首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The cucumber (Cucumis sativus L.) gene Cucumis sativus Somatic Embryogenesis Zinc Finger 1 (CsSEF1) was suggested to be a good marker gene for sugar starvation in fruit. The expression of this gene in fruits is dramatically upregulated in plants that have suffered either complete defoliation or prolonged darkness. CsSEF1 was initially discovered as a gene that was upregulated during somatic embryogenesis. We examined the difference in fruit parts and the effect of pollination on the upregulation of CsSEF1 induced by defoliation treatment. The results indicated that the upregulation of CsSEF1 in fruit by defoliation is not dependent on the presence of developing embryos. The expression of CsSEF1 was upregulated in malformed fruit induced by salinity in which the development of placenta was arrested. Partial cutting of the distal part of the fruit showed that if placenta tissue remained there was no upregulation of CsSEF1, whereas when placenta tissue did not remain there was a marked upregulation of CsSEF1. These results could be consistently interpreted as showing that placenta tissue induced the transport of photoassimilates to the fruit and that without developing placenta tissue, pericarp tissue suffers from severe sugar starvation. This interpretation, in turn, enforces the view that CsSEF1 is a good marker gene of fruit sugar starvation.  相似文献   

2.
3.
4.
Cryptococcus neoformans is a major cause of fungal meningitis in individuals with impaired immunity. Our previous studies have shown that the VPS41 gene plays a critical role in the survival of Cryptococcus neoformans under nitrogen starvation; however, the molecular mechanisms underlying VPS41-mediated starvation response remain to be elucidated. In the present study, we show that, under nitrogen starvation, VPS41 strongly enhanced ICL1 expression in C. neoformans and that overexpression of ICL1 in the vps41 mutant dramatically suppressed its defects in starvation response due to the loss of VPS41 function. Moreover, targeted deletion of ICL1 resulted in a dramatic decline in viability of C. neoformans cells under nitrogen deprivation. Taken together, our data suggest a model in which VPS41 up-regulates ICL1 expression, directly or indirectly, to promote survival of C. neoformans under nitrogen starvation.  相似文献   

5.
6.
7.
8.
Rab GTPases play an important role in regulating intracellular vesicular trafficking in eukaryotic cells. Previously, we found that Oryza sativa rice Rab11 (OsRab11) is required for the regulation of vesicular trafficking from the trans- Golgi network (TGN) to the plasma membrane (PM) and/or vacuoles. To further elucidate the relationship between vesicular trafficking and abiotic and biotic stresses, we determined OsRab11 expression levels under several environmental stress conditions. OsRab11 expression was induced by pathogens, jasmonic acid (JA), and high salt treatment. Under high salt conditions, dominant negative OsRab11(S28N) mutant plants exhibited a hypersensitive phenotype similar to that of sos1-1, whereas overexpressed-OsRab11 plants showed resistance to high salt stress. When the expression of vacuolar and PM Na+/H+ antiporter genes such as AtNHX1, AtNHX2, and AtSOS1 was examined, there was no significant difference between the wild-type and OsRab11(S28N) mutant plants. However, PM trafficking of AtSOS1-green fluorescent protein (GFP) in 35S::AtSOS1-GFP sos1-1 plants was severely impaired by T7-OsRab11(S28N) expression. Similarly, vacuolar trafficking of AtNHX2-GFP was inhibited by T7-OsRab11 (S28N) expression. These results indicate that trafficking of PM and vacuolar antiporter proteins by OsRab11 is important for high salt stress resistance.  相似文献   

9.
Pathogenesis-related proteins (PRs) are the antimicrobial proteins which are commonly used as signatures of defense signaling pathways and systemic acquired resistance. However, in Brassica juncea most of the PR proteins have not been fully characterized and remains largely enigmatic. In this study, full-length cDNA sequences of SA (PR1, PR2, PR5) and JA (PR3, PR12 and PR13) marker genes were isolated from B. juncea and were named as BjPR proteins. BjPR proteins showed maximum identity with known PR proteins of Brassica species. Further, expression profiling of BjPR genes were investigated after hormonal, biotic and abiotic stresses. Pre-treatment with SA and JA stimulators downregulates each other signature genes suggesting an antagonistic relationship between SA and JA in B. juncea. After abscisic acid (ABA) treatment, SA signatures were downregulated while as JA signature genes were upregulated. During Erysiphe cruciferarum infection, SA- and JA-dependent BjPR genes showed distinct expression pattern both locally and systemically, thus suggesting the activation of SA- and JA-dependent signaling pathways. Further, expression of SA marker genes decreases while as JA-responsive genes increases during drought stress. Interestingly, both SA and JA signature genes were induced after salt stress. We also found that BjPR genes displayed ABA-independent gene expression pattern during abiotic stresses thus providing the evidence of SA/JA cross talk. Further, in silico analysis of the upstream regions (1.5 kb) of both SA and JA marker genes showed important cis-regulatory elements related to biotic, abiotic and hormonal stresses.  相似文献   

10.
11.

Key message

Expression analyses revealed that floral transition of Rosa odorata var. gigantea is mainly regulated by VRN1, COLs, DELLA and KSN, with contributions by the effects of phytohormone and starch metabolism.

Abstract

Seasonal plants utilize changing environmental and developmental cues to control the transition from vegetative growth to flowering at the correct time of year. This study investigated global gene expression profiles at different developmental stages of Rosa odorata var. gigantea by RNA-sequencing, combined with phenotypic characterization and physiological changes. Gene ontology enrichment analysis of the differentially expressed genes (DEGs) between four different developmental stages (vegetative meristem, pre-floral meristem, floral meristem and secondary axillary buds) indicated that DNA methylation and the light reaction played a large role in inducing the rose floral transition. The expression of SUF and FLC, which are known to play a role in delaying flowering until vernalization, was down-regulated from the vegetative to the pre-floral meristem stage. In contrast, the expression of VRN1, which promotes flowering by repressing FLC expression, increased. The expression of DELLA proteins, which function as central nodes in hormone signaling pathways, and probably involve interactions between GA, auxin, and ABA to promote the floral transition, was well correlated with the expression of floral integrators, such as AGL24, COL4. We also identified DEGs associated with starch metabolism correlated with SOC1, AGL15, SPL3, AGL24, respectively. Taken together, our results suggest that vernalization and photoperiod are prominent cues to induce the rose floral transition, and that DELLA proteins also act as key regulators. The results summarized in the study on the floral transition of the seasonal rose lay a foundation for further functional demonstration, and have profound economic and ornamental values.
  相似文献   

12.
Ku70-binding proteins associate with Ku70 and their expression levels can affect DSB repair efficiency via the DNA-PK-dependent repair pathway. However, how Ku70-binding proteins in plants exert a regulatory function under abiotic stress is poorly understood. Here, we cloned and characterized a PoKub3 gene from 500-year-old Platycladus orientalis. With increasing age, PoKub3 expression in P. orientalis increased gradually. The PoKub3 expression levels in leaves were upregulated under salt, heat, UV-C and abscisic acid treatments according to qRT-PCR. Moreover, PoKub3 overexpression in Arabidopsis thaliana improved tolerance to salt and drought stress compared with wild-type (WT) and vector control (VC) plants. High RAB18 and DREB2A expression and low JAZ1 and ABI2 expression provided strong evidence that salt tolerance was enhanced in the overexpression plants. Similarly, high RAB18 and DREB2A expression, accompanied by low JAZ1 and LOX1 expression and high DREB1A, CPK10, GSTF6 and APX1 expression, suggested the drought tolerance mechanism was associated with the abscisic acid pathway. In addition, lower malondialdehyde content, electrolyte leakage and stomatal conductance, and higher soluble sugar and relative water contents in PoKub3 overexpression lines than in WT and VC plants demonstrated its role in salt and drought tolerance. Together, these findings show that PoKub3 positively regulates salt and drought tolerance by regulating stress-related genes.  相似文献   

13.
The hexosamine biosynthetic pathway (HBP) integrates glucose, amino acids, fatty acids and nucleotides metabolisms for uridine diphosphate N-acetylglucosamine (UDP-GlcNAc) synthesis. UDP-GlcNAc is the nucleotide sugar donor for O-linked β-N-acetylglucosaminylation (O-GlcNAcylation) processes. O-GlcNAc transferase (OGT) is the enzyme which transfers the N-acetylglucosamine (O-GlcNAc) residue onto target proteins. Several studies previously showed that glucose metabolism dysregulations associated with obesity, diabetes or cancer correlated with an increase of OGT expression and global O-GlcNAcylation levels. Moreover, these diseases present an increased activation of the nutrient sensing mammalian target of rapamycin (mTOR) pathway. Other works demonstrate that mTOR regulates protein O-GlcNAcylation in cancer cells through stabilization of OGT. In this context, we studied the cross-talk between these two metabolic sensors in vivo in obese mice predisposed to diabetes and in vitro in normal and colon cancer cells. We report that levels of OGT and O-GlcNAcylation are increased in obese mice colon tissues and colon cancer cells and are associated with a higher activation of mTOR signaling. In parallel, treatments with mTOR regulators modulate OGT and O-GlcNAcylation levels in both normal and colon cancer cells. However, deregulation of O-GlcNAcylation affects mTOR signaling activation only in cancer cells. Thus, a crosstalk exists between O-GlcNAcylation and mTOR signaling in contexts of metabolism dysregulation associated to obesity or cancer.  相似文献   

14.
The B-box proteins play key roles in plant development. The double B-box (DBB) family is one of the subfamily of the B-box family, with two B-box domains and without a CCT domain. In this study, 12 maize double B-box genes (ZmDBBs) were identified through a genome-wide survey. Phylogenetic analysis of DBB proteins from maize, rice, Sorghum bicolor, Arabidopsis, and poplar classified them into five major clades. Gene duplication analysis indicated that segmental duplications made a large contribution to the expansion of ZmDBBs. Furthermore, a large number of cis-acting regulatory elements related to plant development, response to light and phytohormone were identified in the promoter regions of the ZmDBB genes. The expression patterns of the ZmDBB genes in various tissues and different developmental stages demonstrated that ZmDBBs might play essential roles in plant development, and some ZmDBB genes might have unique function in specific developmental stages. In addition, several ZmDBB genes showed diurnal expression pattern. The expression levels of some ZmDBB genes changed significantly under light/dark treatment conditions and phytohormone treatments, implying that they might participate in light signaling pathway and hormone signaling. Our results will provide new information to better understand the complexity of the DBB gene family in maize.  相似文献   

15.
16.
17.
Auxin receptors TIR1/AFBs play an essential role in a series of signaling network cascades. These F-box proteins have also been identified to participate in different stress responses via the auxin signaling pathway in Arabidopsis. Cucumber (Cucumis sativus L.) is one of the most important crops worldwide, which is also a model plant for research. In the study herein, two cucumber homologous auxin receptor F-box genes CsTIR and CsAFB were cloned and studied for the first time. The deduced amino acid sequences showed a 78% identity between CsTIR and AtTIR1 and 76% between CsAFB and AtAFB2. All these proteins share similar characteristics of an F-box domain near the N-terminus, and several Leucine-rich repeat regions in the middle. Arabidopsis plants ectopically overexpressing CsTIR or CsAFB were obtained and verified. Shorter primary roots and more lateral roots were found in these transgenic lines with auxin signaling amplified. Results showed that expression of CsTIR/AFB genes in Arabidopsis could lead to higher seeds germination rates and plant survival rates than wild-type under salt stress. The enhanced salt tolerance in transgenic plants is probably caused by maintaining root growth and controlling water loss in seedlings, and by stabilizing life-sustaining substances as well as accumulating endogenous osmoregulation substances. We proposed that CsTIR/AFB-involved auxin signal regulation might trigger auxin mediated stress adaptation response and enhance the plant salt stress resistance by osmoregulation.  相似文献   

18.
19.
20.
Raffinose (sucrosylgalactoside oligosaccharide) is a water soluble carbohydrate and accumulates in response to abiotic stresses in plants. Plant raffinose synthases are poorly characterized, and the genes involved in raffinose biosynthesis are unknown in sugar beet. Here, we report the isolation of two genes encoding raffinose synthase (BvRS1 and BvRS2) as well as a gene encoding galactinol synthase (BvGolS1) from sugar beet. BvRS1 and BvRS2 show high homologies to Arabidopsis raffinose synthase AtRS5. BvRS1 and BvGolS1 were expressed in Escherichia coli. Crude extracts showed the activities of raffinose synthase and galactinol synthase. The K m values of BvRS1 for galactinol and sucrose and the K m values of BvGolS1 for UDP-galactose and myo-inositol were determined. The expression levels of BvRS1 were significantly higher than that of BvRS2. The mRNA for BvRS1 was rapidly induced by cold stress whereas the mRNA for BvRS2 was slowly induced by cold and salt stresses. These data suggest that BvRS1 and BvRS2 encode raffinose synthase genes responsible to cold and salt stress, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号