首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The flagellar axial component proteins are exported to the distal end of the growing flagellum for self-assembly by the flagellar type III export apparatus. FlhA is a key membrane protein of the export apparatus, and its C-terminal cytoplasmic domain (FlhAC) is a part of an assembly platform for the three soluble export components, FliH, FliI, and FliJ, as well as export substrates and chaperone–substrate complexes. FlhAC is composed of a flexible linker region and four compact domains (ACD1–ACD4). At 42 °C, a temperature-sensitive (TS) G368C mutation in FlhAC blocks the export process after the FliH–FliI–FliJ–substrate complex binds to the assembly platform, but it remains unknown how it does so. In this study, we analyzed a TS mutant variant, FlhAC(G368C), and its pseudorevertant variants FlhAC(G368C/L359F), FlhAC(G368C/G364R), FlhAC(G368C/R370S), and FlhAC(G368C/P550S) using far-ultraviolet circular dichroism. Whereas the denaturation of the wild-type FlhAC occurs in a single step, FlhAC(G368C) and its pseudorevertant variants showed thermal transitions, at least, in two steps. The first transition of FlhAC(G368C) can further be divided into reversible and following irreversible transitions, which correspond to the denaturation of ACD2 and ACD1, respectively. We show the relation between the reversible transition and the TS defect in the exporting function of FlhAC(G368C) and that the loss of function is caused by denaturation of ACD2. We suggest that ACD2 is directly involved in the translocation of export substrates.  相似文献   

2.
T lymphocytes were isolated from monocyte-depleted mononuclear cells of normal individuals by rosetting them with sheep erythrocytes. These purified T cells were preferentially depleted of cells with receptors for FcG (TG cells), FcM (TM cells), or C3 (TC cells) by rosette formation with EA(G), EA(M), and EAC, respectively, before or after incubation for 24 hr in medium 199 fortified with fetal calf serum (20%). The unfractionated lymphocytes and the purified and the depleted T cells were analyzed for receptors to FcG, FcM, and C3 and for cytotoxic activity in the natural killer (NK), antibody dependent cell-mediated cytotoxicity (ADCC), and mitogen-induced cell-mediated cytotoxicity (MICC) assays. The TG and TC cells were detected among the freshly isolated T cells, whereas the TM cells were detected only following 24 hr of incubation. Removal of TC cells from the 24-hr-cultured T cells resulted in removal of all the TC cells and in the concomitant removal of the majority of TM cells. Similarly, removal of TM cells from the 24-hr-cultured T cells resulted in the elimination of all TM cells as well as the majority of TC cells. These results demonstrate the in vitro generation of T cells with receptors for both FcM and C3 (TM+C cells). Ten percent of the freshly isolated TG cells possessed detectable receptors for C3 and/or FcM. These cells constitute the TG+C and TG+M lymphocytes. Support for consideration of these receptor-bearing cells as unique and stable cells is provided by the finding that TM and TC cells maintained in culture for up to 72 hr do not generate other receptors but retain the single receptor which characterizes each of these cells. Only a small percentage of cultured TG cells generate receptors for C3 and FcM. It may therefore be concluded that the TG, TM, and TC cells are stable unireceptor-bearing cells. The TG, TM, TC, TG+C, TG+M, and TM+C lymphocytes account for approximately 50% of the circulating lymphocytes. Whether the remaining cells, the T null or TN cells, constitute the precursors for any or all of the receptor-bearing T cells remains to be determined. Unfractionated freshly isolated T cells were highly cytotoxic in the NK and PWM-mediated MICC assays but were relatively inactive in the ADCC, naturally occurring cell-mediated cytotoxicity (NOCC), and PHA- and Con-A-mediated MICC assays. In contradistinction, T cells incubated for 24 hr displayed marked cytotoxic activity in the ADCC and PHA-mediated MICC assays; they were inactive in the NOCC and Con-Amediated MICC assays. The TG cells were the predominant cytotoxic cells in the ADCC, NK, and MICC cytotoxic assays since their selective elimination from either the freshly isolated or 24-hr-incubated T cells resulted in almost total loss of cytotoxic activity of the remaining cells. Removal of the TG+C cells from the freshly isolated or 24-hr-incubated T cells resulted in a significant decrease in PHA- and PWM-mediated MICC cytotoxic activity. T cells depleted of TM, TM+C, and TC cells exhibited the same cytotoxic activity as did the unfractionated T cells. These results suggest that the predominant cytotoxic T cells in all the assays investigated are the TG cells, that limited cytotoxic activity is also displayed by the TG+C cells, and that the TM, TM+C, TC, and TN cells display no cytotoxic activity in the assays utilized in this investigation.  相似文献   

3.
The structure and composition of the cutin monomers from the flower petals of Vicia faba were determined by hydrogenolysis (LiAlH4) or deuterolysis (LiAlD4) followed by thin layer chromatography and combined gas-liquid chromatography and mass spectrometry. The major components were 10, 16-dihydroxyhexadecanoic acid (79.8%), 9, 16-dihydroxyhexadecanoic acid (4.2%), 16-hydroxyhexadecanoic acid (4.2%), 18-hydroxyoctadecanoic acid (1.6%), and hexadecanoic acid (2.4%). These results show that flower petal cutin is very similar to leaf cutin of V. faba. Developing petals readily incorporated exogenous [1-14C]palmitic acid into cutin. Direct conversion of the exogeneous acid into 16-hydroxyhexadecanoic acid, 10, 16-dihydroxy-, and 9, 16-dihydroxyhexadecanoic acid was demonstrated by radio gas-liquid chromatography of their chemical degradation products. About 1% of the exogenous [1-14C]palmitic acid was incorporated into C27, C29, and C31n-alkanes, which were identified by combined gas-liquid chromatography and mass spectrometry as the major components of the hydrocarbons of V. faba flowers. The radioactivity distribution among these three alkanes (C27, 15%; C29, 48%; C31, 38%) was similar to the per cent composition of the alkanes (C27, 12%; C29, 43%; C31, 44%). [1-14C]Stearic acid was also incorporated into C27, C29, and C31n-alkanes in good yield (3%). Trichloroacetate, which has been postulated to be an inhibitor of fatty acid elongation, inhibited the conversion of [1-14C]stearic acid to alkanes, and the inhibition was greatest for the longer alkanes. Developing flower petals also incorporated exogenous C28, C30, and C32 acids into alkanes in 0.5% to 5% yields. [G-3H]n-octacosanoic acid (C28) was incorporated into C27, C29, and C31n-alkanes. [G-3H]n-triacontanoic acid (C30) was incorporated mainly into C29 and C31 alkanes, whereas [9, 10, 11-3H]n-dotriacontanoic acid (C32) was converted mainly to C31 alkane. Trichloroacetate inhibited the conversion of the exogenous acids into alkanes with carbon chains longer than the exogenous acid, and at the same time increased the amount of the direct decarboxylation product formed. These results clearly demonstrate direct decarboxylation as well as elongation and decarboxylation of exogenous fatty acids, and thus constitute the most direct evidence thus far obtained for an elongation-decarboxylation mechanism for the biosynthesis of alkanes.  相似文献   

4.
The possibility of existence of exohedral organometallic complexes of fullerenes larger than C60 in which their coordination can have η6 hapticity was studied from a theoretical point of view. Complexes containing C70, C74 or C60 cages, as well as cyclopentadienyl (Cp), pentamethyl-cyclopentadienyl (Me5Cp), benzene rings and hexamethyl-phenyl (Me6Ph) fragments as ligands, were designed and studied. The results show that many of these molecules can be thermodynamically stable and can have electronic interesting behavior.  相似文献   

5.
O. Ueno  T. Takeda 《Oecologia》1992,89(2):195-203
Summary The nature of the photosynthetic pathways of Cyperaceae found in Japan were investigated on the basis of Kranz anatomy, the CO2 compensation concentration and previously reported data. Among 301 species (96% of all cyperaceous species recorded in the region), 58 species were classified as being C4 plants. These C4 species were scattered among the tribes Fimbristylideae, Lipocarpheae, Cypereae and Rhynchosporeae in the subfamily Cyperoideae. The genera Cyperus, Eleocharis and Rhynchospora included, in Japan, both C3 and C4 species within a single genus. Using these data, an analysis was made of the ecological characteristics and geographical distribution of the C3 and C4 species in Japan. Although cyperaceous species grow in markedly different environments, the majority were found in wet and aquatic areas (61%) or shaded areas, such as forest floors (20%). Most of the C3 species were also hygrophytes (58%) and forest-living species (25%), and C3 species growing in mesic and dry areas were relatively rare. The C4 species inhabited wet and aquatic (75%), mesic (13%) and dry areas (6%) and showed marked ecological characteristics with respect to soil-moisture conditions, unlike other C4 plants, although they were absent from shaded habitats. In order to determine the climatic factors that influence the relative floristic abundance of C3 and C4 members of the Cyperaceae in Japan, the ratios of number of C4 species to the total number of members of Cyperaceae (C4 percentage) in 16 representative locales were examined in terms of various climatic variables. There were strong positive correlations between the C4 percentage and temperature. Among the C3 groups of three subfamilies, there were different distributional trends for various temperature regimes. The C3 subfamily Caricoideae increased its relative contribution to the cyperaceous flora with a decrease in mean annual temperature, while the C3 subfamily Sclerioideae exhibited the opposite pattern. The C3 group of the subfamily Cyperoideae did not show any marked change in pattern along temperature gradients, unlike the two other C3 subfamilies, and seemed to be heterogeneous in terms of its response to temperature. The relationships between the C4 biochemical subtypes and ecological characteristics are also discussed.  相似文献   

6.
C4 photosynthesis is a complex trait that has a high degree of natural variation, involving anatomical and biochemical changes relative to the ancestral C3 state. It has evolved at least 66 times across a variety of lineages and the evolutionary route from C3 to C4 is likely conserved but not necessarily genetically identical. As such, a variety of C4 species are needed to identify what is fundamental to the C4 evolutionary process in a global context. In order to identify the genetic components of C4 form and function, a number of species are used as genetic models. These include Zea mays (maize), Sorghum bicolor (sorghum), Setaria viridis (Setaria), Flaveria bidentis, and Cleome gynandra. Each of these species has different benefits and challenges associated with its use as a model organism. Here, we propose that RNA profiling of a large sampling of C4, C3–C4, and C3 species, from as many lineages as possible, will allow identification of candidate genes necessary and sufficient to confer C4 anatomy and/or biochemistry. Furthermore, C4 model species will play a critical role in the functional characterization of these candidate genes and identification of their regulatory elements, by providing a platform for transformation and through the use of gene expression profiles in mesophyll and bundle sheath cells and along the leaf developmental gradient. Efforts should be made to sequence the genomes of F. bidentis and C. gynandra and to develop congeneric C3 species as genetic models for comparative studies. In combination, such resources would facilitate discovery of common and unique C4 regulatory mechanisms across genera.  相似文献   

7.
We examined Se in urine of 170 Saudi Arabian diabetics (19 insulin-dependent [type 1] and 151 insulin-independent [type 2]) and in an equal number of control subjects of the same origin by measuring the ratio of the concentration of this metal (CSe) to that of creatinine in urine (Ccreat) for each subject. The mean (and SEM) of CSe/Ccreat for the control subjects was 56 (2.9) μmol/mol creat, whereas, the value for the diabetics combined or separated into type 1 and type 2 was 56.7 (3.2), 51.5 (6.3), and 57.4 (3.5) μmol/mol creat, respectively. With the exception of type 2 diabetics who were treated with insulin in addition to oral hypoglycemic and diet (35 patients) (mean [SEM]=43 (4.3) μmol/mol creat), there was no significant difference in CSe/Ccreat between the diabetics and control subjects. Also, there was no significant correlation between CSe/Ccreat and age, sex, or weight of diabetics, whereas, the correlation with the degree of diabetic control was significant (p≤0.0136). Of all diabetes-associated disorders (cardiovascular diseases, neuropathy, ophthalmologic diseases, infections, and hepatic disease), only ophthalmologic diseases appears to cause a significant (p≤0.05) reduction in CSe/Ccreat, but only among type 2 diabetics. Inasmuch as Se status is reflected by urinary Se, healthy Saudi Arabians appear to have Se status that is comparable or higher than those reported for other populations.  相似文献   

8.
R. Z. Wang 《Photosynthetica》2006,44(2):293-298
Floristic composition, morphological functional types and habitat distributions for C4 species were studied in Xinjiang, North-western China. 89 species, in 9 families and 41 genera, were identified with C4 photosynthesis. 48 % of these C4 species were found in Monocotyledoneae, e.g. Cyperaceae (5 species), Gramineae (38 species), the other 52 % was in Dicotyledoneae, e.g. Chenopodiaceae (29 species), Amaranthaceae (7 species), and Polygonaceae (5 species). Compared with those in semi-arid grasslands in North China and tropical forests in South China, more plant families were found with the occurrence of C4 plants in this arid region. Relatively higher annual species (63 %), shrubs (18 %), and Chenopodiaceae C4 species (33 %) compositions were the primary characteristics for the C4 species occurring in Xinjiang, and this was remarkably related with its arid environment. More Chenopodiaceae C4 species occurring in the region suggested that this type of C4 species may have higher capacity to fit the air and soil droughts. There was a strong relationship between C4 occurrence and habitat distributions, more than half of the total 89 C4 species were found in disturbed and cultivated lands and early stages of vegetation successions, indicating C4 occurrence was not only related with climate changes, but also with land uses and vegetation dynamics.  相似文献   

9.
GABAC receptors are being investigated for their role in many aspects of nervous system function including memory, myopia, pain and sleep. There is evidence for functional GABAC receptors in many tissues such as retina, hippocampus, spinal cord, superior colliculus, pituitary and the gut. This review describes a variety of neurochemicals that have been shown to be useful in distinguishing GABAC receptors from other receptors for the major inhibitory neurotransmitter GABA. Some selective agonists (including (+)-CAMP and 5-methyl-IAA), competitive antagonists (such as TPMPA, (±)-cis-3-ACPBPA and aza-THIP), positive (allopregnanolone) and negative modulators (epipregnanolone, loreclezole) are described. Neurochemicals that may assist in distinguishing between homomeric ρ1 and ρ2 GABAC receptors (2-methyl-TACA and cyclothiazide) are also covered. Given their less widespread distribution, lower abundance and relative structural simplicity compared to GABAA and GABAB receptors, GABAC receptors are attractive drug targets.  相似文献   

10.
Biodesulfurization is regarded as a promising alternative technology for desulfurization from diesel oil due to its mild operating conditions and its ability to remove sulfur from alky dibenzothiophenes (Cx-DBTs). The diesel oil contains complex mixtures of Cx-DBTs in which individual microbial biodesulfurization may be altered. In this work, interactions among three typical Cx-DBTs such as dibenzothiophenes (DBT), 4-methyldibenzothiophene (4-MDBT), and 4,6-dimethyldibenzothiophene (4,6-DMDBT) were investigated using Mycobacterium sp. ZD-19 in an airlift reactor. The experimental results indicated that the desulfurization rates would decrease in the multiple Cx-DBTs system compared to the single Cx-DBT system. The extent of inhibition depended upon the substrate numbers, concentrations, and affinities of the co-existing substrates. For example, compared to individual desulfurization rate (100 %), DBT desulfurization rate decreased to 75.2 % (DBT + 4,6-DMDBT), 64.8 % (DBT + 4-MDBT), and 54.7 % (DBT + 4,6-DMDBT + 4-MDBT), respectively. This phenomenon was caused by an apparent competitive inhibition of substrates, which was well predicted by a Michaelis–Menten competitive inhibition model.  相似文献   

11.
Burkholderia multivorans causes opportunistic pulmonary infections in cystic fibrosis and immunocompromised patients. The purpose of the present study was to determine the nature of the phospholipids and their fatty acid constituents comprising the cell envelope membranes of strains isolated from three disparate sources. A conventional method for obtaining the readily extractable lipids fraction from bacteria was employed to obtain membrane lipids for thin-layer chromatographic and gas chromatography-mass spectrophotometric analyses. Major fatty acid components of the B. multivorans readily extractable lipid fractions included C16:0 (palmitic acid), C16:1 (palmitoleic acid), and C18:1 (oleic acid), while C14:0 (myristic acid), ΔC17:0 (methylene hexadecanoic acid), C18:0 (stearic acid), and ΔC19:0 (methylene octadecanoic acid) were present in lesser amounts. Fatty acid composition differed quantitatively among strains with regard to C16:0, C16:1, ΔC17:0, C18:1, and ΔC19:0 with the unsaturated:saturated fatty acid ratios being significantly less in a cystic fibrosis type strain than either environmental or chronic granulomatous disease strains. Phospholipids identified in all B. multivorans strains included lyso-phosphatidylethanolamine, phosphatidylglycerol, phosphatidylethanolamine, and diphosphatidylglycerol in similar ratios. These data support the conclusion that the cell envelope phospholipid profiles of disparate B. multivorans strains are similar, while their respective fatty acyl substituent profiles differ quantitatively under identical cultivation conditions.  相似文献   

12.
Occurrence of cellulase activity was demonstrated in the filtrates of germinating conidiospores and growing mycelia of P. oryzae. Activity and some properties of cellulase in the filtrate of mycelia grown on rice plant powder as carbon source were compared among various strains.

Cellulase activity (C1 and Cx enzymes; cellulose and carboxymethylcellulose as substrates, respectively) in the filtrate of germinating conidiospores was detected in the pathogenic T–l (Ken 53–33) strain as well as nonpathogenic 0 (THU 3 × 1) strain of P. oryzae. The activity was higher in the former than the latter strains. Cellulase activity (Cx enzyme) in the filtrate of growing mycelia was detected in the four strains used, T–l (Ken 53–33), C–3 (N 87), N–1 (H373), and 0 (THU 3 × 1). Cellulase activity (Cx enzyme) in the filtrate of mycelia was optimal at pH 5.0 and 40°C, and stable up to 40°C. Their properties did not differ significantly except for the pH-activity curve at alkaline side among various strains; but cellulase activity (C1 enzyme) was found to be correlated with their pathogenicity except for the case of C–3 strain.  相似文献   

13.
R. Z. Wang 《Photosynthetica》2006,44(2):286-292
Floristic composition, morphological functional types, and altitudinal distribution pattern for C4 species were studied in Yunnan province, South-western China. 159 species, in 6 families and 60 genera, were identified with C4 photosynthesis. 93 % of these C4 species were found in Monocotyledoneae, e.g. Cyperaceae (18 species), Gramineae (129 species), and Commelinaceae (1 species), the other 7 % was in Dicotyledoneae, e.g. Amaranthaceae (5 species), Portulacaceae (4 species), and Chenopodiaceae (2 species). Hence C4 plants mainly occurred in very few families in the tropical region. Compared with those in semi-arid grasslands and arid deserts in North China, more C4 grasses and much less Chenopodiaceae C4 species occurred in the tropical region. This indicates the physiological responses of C4 plants from the two families are very different. Chenopodiaceae C4 species may be more fit semi-arid and arid environments, while C4 grasses are more fit the moist tropical conditions. There was a strong relationship between C4 distribution and altitude in the tropical region. Altitudinal distribution pattern for C4 species in the region was consistent with altitude, climate, and habitats.  相似文献   

14.

Background

This therapeutic drug monitoring (TDM) study aimed to determine the role of olanzapine (OLZ) and N-desmethyl-OLZ (DMO) levels in the therapeutic efficacy of OLZ in patients with schizophrenia.

Method

Plasma concentrations of OLZ (COLZ) and DMO (CDMO) in schizophrenic patients 12 hours post-dose were assessed. The correlations of COLZ and CDMO with the various scores of the Positive and Negative Syndrome Scale (PANSS) were evaluated. A receiver operating characteristic curve (ROC) was utilized to identify the threshold COLZ and COLZ/CDMO ratio for maintenance of satisfactory efficacy.

Results

A total of 151 samples from patients with schizophrenia were analyzed for individual COLZ and CDMO levels. The mean COLZ and CDMO levels were 37.0 ± 25.6 and 6.9 ± 4.7 ng/mL, respectively, and COLZ was ~50% higher in female or nonsmokers (p<0.01). In all patients, the daily dose of OLZ was positively correlated with COLZ and CDMO. Linear relationships between COLZ and OLZ dose were observed in both nonsmokers and smokers (rs = 0.306, 0.426, p<0.01), although CDMO was only correlated with OLZ dose in smokers (rs = 0.485, p<0.01) and not nonsmokers. In all patients, COLZ was marginally negatively correlated with the total PANSS score. The total PANSS score was significantly negatively correlated with the COLZ/CDMO ratio (p<0.005), except in smokers. The ROC analysis identified a COLZ/CDMO ratio ≥2.99 or COLZ ≥22.77 ng/mL as a predictor of maintenance of an at least mildly ill status (PANSS score ≤58) of schizophrenia in all patients.

Conclusions

A significantly negative correlation between the steady-state COLZ/CDMO ratio and total PANSS score was observed in Taiwanese schizophrenic patients. TDM of both OLZ and DMO levels could assist clinical practice when individualizing OLZ dosage adjustments for patients with schizophrenia.  相似文献   

15.
I evaluated the use of global remote sensing techniques for estimating plant leaf chlorophyll a + b (Cab; μg cm−2) and water (Cw; mg cm−2) concentrations as well as the ratio of Cw/Cab with the PROSAIL model under possible distributions for leaf and soil spectra, leaf area index (LAI), canopy geometric structure, and leaf size. First, I estimated LAI from the normalized difference vegetation index. I found that, at LAI values <2, Cab, Cw, and Cw/Cab could not be reliably estimated. At LAI values >2, Cab and Cw could be estimated for only restricted ranges of the canopy structure; however, the ratio of Cw/Cab could be reliably estimated for a variety of possible canopy structures with coefficients of determination (R2) ranging from 0.56 to 0.90. The remote estimation of the Cw/Cab ratio from satellites offers information on plant condition at a global scale.  相似文献   

16.
The intracellular localization of phosphoenolpyruvate (PEP) carboxylase in plants belonging to the C4, Crassulacean acid metabolism (CAM) and C3 types was invetigated using an immunocytochemical method with an immune serum raised against the sorghum leaf enzyme. The plants studied were sorghum, maize (C4 type), kalanchoe (CAM type), french bean, and spinach (C3 type). In the green leaves of C4 plants, it was shown that the carboxylase was located in the mesophyll and stomatic cells, being largely cytosolic in the mesophyll cells. Similarly, in CAM plants, the enzyme was found mainly outside the chloroplasts. In contrast, in C3 plants, the PEP carboxylase appeared to be distributed between the cytosol and the chloroplasts of foliar parenchyma. Examination of sections from etiolated leaves showed fluorescence emission from etioplasts and cytosol for the parenchyma of french bean as well as for the bundle sheath and mesophyll of sorghum leaves. This data indicated that during the greening process photoregulation and evolution of PEP carboxylase is dependent on the tissue and on the metabolic type of the plant considered.Abbreviations CAM Crassulacean acid metabolism - PEP phosphoenolpyruvate  相似文献   

17.
The current study was aimed at investigating the neuroprotective effects of the butanol fraction from Cordyceps cicadae (CBU), which was responsible for the anti‐aging effect of this medicine. Glutamate‐induced PC12 cells were used as a model to determine the neuroprotective effect against oxidative cell death. Cell viability, cytotoxicity, flow cytometry, mitochondrial transmembrane potential (MMP), reactive oxygen species (ROS), glutathione peroxidase (GSH‐Px), and superoxide dismutase (SOD) levels were analyzed to assess neuronal cell survival or death. The results obtained from the above evaluations showed that CBU was the most effective fraction and even better than pure compounds present in Ccicadae in terms of suppressing glutamate‐induced damage in PC12 cells, increasing cell viability, decreasing lactase dehydrogenase (LDH) release, and reduction of apoptosis induced by exposure to glutamate. Furthermore, CBU protected cells against mitochondrial dysfunction and oxidative stress as indicated by the suppression of ROS accumulation and up regulation of the levels of GSH‐Px and SOD. In summary, the above results showed that CBU exerted neuroprotective effect against oxidative damage, and this activity could be partly due to the action of nucleosides present in the CBU.  相似文献   

18.
The effect of salinity on some morpho-physiological characteristics in lisianthus cultivars was investigated. Cultivars namely, Blue Picotee (C1), Champagne (C2), Lime Green (C3), and Pure White (C4), were subjected to salt stress (0–60 mM NaCl) in a sand culture and their responses were measured. Our results showed that as a salinity level increased, growth parameters, relative water content, photosynthetic pigments, and gas-exchange characteristics decreased in all cultivars, while root fresh mass, root/shoot length ratio, electrolyte leakage, and a malondialdehyde content increased. However, the changes were less pronounced in C3 and C4 compared to C1 and C2. The regression analysis of the relationship between salinity levels and seedling height or root/shoot length ratio defined two groups with different slope coefficients: C1 and C2 as salt-sensitive cultivars and C3 and C4 as salt-tolerant cultivars. Shoot dry mass and leaf area tolerance indices were less affected by salinity in C3 and C4 compared to those in C1 and C2. Further, C3 and C4 showed higher photosynthetic rates, greater stomatal conductances, and accumulated greater K+ and Ca2+ contents and K+/Na+ ratios in roots and shoots compared to those in C1 and C2. The results suggests that C3 and C4 could be recommended as resistant cultivars due to maintaining higher growth, water balance, leaf gas exchange, ion compartmentalization, and lower lipid peroxidation in response to salinity compared to C1 and C2.  相似文献   

19.
The effects of soil salt-alkaline (SA) stress on leaf physiological processes are well studied in the laboratory, but less is known about their effect on leaf, bark and branch chlorenchyma and no reports exist on their effect on C4 enzymes in field conditions. Our results demonstrated that activities of C4 enzymes, such as phospholenolpyruvate carboxylase (PEPC), NADP-malic enzyme (NADP-ME), pyruvate orthophosphate dikinase (PPDK), and NADP-dependent malate dehydrogenase (NADP-MDH), could also be regulated by soil salinity/alkalinity in poplar (Populus alba × P. berolinensis) trees, similarly as the already documented changes in activities of antioxidative enzymes, such as superoxide dismutase (SOD), catalase (CAT), and glutathione reductase (GR), pigment composition, photosynthesis, and respiration. However, compared with 50–90% changes in a leaf and young branch chlorenchyma, much smaller changes in malondialdehyde (MDA), antioxidative enzymes, and C4 enzymatic activities were observed in bark chlorenchyma, showing that the effect of soil salinity/alkalinity on enzymatic activities was organ-dependent. This suggests that C4 enzymatic ratios between nonleaf chlorenchyma and leaf (the commonly used parameter to discern the operation of the C4 photosynthetic pathway in nonleaf chlorenchyma), were dependent on SA stress. Moreover, much smaller enhancement of these ratios was seen in an improved soil contrary to SA soil, when the fresh mass (FM) was used as the unit compared with a calculation on a chlorophyll (Chl) unit. An identification of the C4 photosynthesis pathway via C4 enzyme difference between chlorenchyma and leaf should take this environmental regulation and unit-based difference into account.  相似文献   

20.
Wax on leaves of Agropyron intermedium contains hydrocarbons (11%, C27–C33), esters (11%, C32–C60), free alcohols (180%, C26) 25-oxohentriacontane-14,16-dione (17%), 10-oxohentriacontane-14,16-dione (5y%), 25-hydroxyhentriacontane-14,16-dione (12%) and 26-hydroxyhentriacontane-14,16-dione (2%). Wax on spikes contains additional components, C25–C33cis 9-alkenes (32% of hydrocarbons), and more β-diketones, 25-hydroxy (17%) and 26-hydroxy (3%) hentriacontane-14,16-diones, 10,25-dioxohentriacontane-14,16-dione (1%) and 4-hydroxy-25-oxo-(2%), 25-hydroxy-10-oxo-(1.3%) and 26-hydroxy-10-oxo-(0.7%) hentriacontane-14,16-diones; free alcohols were very minor components (1%, C24–C32).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号