首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ireland MJ  Reinke SS  Livingston DM 《Genetics》2000,155(4):1657-1665
We have examined the stability of long tracts of CAG repeats in yeast mutants defective in enzymes suspected to be involved in lagging strand replication. Alleles of DNA ligase (cdc9-1 and cdc9-2) destabilize CAG tracts in the stable tract orientation, i.e., when CAG serves as the lagging strand template. In this orientation nearly two-thirds of the events recorded in the cdc9-1 mutant were tract expansions. While neither DNA ligase allele significantly increases the frequency of tract-length changes in the unstable orientation, the cdc9-1 mutant produced a significant number of expansions in tracts of this orientation. A mutation in primase (pri2-1) destabilizes tracts in both the stable and the unstable orientations. Mutations in a DNA helicase/deoxyribonuclease (dna2-1) or in two RNase H activities (rnh1Delta and rnh35Delta) do not have a significant effect on CAG repeat tract stability. We interpret our results in terms of the steps of replication that are likely to lead to expansion and to contraction of CAG repeat tracts.  相似文献   

2.
The effect of DNA replication mutations on CAG tract stability in yeast.   总被引:3,自引:0,他引:3  
CAG repeat tracts are unstable in yeast, leading to frequent contractions and infrequent expansions in repeat tract length. To compare CAG repeats to other simple repeats and palindromic sequences, we examined the effect of DNA replication mutations, including alleles of pol alpha, pol delta, pol epsilon, and PCNA (proliferating cell nuclear antigen), on tract stability. Among the polymerase mutations, the pol delta mutation (pol3-14) destabilizes tracts with either CAG or CTG as the lagging strand template. One pol alpha mutation, pol1-1, destabilizes the orientation with CAG as the lagging strand template, but it has little effect on the CTG orientation. In contrast, the pol1-17 mutation has no effect on either orientation. Similarly, mutations in the proofreading functions of pol delta and pol epsilon, as well as a temperature-sensitive pol epsilon mutation, pol2-18, have no effect on tract stability. Three PCNA mutations, pol30-52, pol30-79, and pol30-90, all have drastic effects on tract stability. Of the three, pol30-52 is unique in yielding small tract changes that are indicative of an impairment in mismatch repair. These results show that while CAG repeats are destabilized by many of the same mutations that destabilize other simple repeats, they also have some behaviors that are suggestive of their potential to form hairpin structures.  相似文献   

3.
Expansion of trinucleotide repeats (TNRs) is the causative mutation in several human genetic diseases. Expanded TNR tracts are both unstable (changing in length) and fragile (displaying an increased propensity to break). We have investigated the relationship between fidelity of lagging-strand replication and both stability and fragility of TNRs. We devised a new yeast artificial chromomosme (YAC)-based assay for chromosome breakage to analyze fragility of CAG/CTG tracts in mutants deficient for proteins involved in lagging-strand replication: Fen1/Rad27, an endo/exonuclease involved in Okazaki fragment maturation, the nuclease/helicase Dna2, RNase HI, DNA ligase, polymerase delta, and primase. We found that deletion of RAD27 caused a large increase in breakage of short and long CAG/CTG tracts, and defects in DNA ligase and primase increased breakage of long tracts. We also found a correlation between mutations that increase CAG/CTG tract breakage and those that increase repeat expansion. These results suggest that processes that generate strand breaks, such as faulty Okazaki fragment processing or DNA repair, are an important source of TNR expansions.  相似文献   

4.
T G Palzkill  C S Newlon 《Cell》1988,53(3):441-450
Autonomously replicating sequences (ARSs) of the yeast S. cerevisiae function as replication origins on plasmids and probably also on chromosomes. ARS function requires a copy of the ARS core consensus (5'-[A/T]TTTAT[A/G]TTT[A/T]-3') and additional sequences 3' to the T-rich strand of the consensus. Our analysis of an ARS from chromosome III, the C2G1 ARS, suggests that ARS function depends on the presence of an exact match to the core consensus and the presence of additional near matches in the 3' flanking region. We have demonstrated that ARS function can be mediated by multiple matches to the core consensus by constructing synthetic ARS elements from oligonucleotides containing copies of the consensus sequence. We find that two copies of the core consensus are sufficient for ARS activity and that an artificial ARS as efficient as a natural chromosomal ARS can be constructed from multiple core consensus elements in a specific orientation.  相似文献   

5.
6.
7.
A quantitative genetic assay was developed to monitor alterations in tract lengths of trinucleotide repeat sequences in Saccharomyces cerevisiae. Insertion of (CAG)50 or (CTG)50 repeats into a promoter that drives expression of the reporter gene ADE8 results in loss of expression and white colony color. Contractions within the trinucleotide sequences to repeat lengths of 8 to 38 restore functional expression of the reporter, leading to red colony color. Reporter constructs including (CAG)50 or (CTG)50 repeat sequences were integrated into the yeast genome, and the rate of red colony formation was measured. Both orientations yielded high rates of instability (4 x 10(-4) to 18 x 10(-4) per cell generation). Instability depended on repeat sequences, as a control harboring a randomized (C,A,G)50 sequence was at least 100-fold more stable. PCR analysis of the trinucleotide repeat region indicated an excellent correlation between change in color phenotype and reduction in length of the repeat tracts. No preferential product sizes were observed. Strains containing disruptions of the mismatch repair gene MSH2, MSH3, or PMS1 or the recombination gene RAD52 showed little or no difference in rates of instability or distributions of products, suggesting that neither mismatch repair nor recombination plays an important role in large contractions of trinucleotide repeats in yeast.  相似文献   

8.
We examined the stability of microsatellites of different repeat unit lengths in Saccharomyces cerevisiae strains deficient in DNA mismatch repair. The msh2 and msh3 mutations destabilized microsatellites with repeat units of 1, 2, 4, 5, and 8 bp; a poly(G) tract of 18 bp was destabilized several thousand-fold by the msh2 mutation and about 100-fold by msh3. The msh6 mutations destabilized microsatellites with repeat units of 1 and 2 bp but had no effect on microsatellites with larger repeats. These results argue that coding sequences containing repetitive DNA tracts will be preferred target sites for mutations in human tumors with mismatch repair defects. We find that the DNA mismatch repair genes destabilize microsatellites with repeat units from 1 to 13 bp but have no effect on the stability of minisatellites with repeat units of 16 or 20 bp. Our data also suggest that displaced loops on the nascent strand, resulting from DNA polymerase slippage, are repaired differently than loops on the template strand.  相似文献   

9.
Telomere repeat sequences (TRSs) can dramatically improve the segregation of unstable circular autonomously replicating sequence (ARS) plasmids in Saccharomyces cerevisiae. Deletion analysis demonstrated that yeast TRSs, which conform to the general sequence (C(1-3)A)n, are able to stabilize circular ARS plasmids. A number of TRS clones of different primary sequence and C(1-3)A tract length confer the plasmid stabilization phenotype. TRS sequences do not appear to improve plasmid replication efficiency, as determined by plasmid copy number analysis and functional assays for ARS activity. Pedigree analysis confirms that TRS-containing plasmids are missegregated at low frequency and that missegregated TRS-containing plasmids, like ARS plasmids, are preferentially retained by the mother cell. Plasmids stabilized by TRSs have properties that distinguish them from centromere-containing plasmids and 2 microns-based recombinant plasmids. Linear ARS plasmids, which include two TRS tracts at their termini, segregate inefficiently, while circular plasmids with one or two TRS tracts segregate efficiently, suggesting that plasmid topology or TRS accessibility interferes with TRS segregation function on linear plasmids. In strains carrying the temperature-sensitive mutant alleles rap1grc4 and rap1-5, TRS plasmids are not stable at the semipermissive temperature, suggesting that RAP1 protein is involved in TRS plasmid stability. In Schizosaccharomyces pombe, an ARS plasmid was stabilized by the addition of S. pombe telomere sequence, suggesting that the ability to improve the segregation of ARS plasmids is a general property of telomere repeats.  相似文献   

10.
Yang J  Freudenreich CH 《Gene》2007,393(1-2):110-115
Trinucleotide repeat diseases, such as Huntington's disease, are caused by the expansion of trinucleotide repeats above a threshold of about 35 repeats. Once expanded, the repeats are unstable and tend to expand further both in somatic cells and during transmission, resulting in a more severe disease phenotype. Flap endonuclease 1 (Fen1), has an endonuclease activity specific for 5' flap structures and is involved in Okazaki fragment processing and base excision repair. Fen1 also plays an important role in preventing instability of CAG/CTG trinucleotide repeat sequences, as the expansion frequency of CAG/CTG repeats is increased in FEN1 mutants in vitro and in yeast cells defective for the yeast homolog, RAD27. Here we have tested whether one copy of yeast FEN1 is enough to maintain CAG/CTG tract stability in diploid yeast cells. We found that CAG/CTG repeats are stable in RAD27 +/- cells if the tract is 70 repeats long and exhibit a slightly increased expansion frequency if the tract is 85 or 130 repeats long. However for CAG-155 tracts, the repeat expansion frequency in RAD27 +/- cells is significantly higher than in RAD27 +/+ cells. This data indicates that cells containing longer CAG/CTG repeats need more Fen1 protein to maintain tract stability and that maintenance of long CAG/CTG repeats is particularly sensitive to Fen1 levels. Our results may explain the relatively small effects seen in the Huntington's disease (HD) FEN1 +/- heterozygous mice and myotonic dystrophy type 1 (DM1) FEN1 +/- heterozygous mice, and suggest that inefficient flap processing by Fen1 could play a role in the continued expansions seen in humans with trinucleotide repeat expansion diseases.  相似文献   

11.
A yeast autonomously replicating sequence, ARS305, shares essential components with a chromosome III replicator, ORI305. Known components include an ARS consensus sequence (ACS) element, presumed to bind the origin recognition complex (ORC), and a broad 3'-flanking sequence which contains a DNA unwinding element. Here linker substitution mutagenesis of ARS305 and analysis of plasmid mitotic stability identified three short sequence elements within the broad 3'-flanking sequence. The major functional element resides directly 3' of the ACS and the two remaining elements reside further downstream, all within non-conserved ARS sequences. To determine the contribution of the elements to replication origin function in the chromosome, selected linker mutations were transplaced into the ORI305 locus and two-dimensional gel electrophoresis was used to analyze replication bubble formation and fork directions. Mutation of the major functional element identified in the plasmid mitotic stability assay inactivated replication origin function in the chromosome. Mutation of each of the two remaining elements diminished both plasmid ARS and chromosomal origin activities to similar levels. Thus multiple DNA elements identified in the plasmid ARS are determinants of replication origin function in the natural context of the chromosome. Comparison with two other genetically defined chromosomal replicators reveals a conservation of functional elements known to bind ORC, but no two replicators are identical in the arrangement of elements downstream of ORC binding elements or in the extent of functional sequences adjacent to the ACS.  相似文献   

12.
Trinucleotide repeats (TNRs) are sequences whose expansion causes several genetic diseases and chromosome breakage. We report a novel finding that expanded CAG repeats activate the DNA damage response. Mutations in yeast MEC1, RAD9, or RAD53 genes result in increased rates of fragility of a CAG repeat tract while single or double deletions of RAD17 or RAD24 have only a modest effect on TNR fragility, indicating that signaling down the Rad9 pathway and not the Rad17-Rad24 pathway plays a major role in sensing and repairing CAG-tract breaks. Deletion of CHK1 had no effect on CAG fragility, suggesting that a Chk1-mediated G2 arrest is not required for TNR repair. Absence of Mec1, Ddc2, Rad17, Rad24, or Rad53 also gives rise to increased frequency of CAG repeat contractions, indicating that components of the checkpoint machinery play an active role in the maintenance of both chromosomal integrity and repeat stability at expanded CAG sequences.  相似文献   

13.
14.
15.
Many human hereditary neurological diseases, including fragile X syndrome, myotonic dystrophy, and Friedreich's ataxia, are associated with expansions of the triplet repeat sequences (TRS) (CGG/CCG, CTG/CAG, and GAA/TTC) within or near specific genes. Mechanisms that mediate mutations of TRS include DNA replication, repair, and gene conversion and (or) recombination. The involvement of the repair systems in TRS instability was investigated in Escherichia coli on plasmid models, and the results showed that the deficiency of some nucleotide excision repair (NER) functions dramatically affects the stability of long CTG inserts. In such models in which there are tens or hundreds of plasmid molecules in each bacterial cell, repetitive sequences may interact between themselves and according to a recombination hypothesis, which may lead to expansions and deletions within such repeated tracts. Since one cannot control interaction between plasmids, it is also sometimes difficult to give precise interpretation of the results. Therefore, using modified lambda phage (lambdaInCh), we have constructed a chromosomal model to study the instability of trinucleotide repeat sequences in E. coli. We have shown that the stability of (CTG/CAG)68 tracts in the bacterial chromosome is influenced by mutations in NER genes in E. coli. The absence of the uvrC or uvrD gene products greatly enhances the instability of the TRS in the chromosome, whereas the lack of the functional UvrA or UvrB proteins causes substantial stabilization of (CTG/CAG) tracts.  相似文献   

16.
Fourteen genetic neurodegenerative diseases and three fragile sites have been associated with the expansion of (CTG)n•(CAG)n, (CGG)n•(CCG)n, or (GAA)n•(TTC)n repeat tracts. Different models have been proposed for the expansion of triplet repeats, most of which presume the formation of alternative DNA structures in repeat tracts. One of the most likely structures, slipped strand DNA, may stably and reproducibly form within triplet repeat sequences. The propensity to form slipped strand DNA is proportional to the length and homogeneity of the repeat tract. The remarkable stability of slipped strand DNA may, in part, be due to loop-loop interactions facilitated by the sequence complementarity of the loops and the dynamic structure of three-way junctions formed at the loop-outs.  相似文献   

17.
Previous studies have shown that homologous recombination is a powerful mechanism for generation of massive instabilities of the myotonic dystrophy CTG.CAG sequences. However, the frequency of recombination between the CTG.CAG tracts has not been studied. Here we performed a systematic study on the frequency of recombination between these sequences using a genetic assay based on an intramolecular plasmid system in Escherichia coli. The rate of intramolecular recombination between long CTG.CAG tracts oriented as direct repeats was extraordinarily high; recombinants were found with a frequency exceeding 12%. Recombination occurred in both RecA(+) and RecA(-) cells but was approximately 2-11 times higher in the recombination proficient strain. Long CTG.CAG tracts recombined approximately 10 times more efficiently than non-repeating control sequences of similar length. The recombination frequency was 60-fold higher for a pair of (CTG.CAG)(165) tracts compared with a pair of (CTG.CAG)(17) sequences. The CTG.CAG sequences in orientation II (CTG repeats present on a lagging strand template) recombine approximately 2-4 times more efficiently than tracts of identical length in the opposite orientation relative to the origin of replication. This orientation effect implies the involvement of DNA replication in the intramolecular recombination between CTG.CAG sequences. Thus, long CTG.CAG tracts are hot spots for genetic recombination.  相似文献   

18.
Mutational changes in ADE2 result in the accumulation of red pigment in cells, which serves as an indicator for the selection of mutants. This easily detectable phenotype of red-coloured colonies can account for the wide use of ade2 mutants in yeast genetics. ADE2 gene was cloned in a shuttle vector by complementing the ade2 mutation in the yeast. It was shown that the 2.2 kbp HindIII fragment of yeast DNA contains structural sequences of the ADE2 gene as well as the ARS sequence. Deletion analysis of the 5' end of the ADE2 gene showed the ARS sequence to be situated at the distal end of the 1 kbp HindIII fragment. Removal of the ARS sequence does not influence ADE2 gene complementation ability. Transformants containing the ADE2 gene comprised in their plasmids form white colonies. Loss of the plasmids results in colour change of colonies.  相似文献   

19.
We have investigated meiotic changes in CAG repeat tracts embedded in a yeast chromosome. Repeat tracts undergo either conversion events between homologs or expansion and contraction events that appear to be confined to a single chromatid. We did not find evidence for conversion of tract interruptions or excess exchange of flanking markers.  相似文献   

20.
Most yeast plasmids--particularly those containing chromosomal replicators (ARS)--are unstable and do not segregate equally to mother and daughter cells unless they contain centromeric sequences. We have screened a fraction of the human genome for sequences that stabilize YRp7, a plasmid containing ARS1. We selected a fraction which we hoped would be enriched in human centromeric sequences--the DNA attached to the nucleoskeleton. We obtained one human sequence that partially stabilized a yeast plasmid and, surprisingly, it contained sequences homologous to those coding for the 3' end of 18s rRNA, the transcribed spacer and 5' end of 28s rRNA. This sequence did not show any ARS activity nor did it increase the copy number of the plasmid and so probably improved partition of the plasmid between mother and daughter cells. It had no homology to yeast centromeres.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号