共查询到20条相似文献,搜索用时 18 毫秒
1.
Rolfsmeier ML Dixon MJ Pessoa-Brandão L Pelletier R Miret JJ Lahue RS 《Genetics》2001,157(4):1569-1579
Trinucleotide repeat (TNR) instability in humans is governed by unique cis-elements. One element is a threshold, or minimal repeat length, conferring frequent mutations. Since thresholds have not been directly demonstrated in model systems, their molecular nature remains uncertain. Another element is sequence specificity. Unstable TNR sequences are almost always CNG, whose hairpin-forming ability is thought to promote instability by inhibiting DNA repair. To understand these cis-elements further, TNR expansions and contractions were monitored by yeast genetic assays. A threshold of approximately 15--17 repeats was observed for CTG expansions and contractions, indicating that thresholds function in organisms besides humans. Mutants lacking the flap endonuclease Rad27p showed little change in the expansion threshold, suggesting that this element is not altered by the presence or absence of flap processing. CNG or GNC sequences yielded frequent mutations, whereas A-T rich sequences were substantially more stable. This sequence analysis further supports a hairpin-mediated mechanism of TNR instability. Expansions and contractions occurred at comparable rates for CTG tract lengths between 15 and 25 repeats, indicating that expansions can comprise a significant fraction of mutations in yeast. These results indicate that several unique cis-elements of human TNR instability are functional in yeast. 相似文献
2.
Instability of CAG and CTG trinucleotide repeats in Saccharomyces cerevisiae. 总被引:1,自引:0,他引:1 下载免费PDF全文
A quantitative genetic assay was developed to monitor alterations in tract lengths of trinucleotide repeat sequences in Saccharomyces cerevisiae. Insertion of (CAG)50 or (CTG)50 repeats into a promoter that drives expression of the reporter gene ADE8 results in loss of expression and white colony color. Contractions within the trinucleotide sequences to repeat lengths of 8 to 38 restore functional expression of the reporter, leading to red colony color. Reporter constructs including (CAG)50 or (CTG)50 repeat sequences were integrated into the yeast genome, and the rate of red colony formation was measured. Both orientations yielded high rates of instability (4 x 10(-4) to 18 x 10(-4) per cell generation). Instability depended on repeat sequences, as a control harboring a randomized (C,A,G)50 sequence was at least 100-fold more stable. PCR analysis of the trinucleotide repeat region indicated an excellent correlation between change in color phenotype and reduction in length of the repeat tracts. No preferential product sizes were observed. Strains containing disruptions of the mismatch repair gene MSH2, MSH3, or PMS1 or the recombination gene RAD52 showed little or no difference in rates of instability or distributions of products, suggesting that neither mismatch repair nor recombination plays an important role in large contractions of trinucleotide repeats in yeast. 相似文献
3.
Trinucleotide repeats (TNRs) are unique DNA microsatellites that can expand to cause human disease. Recently, Srs2 was identified as a protein that inhibits TNR expansions in Saccharomyces cerevisiae. Here, we demonstrate that Srs2 inhibits CAG . CTG expansions in conjunction with the error-free branch of postreplication repair (PRR). Like srs2 mutants, expansions are elevated in rad18 and rad5 mutants, as well as the PRR-specific PCNA alleles pol30-K164R and pol30-K127/164R. Epistasis analysis indicates that Srs2 acts upstream of these PRR proteins. Also, like srs2 mutants, the pol30-K127/164R phenotype is specific for expansions, as this allele does not alter mutation rates at dinucleotide repeats, at nonrepeating sequences, or for CAG . CTG repeat contractions. Our results suggest that Srs2 action and PRR processing inhibit TNR expansions. We also investigated the relationship between PRR and Rad27 (Fen1), a well-established inhibitor of TNR expansions that acts at 5' flaps. Our results indicate that PRR protects against expansions arising from the 3' terminus, presumably replication slippage events. This work provides the first evidence that CAG . CTG expansions can occur by 3' slippage, and our results help define PRR as a key cellular mechanism that protects against expansions. 相似文献
4.
Trinucleotide repeats (TNRs) frequently expand in certain human genetic diseases, often with devastating pathological consequences. TNR expansions require the addition of new DNA; accordingly, molecular models suggest aberrant DNA replication or error-prone repair synthesis as the sources of most instability. Some proteins are currently known that either promote or inhibit TNR mutability. To identify additional proteins that help protect cells against TNR instability, yeast mutants were isolated with higher than normal rates of CAG.CTG tract expansions. Surprisingly, a rev1 mutant was isolated. In contrast to its canonical function in supporting mutagenesis, we found that Rev1 reduces rates of CAG.CTG repeat expansions and contractions, as judged by the behavior of the rev1 mutant. The rev1 mutator phenotype was specific for TNRs with hairpin forming capacity. Mutations in REV3 or REV7, encoding the subunits of DNA polymerase zeta (pol zeta), did not affect expansion rates in REV1 or rev1 strains. A rev1 point mutant lacking dCMP transferase activity was normal for TNR instability, whereas the rev1-1 allele that interferes with BRCT domain function was as defective as a rev1 null mutant. In summary, these results indicate that yeast Rev1 reduces mutability of CAG.CTG tracts in a manner dependent on BRCT domain function but independent of dCMP transferase activity and of pol zeta. 相似文献
5.
6.
Stabilizing effects of interruptions on trinucleotide repeat expansions in Saccharomyces cerevisiae 下载免费PDF全文
In most trinucleotide repeat (TNR) diseases, the primary factor determining the likelihood of expansions is the length of the TNR. In some diseases, however, stable alleles contain one to three base pair substitutions that interrupt the TNR tract. The unexpected stability of these alleles compared to the frequent expansions of perfect TNRs suggested that interruptions somehow block expansions and that expansions occur only upon loss of at least one interruption. The work in this study uses a yeast genetic assay to examine the mechanism of stabilization conferred by two interruptions of a 25-repeat tract. Expansion rates are reduced up to 90-fold compared to an uninterrupted allele. Stabilization is greatest when the interruption is replicated early on the lagging strand, relative to the rest of the TNR. Although expansions are infrequent, they are often polar, gaining new DNA within the largest available stretch of perfect repeats. Surprisingly, interruptions are always retained and sometimes even duplicated, suggesting that expansion in yeast cells can proceed without loss of the interruption. These findings support a stabilization model in which interruptions contribute in cis to reduce hairpin formation during TNR replication and thus inhibit expansion rates. 相似文献
7.
Identification of RTG2 as a modifier gene for CTG*CAG repeat instability in Saccharomyces cerevisiae
Trinucleotide repeats (TNRs) undergo frequent mutations in families affected by TNR diseases and in model organisms. Much of the instability is conferred in cis by the sequence and length of the triplet tract. Trans-acting factors also modulate TNR instability risk, on the basis of such evidence as parent-of-origin effects. To help identify trans-acting modifiers, a screen was performed to find yeast mutants with altered CTG.CAG repeat mutation frequencies. The RTG2 gene was identified as one such modifier. In rtg2 mutants, expansions of CTG.CAG repeats show a modest increase in rate, depending on the starting tract length. Surprisingly, contractions were suppressed in an rtg2 background. This creates a situation in a model system where expansions outnumber contractions, as in humans. The rtg2 phenotype was apparently specific for CTG.CAG repeat instability, since no changes in mutation rate were observed for dinucleotide repeats or at the CAN1 reporter gene. This feature sets rtg2 mutants apart from most other mutants that affect genetic stability both for TNRs and at other DNA sequences. It was also found that RTG2 acts independently of its normal partners RTG1 and RTG3, suggesting a novel function of RTG2 that helps modify CTG.CAG repeat mutation risk. 相似文献
8.
Pernille Koefoed L. Hasholt Kirsten Fenger Jørgen E. Nielsen Hans Eiberg Karsten Buschard Sven Asger Sørensen 《Human genetics》1998,103(5):564-569
Spinocerebellar ataxia type 1 (SCA1) is an autosomal, dominantly inherited neurodegenerative disease caused by an unstable
CAG trinucleotide repeat expansion in the ataxin-1 gene located on chromosome 6p22-p23. The expanded CAG repeat is unstable
during transmission, and a variation in the CAG repeat length has been found in different tissues, including sperm samples
from affected males. In order further to examine the mitotic and meiotic instability of the (CAG)n stretch we have performed single sperm and low-copy genome analysis in SCA1 patients and asymptomatic carriers. A pronounced
variation in the size of the expanded allele was found in sperm cells and peripheral blood leucocytes, with a higher degree
of instability seen in the sperm cells, where an allele with 50 repeat units was contracted in 11.8%, further expanded in
63.5% and unchanged in 24.6% of the single sperm analysed. We found a low instability of the normal alleles; the normal alleles
from the individuals carrying a CAG repeat expansion were significantly more unstable than the normal alleles from the control
individuals (P<0.001), indicating an interallelic interaction between the expanded and the normal alleles.
Received: 8 June 1998 / Accepted: 10 September 1998 相似文献
9.
Features of trinucleotide repeat instability in vivo 总被引:5,自引:0,他引:5
Unstable repeats are associated with various types of cancer and have been implicated in more than 40 neurode-generative disorders. Trinucleotide repeats are located in non-coding and coding regions of the genome. Studies of bacteria, yeast, mice and man have helped to unravel some features of the mechanism of trinucleotide expansion. Looped DNA structures comprising trinucleotide repeats are processed during replication and/or repair to generate deletions or expansions. Most in vivo data are consistent with a model in which expansion and deletion occur by different mechanisms. In mammals, microsatellite instability is complex and appears to be influenced by genetic, epigenetic and developmental factors. 相似文献
10.
Trinucleotide repeat expansions cause over 30 severe neuromuscular and neurodegenerative disorders, including Huntington's disease, myotonic dystrophy type 1, and fragile X syndrome. Although previous studies have substantially advanced the understanding of the disease biology, many key features remain unknown. DNA mismatch repair(MMR) plays a critical role in genome maintenance by removing DNA mismatches generated during DNA replication. However, MMR components,particularly mismatch recognition protein MutSβ and its interacting factors MutLα and MutLγ, have been implicated in trinucleotide repeat instability. In this review, we will discuss the roles of these key MMR proteins in promoting trinucleotide repeat instability. 相似文献
11.
Trinucleotide repeat (TNR) instability is of interest because of its central role in human diseases such as Huntington’s and its unique genetic features. One distinctive characteristic of TNR instability is a threshold, defined as a minimal repeat length that confers frequent mutations. While thresholds are well established, important risk determinants for disease-causing mutations, their mechanistic analysis has been delayed by the lack of suitably tractable experimental systems. In this study, we directly compared for the first time three DNA elements—TNR sequence, purity and flanking sequence—all of which are suggested in the literature to contribute to thresholds. In a yeast model system, we find that CAG repeats require a substantially longer threshold to contract than CTG tracts, indicating that the lagging template repeat sequence helps determine the threshold. In contrast, ATG interruptions within a CTG run do not inhibit contractions via a threshold mechanism, but by altering the likelihood of forming a hairpin intermediate. The presence of a GC-rich flanking sequence, similar to a haplotype found in some Huntington’s patients, does not detectably alter expansions of Okazaki fragment CTG tracts, suggesting no role for this flanking sequence on thresholds. Together these results help better define TNR thresholds by delineating sequence elements that modulate instability. 相似文献
12.
McMurray CT 《Nature reviews. Genetics》2010,11(11):786-799
Trinucleotide expansion underlies several human diseases. Expansion occurs during multiple stages of human development in different cell types, and is sensitive to the gender of the parent who transmits the repeats. Repair and replication models for expansions have been described, but we do not know whether the pathway involved is the same under all conditions and for all repeat tract lengths, which differ among diseases. Currently, researchers rely on bacteria, yeast and mice to study expansion, but these models differ substantially from humans. We need now to connect the dots among human genetics, pathway biochemistry and the appropriate model systems to understand the mechanism of expansion as it occurs in human disease. 相似文献
13.
Several human neurodegenerative disorders are caused by expansion of CAG repeats that occurs during meiosis or gametogenesis. We anticipated that the CAG repeats cloned in a plasmid of Saccharomyces cerevisiae might undergo a change in the number of repeats during meiosis and sporulation. To test this possibility, we devised a new method to change in vitro the number of CAG repeats and constructed plasmids carrying (CAG)39, (CAG)65 or (CAG)123 from a plasmid carrying (CAG)18. We monitored the number of colonies showing an altered length of the repeat tracts during mitosis and meiotic growth. Contraction of long CAG repeat was found to occur frequently, whereas a few cases of expansion were observed. The contraction was equally enhanced in both orientations when the host cells grew through meiosis. Thus, our results suggest that long CAG repeats are destabilized during meiosis or gametogenesis in S. cerevisiae. 相似文献
14.
Jong-Min Lee Jie Zhang Andrew I Su John R Walker Tim Wiltshire Kihwa Kang Ella Dragileva Tammy Gillis Edith T Lopez Marie-Josee Boily Michel Cyr Isaac Kohane James F Gusella Marcy E MacDonald Vanessa C Wheeler 《BMC systems biology》2010,4(1):1-16
Background
In Huntington's disease (HD), an expanded CAG repeat produces characteristic striatal neurodegeneration. Interestingly, the HD CAG repeat, whose length determines age at onset, undergoes tissue-specific somatic instability, predominant in the striatum, suggesting that tissue-specific CAG length changes could modify the disease process. Therefore, understanding the mechanisms underlying the tissue specificity of somatic instability may provide novel routes to therapies. However progress in this area has been hampered by the lack of sensitive high-throughput instability quantification methods and global approaches to identify the underlying factors.Results
Here we describe a novel approach to gain insight into the factors responsible for the tissue specificity of somatic instability. Using accurate genetic knock-in mouse models of HD, we developed a reliable, high-throughput method to quantify tissue HD CAG repeat instability and integrated this with genome-wide bioinformatic approaches. Using tissue instability quantified in 16 tissues as a phenotype and tissue microarray gene expression as a predictor, we built a mathematical model and identified a gene expression signature that accurately predicted tissue instability. Using the predictive ability of this signature we found that somatic instability was not a consequence of pathogenesis. In support of this, genetic crosses with models of accelerated neuropathology failed to induce somatic instability. In addition, we searched for genes and pathways that correlated with tissue instability. We found that expression levels of DNA repair genes did not explain the tissue specificity of somatic instability. Instead, our data implicate other pathways, particularly cell cycle, metabolism and neurotransmitter pathways, acting in combination to generate tissue-specific patterns of instability.Conclusion
Our study clearly demonstrates that multiple tissue factors reflect the level of somatic instability in different tissues. In addition, our quantitative, genome-wide approach is readily applicable to high-throughput assays and opens the door to widespread applications with the potential to accelerate the discovery of drugs that alter tissue instability. 相似文献15.
David Mittelman Kristen Sykoudis Megan Hersh Yunfu Lin John H. Wilson 《Cell stress & chaperones》2010,15(5):753-759
The Hsp90 molecular chaperone has been implicated as a contributor to evolution in several organisms by revealing cryptic
variation that can yield dramatic phenotypes when the chaperone is diverted from its normal functions by environmental stress.
In addition, as a cancer drug target, Hsp90 inhibition has been documented to sensitize cells to DNA-damaging agents, suggesting
a function for Hsp90 in DNA repair. Here we explore the potential role of Hsp90 in modulating the stability of nucleotide
repeats, which in a number of species, including humans, exert subtle and quantitative consequences for protein function,
morphological and behavioral traits, and disease. We report that impairment of Hsp90 in human cells induces contractions of
CAG repeat tracks by tenfold. Inhibition of the recombinase Rad51, a downstream target of Hsp90, induces a comparable increase
in repeat instability, suggesting that Hsp90-enabled homologous recombination normally functions to stabilize CAG repeat tracts.
By contrast, Hsp90 inhibition does not increase the rate of gene-inactivating point mutations. The capacity of Hsp90 to modulate
repeat-tract lengths suggests that the chaperone, in addition to exposing cryptic variation, might facilitate the expression
of new phenotypes through induction of novel genetic variation. 相似文献
16.
Cells of the central nervous system (CNS) are prone to the devastating consequences of trinucleotide repeat (TNR) expansion. Some CNS cells, including astrocytes, show substantial TNR instability in affected individuals. Since astrocyte enrichment occurs in brain regions sensitive to neurodegeneration and somatic TNR instability, immortalized SVG-A astrocytes were used as an ex vivo model to mimic TNR mutagenesis. Cultured astrocytes produced frequent (up to 2%) CAG·CTG contractions in a sequence-specific fashion, and an apparent threshold for instability was observed between 25 and 33 repeats. These results suggest that cultured astrocytes recapitulate key features of TNR mutagenesis. Furthermore, contractions were influenced by DNA replication through the repeat, suggesting that instability can arise by replication-based mechanisms in these cells. This is a crucial mechanistic point, since astrocytes in the CNS retain proliferative capacity throughout life and could be vulnerable to replication-mediated TNR instability. The presence of interruptions led to smaller but more frequent contractions, compared to a pure repeat, and the interruptions were sometimes deleted to form a perfect tract. In summary, we suggest that CAG·CTG repeat instability in cultured astrocytes is dynamic and replication-driven, suggesting that TNR mutagenesis may be influenced by the proliferative capacity of key CNS cells. 相似文献
17.
18.
Repetitive DNA elements are mutational hotspots in the genome, and their instability is linked to various neurological disorders and cancers. Although it is known that expanded trinucleotide repeats can interfere with DNA replication and repair, the cellular response to these events has not been characterized. Here, we demonstrate that an expanded CAG/CTG repeat elicits a DNA damage checkpoint response in budding yeast. Using microcolony and single cell pedigree analysis, we found that cells carrying an expanded CAG repeat frequently experience protracted cell division cycles, persistent arrests, and morphological abnormalities. These phenotypes were further exacerbated by mutations in DSB repair pathways, including homologous recombination and end joining, implicating a DNA damage response. Cell cycle analysis confirmed repeat-dependent S phase delays and G2/M arrests. Furthermore, we demonstrate that the above phenotypes are due to the activation of the DNA damage checkpoint, since expanded CAG repeats induced the phosphorylation of the Rad53 checkpoint kinase in a rad52Δ recombination deficient mutant. Interestingly, cells mutated for the MRX complex (Mre11-Rad50-Xrs2), a central component of DSB repair which is required to repair breaks at CAG repeats, failed to elicit repeat-specific arrests, morphological defects, or Rad53 phosphorylation. We therefore conclude that damage at expanded CAG/CTG repeats is likely sensed by the MRX complex, leading to a checkpoint response. Finally, we show that repeat expansions preferentially occur in cells experiencing growth delays. Activation of DNA damage checkpoints in repeat-containing cells could contribute to the tissue degeneration observed in trinucleotide repeat expansion diseases. 相似文献
19.
20.
Wild-type strains of Saccharomyces cerevisiae exhibit mitotic recombination between the chimeric plasmid TLC-1 and the endogenous 2mu circle that involves sequence homologies between the two plasmids that are not acted on by the 2mu circle site-specific recombination system. This generalized recombination can be detected because it separates the LEU2 and CAN1 markers of TLC-1 from each other through the formation of a plasmid containing only the S. cerevisiae LEU2 region and the 2mu circle. This derivative plasmid is maintained more stably during vegetative growth than TLC-1, and strains which carry it frequently lose the endogenous 2mu circle. Therefore, TLC-1 can provide a convenient selection for [cir0] cells. Formation of this new plasmid is greatly reduced, but not eliminated, in strains containing the rad52-1 mutation. This indicates that generalized mitotic recombination between plasmid sequences utilizes functions required for chromosomal recombination in S. cerevisiae. 相似文献