首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The loci on the Escherichia coli genome of mutations affecting the constitutive enzymes glucose-6-phosphate dehydrogenase (zwf) and gluconate-6-phosphate dehydrogenase (gnd), and the inducible enzyme gluconate-6-phosphate dehydrase (edd), were determined by conjugation and transduction experiments, chiefly by three-factor crosses. They are in the same region of the chromosome, and their order is gnd-his-(edd, zwf)-aroD; gnd and his are cotransduceable, as are zwf and edd. The position of gnd in Salmonella typhimurium was shown to be similar to that in E. coli.  相似文献   

2.
3.
4.
The obligatory aerobic acetic acid bacterium Gluconobacter oxydans 621H oxidizes sugars and sugar alcohols primarily in the periplasm, and only a small fraction is metabolized in the cytoplasm. The latter can occur either via the Entner-Doudoroff pathway (EDP) or via the pentose phosphate pathway (PPP). The Embden-Meyerhof pathway is nonfunctional, and a cyclic operation of the tricarboxylic acid cycle is prevented by the absence of succinate dehydrogenase. In this work, the cytoplasmic catabolism of fructose formed by oxidation of mannitol was analyzed with a Δgnd mutant lacking the oxidative PPP and a Δedd Δeda mutant devoid of the EDP. The growth characteristics of the two mutants under controlled conditions with mannitol as the carbon source and enzyme activities showed that the PPP is the main route for cytoplasmic fructose catabolism, whereas the EDP is dispensable and even unfavorable. The Δedd Δeda mutant (lacking 6-phosphogluconate dehydratase and 2-keto-3-deoxy-6-phosphogluconate aldolase) formed 24% more cell mass than the reference strain. In contrast, deletion of gnd (6-phosphogluconate dehydrogenase) severely inhibited growth and caused a strong selection pressure for secondary mutations inactivating glucose-6-phosphate dehydrogenase, thus preventing fructose catabolism via the EDP also. These Δgnd zwf* mutants (with a mutation in the zwf gene causing inactivation of the glucose-6-phosphate dehydrogenase) were almost totally disabled in fructose catabolism but still produced about 14% of the carbon dioxide of the reference strain, possibly by catabolizing substrates from the yeast extract. Overexpression of gnd in the reference strain improved biomass formation in a similar manner as deletion of edd and eda, further confirming the importance of the PPP for cytoplasmic fructose catabolism.  相似文献   

5.
Five of the genes required for phosphorylative catabolism of glucose in Pseudomonas aeruginosa were ordered on two different chromosomal fragments. Analysis of a previously isolated 6.0-kb EcoRI fragment containing three structural genes showed that the genes were present on a 4.6-kb fragment in the order glucose-binding protein (gltB)-glucokinase (glk)-6-phosphogluconate dehydratase (edd). Two genes, glucose-6-phosphate dehydrogenase (zwf) and 2-keto-3-deoxy-6-phosphogluconate aldolase (eda), shown by transductional analysis to be linked to gltB and edd, were cloned on a separate 11-kb BamHI chromosomal DNA fragment and then subcloned and ordered on a 7-kb fragment. The 6.0-kb EcoRI fragment had been shown to complement a regulatory mutation, hexR, which caused noninducibility of four glucose catabolic enzymes. In this study, hexR was mapped coincident with edd. A second regulatory function, hexC, was cloned within a 0.6-kb fragment contiguous to the edd gene but containing none of the structural genes. The phenotypic effect of the hexC locus, when present on a multicopy plasmid, was elevated expression of glucokinase, glucose-6-phosphate dehydrogenase, 6-phosphogluconate dehydratase, and 2-keto-3-deoxy-6-phosphogluconate aldolase activities in the absence of inducer.  相似文献   

6.
2-Deoxy-scyllo-inosose (DOI) is a six-membered carbocycle formed from d-glucose-6-phosphate catalyzed by 2-deoxy-scyllo-inosose synthase (DOIS), a key enzyme in the biosynthesis of 2-deoxystreptamine-containing aminocyclitol antibiotics. DOI is valuable as a starting material for the benzene-free synthesis of catechol and other benzenoids. We constructed a series of metabolically engineered Escherichia coli strains by introducing a DOIS gene (btrC) from Bacillus circulans and disrupting genes for phosphoglucose isomerase, d-glucose-6-phosphate dehydrogenase, and phosphoglucomutase (pgi, zwf and pgm, respectively). It was found that deletion of the pgi gene, pgi and zwf genes, pgi and pgm genes, or all pgi, zwf and pgm genes significantly improved DOI production by recombinant E. coli in 2YTG medium (3% glucose) up to 7.4, 6.1, 11.6, and 8.4 g l(-1), respectively, compared with that achieved by wild-type recombinant E. coli (1.5 g l(-1)). Moreover, E. coli mutants with disrupted pgi, zwf and pgm genes showed strongly enhanced DOI productivity of up to 29.5 g l(-1) (99% yield) in the presence of mannitol as a supplemental carbon source. These results demonstrated that DOI production by metabolically engineered recombinant E. coli may provide a novel, efficient approach to the production of benzenoids from renewable d-glucose.  相似文献   

7.
A new mutation in Escherichia coli, giving inability to grow on gluconic, glucuronic, or galacturonic acids, has been identified as complete deficiency of 2-keto-3-deoxygluconate 6-phosphate (KDGP) aldolase activity. The genetic map position of the locus, eda, is about 35 min. The inability to grow on the uronic acids was expected, because the aldolase is on the sole known pathway of their metabolism. However, inability to grow on gluconate was less expected, because the hexose monophosphate shunt might be used, as happens in mutants blocked in the previous step, edd, of the Entner-Doudoroff pathway. The likely explanation of gluconate negativity is inhibition by accumulated KDGP, because gluconate is inhibitory to growth on other substances, and one type of gluconate revertant is eda(-), edd(-). KDGP is probably the inducer of KDGP aldolase.  相似文献   

8.
9.
10.
Mutants of mucoid Pseudomonas aeruginosa defective in fructose-bisphosphate aldolase (FBA), NADP-linked glyceraldehyde-3-phosphate dehydrogenase (GAP) or 3-phosphoglycerate kinase (PGK) were unable to grow on gluconeogenic precursors like glutamate, succinate or lactate. The gap and pgk mutants could grow on glucose, gluconate or glycerol, but fba mutants could not. This suggests that the metabolism of glucose or gluconate does not require either PGK or NADP-linked GAP but does require the operation of the aldolase-catalysed step. For gluconeogenesis, however, all three steps are essential. Recombinant plasmids carrying genes for FBA, PGK, GAP or phospho-2-keto-3-deoxygluconate aldolase (EDA) activities were constructed from a genomic library of mucoid P. aeruginosa selecting for complementation of deficiency mutations. Analysis of their complementation profile indicated that one group of plasmids carried fba and pgk genes, while another group carried eda, 6-phosphogluconate dehydratase (edd) and glucose-6-phosphate dehydrogenase (zwf) genes. The gap gene was not linked to any of these markers. Partial restoration of FBA activity in spontaneous revertants of Fba- mutants was accompanied by a concomitant loss of PGK activity. These experiments indicate a linkage between the fba and pgk genes on the P. aeruginosa chromosome.  相似文献   

11.
Expression of plasmid-encoded genes in bacteria is the most common strategy for the production of specific proteins in biotechnological processes. However, the synthesis of plasmid-encoded proteins and plasmid-DNA replication often places a metabolic load (metabolic burden) into the cell's biochemical capacities that usually reduces the growth rate of the producing culture (Glick BR. Biotechnol Adv 1995;13:247-261). This metabolic burden may be related to a limited capacity of the cell to supply the extra demand of building blocks and energy required to replicate plasmid DNA and express foreign multicopy genes. Some of these required blocks are intermediaries of the pentose phosphate (PP) pathway, e.g., ribose-5-phosphate, erythrose-4-phosphate. Due to the important impact of metabolic burden on biotechnological processes, several groups have worked on developing strategies to overcome this problem, like reduction of plasmid copy number (Seo JH, Bailey JE. Biotechnol Bioeng 1985;27:1668-1674; Jones KL, Kim S, Keasling JD. Metab Eng 2000;3:328-338), chromosomal insertion of the gene which product is desired, or changing the plasmid-coded antibiotic resistance gene (Hong Y, Pasternak JJ, Glick BR. Can J Microbiol 1995;41:624-628). However, few efforts have been attempted to overcome the reduction of growth rate due to protein over-expression, by modifying central metabolic pathways (Chou C-H, Bennett GN, San KY. Biotechnol Bioeng 1994;44:952-960). We constructed a high-copy number plasmid carrying the gene for glucose-6-phosphate dehydrogenase, zwf, under the control of an inducible trc promoter (pTRzwf04 plasmid). By transforming a wild-type strain and inducing with IPTG, it was possible to recover growth-rate from 0.46 h(-1) (uninduced) to 0.64 h(-1) (induced). The same transformation in an Escherichia coli zwf(-), allows a growth-rate recovery from 0.43 h(-1) (uninduced) to 0.62 h(-1) (induced). We also studied this effect as part of a laboratory-scale biotechnology process: production of a recombinant insulin peptide by co-transforming E. coli JM101 strain with pTRzwf07, a low-copy-number plasmid that carries the same inducible construction as pTRzwf04, and with the pTEXP-MMRPI vector that carries a TrpLE-proinsulin hybrid gene. In this system, production of TrpLE-proinsulin strongly reduces growth rate; however, overexpression of zwf gene recovers with a growth rate from 0.1 h(-1) in the TrpLE-proinsulin induced strain, to 0.37 h(-1) when both zwf and TrpLE-proinsulin genes were induced. In this paper, we show that the engineering of the pentose phosphate pathway by modulation of the zwf gene expression level partially overcomes the possible bottleneck for the supply of building blocks and reducing power synthesized through the PP pathway, that are required for plasmid replication and plasmid-encoded protein expression.  相似文献   

12.
S Tong  A Porco  T Isturiz    T Conway 《Journal of bacteriology》1996,178(11):3260-3269
Three genes involved in gluconate metabolism, gntR, gntK, and gntU, which code for a regulatory protein, a gluconate kinase, and a gluconate transporter, respectively, were cloned from Escherichia coli K-12 on the basis of their known locations on the genomic restriction map. The gene order is gntU, gntK, and gntR, which are immediately adjacent to asd at 77.0 min, and all three genes are transcribed in the counterclockwise direction. The gntR product is 331 amino acids long, with a helix-turn-helix motif typical of a regulatory protein. The gntK gene encodes a 175-amino-acid polypeptide that has an ATP-binding motif similar to those found in other sugar kinases. While GntK does not show significant sequence similarity to any known sugar kinases, it is 45% identical to a second putative gluconate kinase from E. coli,gntV. The 445-amino-acid sequence encoded by gntU has a secondary structure typical of membrane-spanning transport proteins and is 37% identical to the gntP product from Bacillus subtilis. Kinetic analysis of GntU indicates an apparent Km for gluconate of 212 microM, indicating that this is a low-affinity transporter. Studies demonstrate that the gntR gene is monocistronic, while the gntU and gntK genes, which are separated by only 3 bp, form an operon. Expression of gntR is essentially constitutive, while expression of gntKU is induced by gluconate and is subject to fourfold glucose catabolite repression. These results confirm that gntK and gntU, together with another gluconate transport gene, gntT, constitute the GntI system for gluconate utilization, under control of the gntR gene product, which is also responsible for induction of the edd and eda genes of the Entner-Doudoroff pathway.  相似文献   

13.
14.
15.
In this study, we show that glucose catabolism in Pseudomonas putida occurs through the simultaneous operation of three pathways that converge at the level of 6-phosphogluconate, which is metabolized by the Edd and Eda Entner/Doudoroff enzymes to central metabolites. When glucose enters the periplasmic space through specific OprB porins, it can either be internalized into the cytoplasm or be oxidized to gluconate. Glucose is transported to the cytoplasm in a process mediated by an ABC uptake system encoded by open reading frames PP1015 to PP1018 and is then phosphorylated by glucokinase (encoded by the glk gene) and converted by glucose-6-phosphate dehydrogenase (encoded by the zwf genes) to 6-phosphogluconate. Gluconate in the periplasm can be transported into the cytoplasm and subsequently phosphorylated by gluconokinase to 6-phosphogluconate or oxidized to 2-ketogluconate, which is transported to the cytoplasm, and subsequently phosphorylated and reduced to 6-phosphogluconate. In the wild-type strain, glucose was consumed at a rate of around 6 mmol g(-1) h(-1), which allowed a growth rate of 0.58 h(-1) and a biomass yield of 0.44 g/g carbon used. Flux analysis of (13)C-labeled glucose revealed that, in the Krebs cycle, most of the oxalacetate fraction was produced by the pyruvate shunt rather than by the direct oxidation of malate by malate dehydrogenase. Enzymatic and microarray assays revealed that the enzymes, regulators, and transport systems of the three peripheral glucose pathways were induced in response to glucose in the outer medium. We generated a series of isogenic mutants in one or more of the steps of all three pathways and found that, although all three functioned simultaneously, the glucokinase pathway and the 2-ketogluconate loop were quantitatively more important than the direct phosphorylation of gluconate. In physical terms, glucose catabolism genes were organized in a series of clusters scattered along the chromosome. Within each of the clusters, genes encoding porins, transporters, enzymes, and regulators formed operons, suggesting that genes in each cluster coevolved. The glk gene encoding glucokinase was located in an operon with the edd gene, whereas the zwf-1 gene, encoding glucose-6-phosphate dehydrogenase, formed an operon with the eda gene. Therefore, the enzymes of the glucokinase pathway and those of the Entner-Doudoroff pathway are physically linked and induced simultaneously. It can therefore be concluded that the glucokinase pathway is a sine qua non condition for P. putida to grow with glucose.  相似文献   

16.
The Clarke-Carbon clone bank carrying ColE1-Escherichia coli DNA has been screened by conjugation for complementation of glycolysis and hexose monophosphate shunt mutations. Plasmids were identified for phosphofructokinase (pfkA), triose phosphate isomerase (tpi), phosphoglucose isomerase (pgi), glucose-6-phosphate dehydrogenase (zwf), gluconate-6-phosphate dehydrogenase (gnd), enolase (eno), phosphoglycerate kinase (pgk), and fructose-1,6-P2 aldolase (fda). Enzyme levels for the plasmid-carried gene ranged, for the various plasmids, from 4- to 25-fold the normal level.  相似文献   

17.
18.
19.
The complete coding sequence for human glucose-6-phosphate-dehydrogenase (G6PD) was inserted downstream from the tac promoter of a plasmid, pJF118EH, which also carries the lacIq repressor gene. When Escherichia coli strains (that are unable to grow on glucose due to the absence of functional zwf (G6PD-) and pgi genes) were transformed with this plasmid (pAC1), they were able to grow on glucose as sole carbon source. The rate of growth on glucose was faster in the presence of the inducer of the tac promoter, isopropyl-beta-D-thiogalactopyranoside (IPTG). Extracts of the transformed cells contained a G6PD activity that was not detectable in the parental strains and that was inducible by IPTG. The G6PD activities from normal E. coli and from pAC1-transformed cells comigrated with human G6PD when subjected to electrophoresis on agarose gels. However, when denatured, the G6PD produced by pAC1 was, like the human enzyme, distinguishable from the E. coli-encoded enzyme on the basis of its immunoreactivity with antibody specific for human G6PD. Therefore, human G6PD can be expressed in E. coli and can function to complement the bacterial enzyme deficiency.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号