首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Beard CE  McCreadie JW  Adler PH 《Mycologia》2003,95(4):577-583
A total of 2063 mid- to late-instar larval black flies were collected from 64 stream sites in South Carolina and screened for the presence of the trichomycete fungus Harpella melusinae. Sixteen of 18 host species were colonized by H. melusinae on at least one occasion. Prevalence of H. melusinae in larvae of Simulium tuberosum cytospecies "A" was highest in acidic streams with low conductivity, whereas H. melusinae colonized larvae of Simulium verecundum most frequently in slower-moving streams. Ecological conditions, therefore, can serve as predictors of the prevalence of H. melusinae. Prevalence in host larvae was significantly lower in the Piedmont ecoregion than in the Mountain ecoregion. Prevalence did not differ in the host species S. verecundum across ecoregions, suggesting that different prevalences among host species might indicate some host preference. The prevalence of H. melusinae differed significantly between two univoltine host species (Simulium venustum and Prosimulium magnum) at the same site but not between two multivoltine host species (S. tuberosum cytospecies "FG" and S. tuberosum cytospecies "CDE"), suggesting that host life history could be important in determining fungal prevalence.  相似文献   

2.
Little is known about what determines patterns of host association of horizontally transmitted parasites over evolutionary timescales. We examine the evolution of associations between mushroom-feeding Drosophila flies (Diptera: Drosophilidae), particularly in the quinaria and testacea species groups, and their horizontally transmitted Howardula nematode parasites (Tylenchida: Allantonematidae). Howardula species were identified by molecular characterization of nematodes collected from wild-caught flies. In addition, DNA sequence data is used to infer the phylogenetic relationships of both host Drosophila (mtDNA: COI, II, III) and their Howardula parasites (rDNA: 18S, ITS1; mtDNA: COI). Host and parasite phylogenies are not congruent, with patterns of host association resulting from frequent and sometimes rapid host colonizations. Drosophila-parasitic Howardula are not monophyletic, and host switches have occurred between Drosophila and distantly related mycophagous sphaerocerid flies. There is evidence for some phylogenetic association between parasites and hosts, with some nematode clades associated with certain host lineages. Overall, these host associations are highly dynamic, and appear to be driven by a combination of repeated opportunities for host colonization due to shared breeding sites and large potential host ranges of the nematodes.  相似文献   

3.
We report on the effect of single and mixed infections with two gut symbionts, trypanosomatids and the intracellular fungus Coccidiascus legeri, on the life history of their host, Drosophila melanogaster. We also provide the first report on the prevalence of C. legeri in natural populations of Drosophila. Prevalence overall was low (3.4%), and differed with host species, but persisted from the first to the second year of our survey. We documented delayed pupation in flies exposed to trypanosomatids, but larvae exposed to the fungus eclosed more quickly than controls. Larvae exposed to mixed infections pupated more slowly, but eclosed more quickly than controls.  相似文献   

4.
1. This study investigated inter‐specific variation in parasitism by gregarines (Eugregarinorida: Actinocephalidae), among sibling species of damselflies (Odonata: Zygoptera), in relation to relative size of geographical ranges of host species. 2. Gregarines are considered generalist parasites, particularly for taxonomically related host species collected at the same sites or area. Prevalence and median intensity of gregarine parasitism was obtained for 1338 adult damselflies, representing 14 species (7 sibling species pairs) across 3 families within the suborder Zygoptera. Damselflies were collected at three local sites in Southeastern Ontario, during the same periods over the season. 3. Five out of seven species pairs had significant differences in parasitism between sibling species. The less widespread host species was the more parasitised for three species pairs with significant differences in gregarine prevalence, and for two species pairs with differences in median intensity. The more widespread host had a higher intensity of infection as expected, in two species pairs. 4. Future studies on ecological determinants of parasitism among related species should examine robust measures of abundance of species and representation of species regionally.  相似文献   

5.
In this study, we tested which host species’ characteristics explain the nature and level of parasitism for host damselfly (Coenagrionidae)–water mite (Arrenuridae) parasite associations. Prevalence and intensity of mite parasites, and mite species richness were examined in relation to geographic range size, regional occurrence, relative local abundance, phenology and body size of host damselfly species. A total of 7107 damselfly individuals were collected representing 16 species from 13 sites in southeastern Ontario and southwestern Quebec, Canada. Using comparative methods, differences in prevalence and intensity of parasitism could be predicted by a host species’ geographic range and phenology. Barcoding based on Cytochrome Oxidase I revealed 15 operational taxonomic units (OTUs) for mite species. The number of mite OTUs known to infest a given host species was explained by a host species’ regional occurrence. Our findings demonstrate the need to measure factors at several ecological scales in order to understand the breadth of evolutionary interactions with host–parasite associations and the selective ‘milieu’ for particular species of both hosts and parasites.  相似文献   

6.
Several bumble bee (Bombus) species in North America have undergone range reductions and rapid declines in relative abundance. Pathogens have been suggested as causal factors, however, baseline data on pathogen distributions in a large number of bumble bee species have not been available to test this hypothesis. In a nationwide survey of the US, nearly 10,000 specimens of 36 bumble bee species collected at 284 sites were evaluated for the presence and prevalence of two known Bombus pathogens, the microsporidium Nosema bombi and trypanosomes in the genus Crithidia. Prevalence of Crithidia was ≤10% for all host species examined but was recorded from 21% of surveyed sites. Crithidia was isolated from 15 of the 36 Bombus species screened, and were most commonly recovered from Bombus bifarius, Bombus bimaculatus, Bombus impatiens and Bombus mixtus. Nosema bombi was isolated from 22 of the 36 US Bombus species collected. Only one species with more than 50 sampled bees, Bombus appositus, was free of the pathogen; whereas, prevalence was highest in Bombus occidentalis and Bombus pensylvanicus, two species that are reportedly undergoing population declines in North America. A variant of a tetranucleotide repeat in the internal transcribed spacer (ITS) of the N. bombi rRNA gene, thus far not reported from European isolates, was isolated from ten US Bombus hosts, appearing in varying ratios in different host species. Given the genetic similarity of the rRNA gene of N. bombi sampled in Europe and North America to date, the presence of a unique isolate in US bumble could reveal one or more native North American strains and indicate that N. bombi is enzootic across the Holarctic Region, exhibiting some genetic isolation.  相似文献   

7.
We used data on the abundance and distribution of fleas parasitic on small mammals in Slovakia and aimed: (i) to confirm a positive relationship between abundance and distribution fleas within and across host species; and (ii) to test if prevalence of fleas can be reliably predicted from a simple epidemiological model that takes into account flea mean abundance and its variance. Prevalence of a flea species increased with an increase in its mean abundance both within and across host species. We calculated prevalences both for each flea-host association and for each flea species across all hosts. Observed prevalences did not differ significantly from those predicted by the epidemiological model using parameters of Taylor's power relationship between mean abundance of fleas and its variance. Regressions of predicted prevalences against observed prevalences produced slope values that did not differ significantly from unity and were independent of scale (within or across host species). Our results demonstrated that up to 96% of variance in flea prevalence can be explained solely by their mean abundance. We concluded that, in general, there is no need to invoke other, more complex factors for the explanation of the variation in flea prevalence.  相似文献   

8.
We evaluated the prevalence, mean intensity and relative density of ticks in 467 wild birds of 67 species (12 families) from forest and cerrado habitats at two protected areas of Minas Gerais, between March and September 1997. Ticks collected (n=177) were identified as larvae and nymphs of Amblyomma cajennense and four other species of Amblyomma. We report for the first time 28 bird species as hosts of the immature stages of A. cajennense, demonstrating the lack of host specificity of the larvae and nymphs. A. cajennense had 15% prevalence on birds, with a mean infestation intensity of 0.37 ticks per host sampled, and 2.5 ticks per infested bird. Prevalence varied in relation to host species, diet and between birds from forests at two successional stages. There were no differences in relation to host forest dependence, participation in mixed flocks of birds, and nest type constructed. A. cajennense is a species of medical and veterinary importance, occurring on domestic animals but is known little of its occurrence on wildlife.  相似文献   

9.
We tested for correlations between the geographic, demographic, and temporal distribution of an aquatic insect host and the prevalence of its gut parasites in southwestern Ohio. Trypanosomatids were present in Aquarius remigis collected from all 4 streams surveyed in the watershed. Prevalence declined dramatically from May to July and remained low through the fall. This pattern was consistent over all sites of our study, with no effect of stream, stream site (upstream vs. downstream), or host sex on prevalence. Stage, however, was strongly correlated with prevalence; adults were more likely to be infected than were nymphs. We argue that behavioral differences between the 2 age classes may account for the decline in prevalence; opportunities for transmission are highest in the spring, when mating activities increase adult host contact rates, and decline in the summer, when contact rates decrease.  相似文献   

10.
Increased productivity from sewage effluents can enhance species richness locally. Results from a study of spottail shiners (Notropis hudsonius) in 1999 showed that prevalence and the mean number of myxozoan parasite species per host were higher downstream of the wastewater outflow from the Island of Montreal than upstream in the St. Lawrence River, Quebec, Canada. This was attributed to organic enrichment of the sediments which presumably lead to increased densities of oligochaetes, the alternate hosts, downstream of Montreal. Spottail shiners subsequently were collected every August/early September in 2001–2004 to examine the stability and repeatability of these patterns. Prevalence and mean number of myxozoan species per fish typically were again higher downstream of the sewage source each year compared to upstream, although there was no significant difference in these measurements pooled across years between localities immediately upstream and downstream of the effluent outflow. Density of the oligochaete Limnodrilus hoffmeistereri, a common alternate host of myxozoans, was much higher at two downstream localities than at an upstream one. At a larger spatial scale, mean myxozoan infracommunity richness across sites in the St. Lawrence River was negatively correlated with mean water levels measured in the 3 months prior to fish sampling. Results suggest that on a local scale, variations in prevalence and diversity among localities are influenced by municipal effluents, but that at a landscape scale annual variations across sites are affected by the hydrological regime and climate. In effect, water level fluctuation had a landscape-wide impact that was superimposed over pollution-induced local variations.  相似文献   

11.
Surprisingly little is known about what determines a parasite's host range, which is essential in enabling us to predict the fate of novel infections. In this study, we evaluate the importance of both host and parasite phylogeny in determining the ability of parasites to infect novel host species. Using experimental lab assays, we infected 24 taxonomically diverse species of Drosophila flies (Diptera: Drosophilidae) with five different nematode species (Tylenchida: Allantonematidae: Howardula, Parasitylenchus), and measured parasite infection success, growth, and effects on female host fecundity (i.e., virulence). These nematodes are obligate parasites of mushroom-feeding Drosophila, particularly quinaria and testacca group species, often with severe fitness consequences on their hosts. We show that the potential host ranges of the nematodes are much larger than their actual ranges, even for parasites with only one known host species in nature. Novel hosts that are distantly related from the native host are much less likely to be infected, but among more closely related hosts, there is much variation in susceptibility. Potential host ranges differ greatly between the related parasite species. All nematode species that successfully infected novel hosts produced infective juveniles in these hosts. Most novel infections did not result in significant reductions in the fecundity of female hosts, with one exception: the host specialist Parasitylenchus nearcticus sterilized all quinaria group hosts, only one of which is a host in nature. The large potential host ranges of these parasites, in combination with the high potential for host colonization due to shared mushroom breeding sites, explain the widespread host switching observed in comparisons of nematode and Drosophila phylogenies.  相似文献   

12.
The cloacal cestode Cloacotaenia megalops is one of the most common helminths of waterfowl. We investigated the effect of this parasite on the body condition of wintering waterfowl populations and compared prevalence among age-sex classes, over time and between habitat types on the upper Gulf Coast of Texas (USA) from October 1986-February 2000. Greater than 9,500 birds of 25 waterfowl species were examined for the parasite. There was no statistical difference (P > 0.05) in body condition between birds with and without the parasite. Average prevalence was lowest for geese (mean = 3.7%) versus 21 to 71% in duck species. Average prevalence was similar (P = 0.81) between diving ducks (mean = 46.9%) and puddle ducks (mean = 43.9%). Prevalence varied among age-sex classes and was related to sex rather than age. Variation among age-sex classes suggests differences in diet between sexes of duck species on the wintering grounds. There was no evidence for declining prevalence over the wintering period. Prevalence differed (P < 0.05) between collection sites, and thereby habitat types, for several species. Temporal trends indicate stable prevalence of C. megalops for diving ducks and increasing prevalence for puddle ducks. The increasing trend for puddle ducks may indicate declining habitat conditions resulting in increased exposure to the intermediate ostracod host.  相似文献   

13.
Parasite life-history characteristics, the environment, and host defenses determine variation in parasite population parameters across space and time. Parasite abundance and distribution have received little attention despite their pervasive effects on host populations and community dynamics. We used analyses of variance to estimate the variability of intensity, prevalence, and abundance of 4 species of lice (Insecta: Phthiraptera) infecting Galápagos doves and Galápagos hawks and 1 haemosporidian parasite (Haemosporida: Haemoproteidae) infecting the doves across island populations throughout their entire geographic ranges. Population parameters of parasites with direct life cycles varied less within than among parasite species, and intensity and abundance did not differ significantly across islands. Prevalence explained a proportion of the variance (34%), similar to infection intensity (33%) and parasite abundance (37%). We detected a strong parasite species-by-island interaction, suggesting that parasite population dynamics is independent among islands. Prevalence (up to 100%) and infection intensity (parasitemias up to 12.7%) of Haemoproteus sp. parasites varied little across island populations.  相似文献   

14.
The relationship between species richness and the prevalence of vector-borne disease has been widely studied with a range of outcomes. Increasing the number of host species for a pathogen may decrease infection prevalence (dilution effect), increase it (amplification), or have no effect. We derive a general model, and a specific implementation, which show that when the number of vector feeding sites on each host is limiting, the effects on pathogen dynamics of host population size are more complex than previously thought. The model examines vector-borne disease in the presence of different host species that are either competent or incompetent (i.e. that cannot transmit the pathogen to vectors) as reservoirs for the pathogen. With a single host species present, the basic reproduction ratio R(0) is a non-monotonic function of the population size of host individuals (H), i.e. a value [Formula: see text] exists that maximises R(0). Surprisingly, if [Formula: see text] a reduction in host population size may actually increase R(0). Extending this model to a two-host species system, incompetent individuals from the second host species can alter the value of [Formula: see text] which may reverse the effect on pathogen prevalence of host population reduction. We argue that when vector-feeding sites on hosts are limiting, the net effect of increasing host diversity might not be correctly predicted using simple frequency-dependent epidemiological models.  相似文献   

15.
The component community of larval trematodes infecting the mudsnail Hydrobia ventrosa (Montagu) was examined in coastal lagoons of the southern Baltic Sea among different host subpopulations in relation to the structure of the waterfowl community. The 10 trematode species observed represent the families Notocotylidae (1), Echinostomatidae (1 or 2), Heterophyidae (2). Monorchidae (1). Microphallidae (3 or 4), Psilostomatidae (1), and Hemiuridae (1). Eight of these species infect waterfowl as adults. The structure of the trematode communities was similar between sampling sites. Seven trematode taxa were commonly found at all sampling sites. Prevalence values of the 6 most abundant taxa, which infect birds as final hosts, were significantly different between neither sampling sites nor across year. Overall trematode prevalence in H. ventrosa fluctuated seasonally. Prevalence usually peaked in summer between July and September or October. Low prevalences were observed in late winter and early spring. In contrast, the seasonal maximum in waterfowl numbers differed between areas because of significant spatial differences in the bird community structure. The species composition of the component trematode community of H. ventrosa in the coastal lagoons of the southern Baltic Sea is more or less independent of the species composition of the waterfowl community. This independence presumably results from the lack of host specificity in most of the observed trematode species. Otherwise, the low host specificity in combination with the enormous waterfowl diversity in the coastal lagoons might explain the stability of the prevalence pattern of the component trematode community.  相似文献   

16.
1.?When an invasive species first colonizes an area, there is an interval before any host-specific natural enemies arrive at the new location. Population densities of newly invading species are low, and the spatial and temporal interactions between spreading invasive species and specific natural enemies that follow are poorly understood. 2.?We measured infection rates of two introduced host-specific pathogens, the entomophthoralean fungus Entomophaga maimaiga and the baculovirus Lymantria dispar nucleopolyhedrovirus (LdNPV), occurring in spreading populations of an invasive forest defoliator, L. dispar (gypsy moth), in central Wisconsin. 3.?Over 3 years, we found that host density was closely associated with the presence and prevalence of both pathogens. The fungal and viral pathogens differed in the sensitivity of their response as E. maimaiga was present in lower-density host population than LdNPV. 4.?We examined the relationship between weather conditions and infection prevalence and found that activity of both the fungus and virus was strongly seasonally influenced by temperature and rainfall or temperature alone, respectively. 5.?Purposeful releases of pathogens (median distances of study sites from release sites were 65·2 km for E. maimaiga and 25·6 km for LdNPV) were not associated with pathogen prevalence. 6.?A generalist fly parasitoid, Compsilura concinnata, also killed L. dispar larvae collected from the study sites, and parasitism was greater when infection by pathogens was lower. 7.?Our results demonstrated that although infection levels were low in newly established host populations, host-specific pathogens had already moved into host populations close behind advancing populations of an invasive host; thus, spreading hosts were released from these enemies for only a relatively short time.  相似文献   

17.
We used PCR to screen for the presence of haemosporidian parasites (Phylum: Apicomplexa; Order: Haemosporida) in avian blood samples, and sequenced the parasite mitochondrial cytochrome b gene from infected hosts, to study patterns in the prevalence of haemosporidians in 1,166 individuals of 50 species in four habitats along an elevation gradient in the Sierra de Bahoruco, Dominican Republic, island of Hispaniola. We found an overall prevalence of 0.44 among species with ≥10 individuals sampled per year, but this varied considerably among species. We found no difference in infection rates between years, between males and females, between second‐year (<1 y old) and older birds, or among members of different foraging guilds. Prevalence differed significantly among migratory, endemic resident, and non‐endemic resident species, with endemics having the highest rates of infection. Prevalence also varied among habitats, decreasing with increasing elevation, but the pattern was confounded by variation in the host species present at each elevation. From 215 sequenced parasites from 17 species of avian hosts, we recovered multiple examples of 12 lineages of Haemoproteus (Parahaemoproteus), two lineages of a Columbiformes‐specific clade of H. (Haemoproteus), and 10 lineages of Plasmodium, with an additional seven lineages sampled only once. A single parasite lineage was responsible for 34.4% of all infections, but five more lineages made up 41.8% of all infections. Several lineages were broadly distributed across multiple host species, but six lineages, all H. (Haemoproteus) or H. (Parahaemoproteus), were recorded from at least five individuals of a single host, suggesting host specialization. The number of host species from which each parasite lineage was recovered varied from one to nine; several host species harbored as many as 5–9 parasite lineages. Longitudinal data suggest that while hosts might harbor the same parasite lineage for more than a year, some hosts appear to clear infections from their circulating blood, while others manifested infections by a different parasite lineage.  相似文献   

18.
Forty-eight scaled quail (Callipepla squamata) were collected during August 2002 at Elephant Mountain Wildlife Management Area in Brewster County, Texas, and examined for helminths. Eight species of helminths were found (5 nematodes and 3 cestodes), representing 2,811 individuals. Of these species, Gongylonema sp., Procyrnea pileata, and Choanotaenia infundibulum are reported from scaled quail for the first time. Prevalence of Aulonocephalus pennula, Gongylonema sp., Oxyspirura petrowi, Physaloptera sp., P. pileata, C. infundibulum, Fuhrmannetta sp., and Rhabdometra odiosa was 98, 2, 56, 4, 60, 2, 25, and 35%, respectively. Aulonocephalus pennula numerically dominated, accounting for 88% of total worms. Statistical analyses were performed on the 5 species with > or = 25% prevalence using the after-hatch-year host sample (n = 38). Prevalence of P. pileata was higher (P = 0.049) in females than in males and higher (P = 0.037) in the sample collected from the site that had spreader dams (berms 1-2 m high and 4-55 m long constructed in varying sizes to catch and retain rainfall) than the control site (no spreader dams). Higher rank mean abundance of A. pennula and O. petrowi (P = 0.0001 and P = 0.0052, respectively) was found in the host sample collected from the site that had spreader dams than the control site. A host gender-by-collection site interaction (P = 0.0215) was observed for P. pileata. Findings indicate that scaled quail are acquiring indirect life cycle helminths in arid western Texas habitats.  相似文献   

19.
The epidemiology of Bartonella infections in Richardson's ground squirrels (Spermophilus richardsonii) was studied at multiple sites in Saskatchewan, Canada, from 2002 to 2004. The overall prevalence of Bartonella infection was 48%. Juvenile squirrels were significantly more likely to be infected with Bartonella than were adults (58% and 37%, respectively), and juvenile animals also were significantly more likely to have high levels of bacteremia compared to adult animals. Prevalence of Bartonella infection appeared to decrease with age; only 24% of animals known to be > or = 2 yr old were infected with Bartonella. Prevalence of infection was lowest in May (27%) and highest in late summer and early autumn (71%). The prevalence of fleas also varied seasonally, and animals were more likely to have fleas in the late summer and early autumn than in early summer. We found no relationship between Bartonella prevalence and host density or flea prevalence.  相似文献   

20.
Populations of a host species may exhibit different assemblages of parasites and other symbionts. The loss of certain species of symbionts (lineage sorting, or "missing-the-boat") is a mechanism by which geographical variation in symbiont assemblages can arise. We studied feather mites and lice from Australian brush-turkeys (Aves: Megapodiidae: Alectura lathami) and expected to observe geographical structuring in arthropod assemblages for several reasons. First, because the brush-turkey is a sedentary ground-dwelling bird, we predicted that geographically close host populations should share more similar arthropod assemblages than distant ones. Second, because brush-turkeys do not brood their young, vertical transfer of arthropods is unlikely, and brush-turkeys probably acquire their mites and lice at social maturity through contact with other birds. Young birds could disperse and found new populations without carrying complete sets of symbionts. We predicted that young birds would have fewer species of arthropods than older birds; in addition, we expected that males (which are polygynous) would have more species than females. Birds were sampled from 12 sites (=populations) along the east coast of Queensland, Australia, that were separated by a distance of 12.5-2,005 km. In total, 5 species of mites from the Pterolichidae and 1 species from the Ascouracaridae were found. Two species of lice were collected but in numbers too low to be statistically useful. Differentiation of mite assemblages was evident; in particular, Leipobius sp. showed 100% prevalence in 3 host populations and 0% in the remaining 9. A dendrogram of brush-turkey populations based on mite assemblages showed 2 geographically correlated clusters of sites, plus 1 cluster that contained 2 sites near Brisbane and 1 approximately at a distance of 1,000 km. There was no strong effect of host age or sex on number of mite species carried. Horizontal transfer of feather mites by hippoboscid flies, in addition to physical contact between hosts, may play a role in homogenizing symbiont assemblages within populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号