首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Microorganisms are exposed in their natural niches to a wide diversity of signal molecules. Specific detection of these signals results in alterations in microbial metabolism and physiology. Auxins like indole-3-acetic acid are key phytohormones that regulate plant growth and development. Nonetheless, auxin biosynthesis is not restricted to plants but is ubiquitous in all kingdoms of life. This wide phylogenetic distribution of auxins production, together with the diversity of regulated cellular processes, have made auxins key intra- and inter-kingdom signal molecules in life modulating, for example microbial physiology, metabolism and virulence. Despite their increasing importance as global signal molecules, the mechanisms by which auxins perform their regulatory functions in microorganisms are largely unknown. In this article, we outline recent research that has advanced our knowledge of the mechanisms of bacterial auxin perception. We also highlight the potential applications of this research in aspects such as antibiotic production, biosensor design, plant microbiome engineering and antivirulence therapies.  相似文献   

2.
Modeling plant morphogenesis   总被引:2,自引:0,他引:2  
  相似文献   

3.
Local concentration gradients of the plant growth regulator auxin (indole-3-acetic acid [IAA]) are thought to instruct the positioning of organ primordia and stem cell niches and to direct cell division, expansion, and differentiation. High-resolution measurements of endogenous IAA concentrations in support of the gradient hypothesis are required to substantiate this hypothesis. Here, we introduce fluorescence-activated cell sorting of green fluorescent protein–marked cell types combined with highly sensitive mass spectrometry methods as a novel means for analyses of IAA distribution and metabolism at cellular resolution. Our results reveal the presence of IAA concentration gradients within the Arabidopsis thaliana root tip with a distinct maximum in the organizing quiescent center of the root apex. We also demonstrate that the root apex provides an important source of IAA and that cells of all types display a high synthesis capacity, suggesting a substantial contribution of local biosynthesis to auxin homeostasis in the root tip. Our results indicate that local biosynthesis and polar transport combine to produce auxin gradients and maxima in the root tip.  相似文献   

4.
When a plant root is reoriented within the gravity field, it responds by initiating a curvature which eventually results in vertical growth. Gravity sensing occurs primarily in the root tip. It may involve amyloplast sedimentation in the columella cells of the root cap, or the detection of forces exerted by the mass of the protoplast on opposite sides of its cell wall. Gravisensing activates a signal transduction cascade which results in the asymmetric redistribution of auxin and apoplastic Ca2+ across the root tip, with accumulation at the bottom side. The resulting lateral asymmetry in Ca2+ and auxin concentration is probably transmitted to the elongation zone where differential cellular elongation occurs until the tip resumes vertical growth. The Cholodny-Went theory proposes that gravity-induced auxin redistribution across a gravistimulated plant organ is responsible for the gravitropic response. However, recent data indicate that the gravity-induced reorientation is more complex, involving both auxin gradient-dependent and auxin gradient-independent events.  相似文献   

5.
Leyser O 《Current biology : CB》2006,16(11):R424-R433
Recent years have seen rapid progress in our understanding of the mechanism of action of the plant hormone auxin. A major emerging theme is the central importance of the interplay between auxin signalling and the active transport of auxin through the plant to create dynamic patterns of auxin accumulation. Even in tissues where auxin distribution patterns appear stable, they are the product of standing waves, with auxin flowing through the tissue, maintaining local pockets of high and low concentration. The auxin distribution patterns result in changes in gene expression to trigger diverse, context-dependent growth and differentiation responses. Multi-level feedback loops between the signal transduction network and the auxin transport network provide self-stabilising patterns that remain sensitive to the external environment and to the developmental progression of the plant. The full biological implications of the behaviour of this system are only just beginning to be understood through a combination of experimental manipulation and mathematical modelling.  相似文献   

6.
7.
Nanomaterial-based enzyme-linked immunosorbent assay (ELISA) with sufficient sensing specificity is a useful analytical tool for the detection of toxicologically important substances in complicated biological systems. Increasing worldwide demand for nanomaterials and increasing concern on their safe development and use, require a simple, stable, and sensitive detection assay for pathogen evaluation and environmental monitoring. However, this goal is not yet achieved. A design for a hybrid MnO(2) nanowire-ELISA using the sandwich assay format, which provides quantitative binding information for both a specific antibody and the pathogen, sulfate-reducing bacteria, and detects pathogen concentration, is presented. 3,3',5,5'-Tetramethylbenzidine was used as the substrate and was allowed to react with the MnO(2) nanowires without H(2)O(2) in the reaction system. The kinetic parameters were measured with the system acting as a catalytic biosensor. The effectiveness of the MnO(2) nanowire-based biosensor was demonstrated by its sensitive detection of the pathogen.  相似文献   

8.
One of the most widely used techniques to quantify polar auxin transport is the measurement of auxin speed. To date there have been more than 90 published reports of auxin speed in 44 species. We have collected available speed measurements into a database, along with information on plant growth conditions and growth rate. Measured auxin speeds have a range of 1.2-18 mm/h, and show notable correlations with organ type, growth rate, and plant clade.  相似文献   

9.
10.
Wang L  Hua D  He J  Duan Y  Chen Z  Hong X  Gong Z 《PLoS genetics》2011,7(7):e1002172
The phytohormone abscisic acid (ABA) is an important regulator of plant development and response to environmental stresses. In this study, we identified two ABA overly sensitive mutant alleles in a gene encoding Auxin Response Factor2 (ARF2). The expression of ARF2 was induced by ABA treatment. The arf2 mutants showed enhanced ABA sensitivity in seed germination and primary root growth. In contrast, the primary root growth and seed germination of transgenic plants over-expressing ARF2 are less inhibited by ABA than that of the wild type. ARF2 negatively regulates the expression of a homeodomain gene HB33, the expression of which is reduced by ABA. Transgenic plants over-expressing HB33 are more sensitive, while transgenic plants reducing HB33 by RNAi are more resistant to ABA in the seed germination and primary root growth than the wild type. ABA treatment altered auxin distribution in the primary root tips and made the relative, but not absolute, auxin accumulation or auxin signal around quiescent centre cells and their surrounding columella stem cells to other cells stronger in arf2-101 than in the wild type. These results indicate that ARF2 and HB33 are novel regulators in the ABA signal pathway, which has crosstalk with auxin signal pathway in regulating plant growth.  相似文献   

11.
12.
The plant hormone auxin plays a critical role in plant development. Central to its function is its distribution in plant tissues, which is, in turn, largely shaped by intercellular polar transport processes. Auxin transport relies on diffusive uptake as well as carrier-mediated transport via influx and efflux carriers. Mathematical models have been used to both refine our theoretical understanding of these processes and to test new hypotheses regarding the localization of efflux carriers to understand auxin patterning at the tissue level. Here we review models for auxin transport and how they have been applied to patterning processes, including the elaboration of plant vasculature and primordium positioning. Second, we investigate the possible role of auxin influx carriers such as AUX1 in patterning auxin in the shoot meristem. We find that AUX1 and its relatives are likely to play a crucial role in maintaining high auxin levels in the meristem epidermis. We also show that auxin influx carriers may play an important role in stabilizing auxin distribution patterns generated by auxin-gradient type models for phyllotaxis.  相似文献   

13.
Hormones have been at the centre of plant physiology research for more than a century. Research into plant hormones (phytohormones) has at times been considered as a rather vague subject, but the systematic application of genetic and molecular techniques has led to key insights that have revitalized the field. In this review, we will focus on the plant hormone auxin and its action. We will highlight recent mutagenesis and molecular studies, which have delineated the pathways of auxin transport, perception and signal transduction, and which together define the roles of auxin in controlling growth and patterning.  相似文献   

14.
The auxin influx carrier is essential for correct leaf positioning   总被引:8,自引:0,他引:8  
Auxin is of vital importance in virtually every aspect of plant growth and development, yet, even after almost a century of intense study, major gaps in our knowledge of its synthesis, distribution, perception, and signal transduction remain. One unique property of auxin is its polar transport, which in many well-documented cases is a critical part of its mode of action. Auxin is actively transported through the action of both influx and efflux carriers. Inhibition of polar transport by the efflux inhibitor N-1-naphthylphthalamic acid (NPA) causes a complete cessation of leaf initiation, a defect that can be reversed by local application of the auxin, indole-3-acetic acid (IAA), to the responsive zone of the shoot apical meristem. In this study, we address the role of the auxin influx carrier in the positioning and outgrowth of leaf primordia at the shoot apical meristem of tomato. By using a combination of transport inhibitors and synthetic auxins, we demonstrate that interference with auxin influx has little effect on organ formation as such, but prevents proper localization of leaf primordia. These results suggest the existence of functional auxin concentration gradients in the shoot apical meristem that are actively set up and maintained by the action of efflux and influx carriers. We propose a model in which efflux carriers control auxin delivery to the shoot apical meristem, whereas influx and efflux carriers regulate auxin distribution within the meristem.  相似文献   

15.
植物重力反应的分子调控机制   总被引:1,自引:0,他引:1  
武迪  黄林周  高谨  王永红 《遗传》2016,38(7):589-602
重力是调节植物生长发育和形态建成的重要环境因子。植物感受到重力刺激后可以通过重力反应来协调自身各个器官的生长方向与重力方向之间的最适角度。植物重力反应过程分为重力信号的感受、重力信号的转导、生长素不对称分布的形成和重力反应器官的弯曲生长4个阶段。近年来,随着大量重力反应缺陷突变体的鉴定及其控制基因的功能解析,重力信号的感受和生长素不对称分布的分子机制等方面的研究取得了重要进展。作为植物适应环境变化的重要手段之一,重力反应还可以通过调节水稻(Oryza sativa L.)的分蘖角度实现对水稻株型和产量的调控。因此,研究植物的重力反应,不仅有助于解析植物生长发育的调控机制,对于作物株型的改良也具有重要的指导意义。然而,重力反应的分子机制及其调控网络仍不清楚。本文综述了近年来植物重力反应的调控机理及其调控水稻分蘖角度的作用机制,并对该领域未来的研究方向和热点进行了展望。  相似文献   

16.
A novel plant tissue-based chemiluminescence (CL) biosensor for dopamine combined with flow injection analysis is presented in this paper. The potato roots act as molecular recognition elements. Dopamine is oxidized by oxygen under the catalysis of polyphenol oxidase in the tissue column to produce hydrogen peroxide, which can react with luminol in the presence of peroxidase of potato tissue to generate CL signal. The CL emission intensity was linear with dopamine concentration in the range of 1x10(-5)-1x10(-7) g/ml and the detection limit was 5.3x10(-8) g/ml (3sigma) with a relative standard deviation of 1.7%. Combined with microdialysis sampling, the biosensor was applied to monitor the variation of dopamine level in the blood of rabbit after the administration of dopamine to demonstrate the favorable resolution and reliability of the system for in vivo on-line monitoring.  相似文献   

17.
18.
张宏  金洁  王剑峰 《西北植物学报》2018,38(7):1369-1374
很多微生物通过分泌生长素和生长素前体与植物建立了有益的关系并改变植物根系的形态结构,此外,微生物分泌的其他代谢产物也能改变植物生长素信号通路。因此,生长素和生长素信号通路在微生物调控植物根系发育的过程中起着至关重要的作用。该文从生长素合成、生长素信号和生长素极性运输3个方面总结了生长素在微生物调控植物根系发育过程中的作用,主要包括微生物增加了植物内源生长素的含量、增强了生长素的信号和调控PIN蛋白的表达水平,进而如何调控植物生理和分子水平来适应微生物对其根系的改变,为进一步开展该方面的研究奠定了基础。  相似文献   

19.
Cellular signal transduction occurs in complex and redundant interaction networks, which are best understood by simultaneously monitoring the activation dynamics of multiple components. Recent advances in biosensor technology have made it possible to visualize and quantify the activation of multiple network nodes in the same living cell. The precision and scope of this approach has been greatly extended by novel computational approaches (referred to as computational multiplexing) that can reveal relationships between network nodes imaged in separate cells.  相似文献   

20.
Surface plasmon resonance (SPR) as a label-free biosensor technique has become an important tool in drug discovery campaigns during the last couple of years. For good assay performance, it is of high interest to verify the functional activity on the immobilization of the target protein on the chip. This study illustrates the verification of the catalytic activity of the drug target protein PqsD by monitoring substrate conversion as a decrease in SPR signal and product detection by ultra high-performance liquid chromatography coupled to tandem mass spectrometry (UHPLC-MS(2)). This assay would be applicable to control surface activity of immobilized ligands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号