surrounding the mitotic chromatin. Complex regulation ensures the formation of a bipolar apparatus, involving motor proteins and controlled polymerization and depolymerization of microtubule ends. The bipolar apparatus is, in turn, responsible for faithful chromosome segregation. During recent years, a variety of experiments has indicated that defects in specific motor proteins, centrosome proteins, kinases and other proteins can induce the assembly of aberrant spindles with a monopolar morphology or with poorly separated poles. Induction of monopolar spindles may be a useful strategy for cancer therapy, since ensuing aberrant mitotic exit will usually lead to cell death. In this review, we will discuss the various underlying molecular mechanisms that may be responsible for monopolar spindle formation.  相似文献   

19.
In order to maintain genomic integrity during mitosis, cells assemble the mitotic spindle to separate sister chromosomes to the two daughter cells. A variety of motor- and non motor-proteins are involved in the organization and regulation of this complex apparatus. DNA polymerase δ-interacting protein 38 (PDIP38) is a highly conserved protein and has so far been shown to be a cytoplasmic and nuclear protein. Cell cycle dependent nuclear localization and the interaction with DNA polymerase δ and proliferating cell nuclear antigen (PCNA) indicate a role for PDIP38 in DNA modification and/or proliferation. Here, we show for the first time that PDIP38 localizes to the mitotic spindle throughout mitosis. Using anti-PDIP38 antibody injections and siRNA silencing, we demonstrate that PDIP38 loss-of-function causes problems with spindle organization, aberrant chromosome segregation, and multinucleated cells. Taken together, the data indicate different roles for PDIP38 in safeguarding a proper cell division at various stages of the cell cycle, including DNA synthesis and repair, organization of the mitotic spindle and chromosome segregation.  相似文献   

20.
Erroneously arising tetraploid mammalian cells are chromosomally instable and may facilitate cell transformation. An increasing body of evidence shows that the propagation of mammalian tetraploid cells is limited by a p53-dependent arrest. The trigger of this arrest has not been identified so far. Here we show by live cell imaging of tetraploid cells generated by an induced cytokinesis failure that most tetraploids arrest and die in a p53-dependent manner after the first tetraploid mitosis. Furthermore, we found that the main trigger is a mitotic defect, in particular, chromosome missegregation during bipolar mitosis or spindle multipolarity. Both a transient multipolar spindle followed by efficient clustering in anaphase as well as a multipolar spindle followed by multipolar mitosis inhibited subsequent proliferation to a similar degree. We found that the tetraploid cells did not accumulate double-strand breaks that could cause the cell cycle arrest after tetraploid mitosis. In contrast, tetraploid cells showed increased levels of oxidative DNA damage coinciding with the p53 activation. To further elucidate the pathways involved in the proliferation control of tetraploid cells, we knocked down specific kinases that had been previously linked to the cell cycle arrest and p53 phosphorylation. Our results suggest that the checkpoint kinase ATM phosphorylates p53 in tetraploid cells after abnormal mitosis and thus contributes to proliferation control of human aberrantly arising tetraploids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号