首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The direct modulation of N-type calcium channels by G protein betagamma subunits is considered a key factor in the regulation of neurotransmission. Some of the molecular determinants that govern the binding interaction of N-type channels and Gbetagamma have recently been identified (see, i.e., Zamponi, G. W., Bourinet, E., Nelson, D., Nargeot, J., and Snutch, T. P. (1997) Nature 385, 442-446); however, little is known about cellular mechanisms that modulate this interaction. Here we report that a protein of the presynaptic vesicle release complex, syntaxin 1A, mediates a crucial role in the tonic inhibition of N-type channels by Gbetagamma. When syntaxin 1A was coexpressed with (N-type) alpha(1B) + alpha(2)-delta + beta(1b) channels in tsA-201 cells, the channels underwent a 18 mV negative shift in half-inactivation potential, as well as a pronounced tonic G protein inhibition as assessed by its reversal by strong membrane depolarizations. This tonic inhibition was dramatically attenuated following incubation with botulinum toxin C, indicating that syntaxin 1A expression was indeed responsible for the enhanced G protein modulation. However, when G protein betagamma subunits were concomitantly coexpressed, the toxin became ineffective in removing G protein inhibition, suggesting that syntaxin 1A optimizes, rather than being required for G protein modulation of N-type channels. We also demonstrate that Gbetagamma physically binds to syntaxin 1A, and that syntaxin 1A can simultaneously interact with Gbetagamma and the synprint motif of the N-type channel II-III linker. Taken together, our experiments suggest a mechanism by which syntaxin 1A mediates a colocalization of G protein betagamma subunits and N-type calcium channels, thus resulting in more effective G protein coupling to, and regulation of, the channel. Thus, the interactions between syntaxin, G proteins, and N-type calcium channels are part of the structural specialization of the presynaptic terminal.  相似文献   

2.
Cysteine string protein (CSP) is an abundant regulated secretory vesicle protein that is composed of a string of cysteine residues, a linker domain, and an N-terminal J domain characteristic of the DnaJ/Hsp40 co-chaperone family. We have shown previously that CSP associates with heterotrimeric GTP-binding proteins (G proteins) and promotes G protein inhibition of N-type Ca2+ channels. To elucidate the mechanisms by which CSP modulates G protein signaling, we examined the effects of CSP(1-198) (full-length), CSP(1-112), and CSP(1-82) on the kinetics of guanine nucleotide exchange and GTP hydrolysis. In this report, we demonstrate that CSP selectively interacts with G alpha(s) and increases steady-state GTP hydrolysis. CSP(1-198) modulation of G alpha(s) was dependent on Hsc70 (70-kDa heat shock cognate protein) and SGT (small glutamine-rich tetratricopeptide repeat domain protein), whereas modulation by CSP(1-112) was Hsc70-SGT-independent. CSP(1-112) preferentially associated with the inactive GDP-bound conformation of G alpha(s). Consistent with the stimulation of GTP hydrolysis, CSP(1-112) increased guanine nucleotide exchange of G alpha(s). The interaction of native G alpha(s) and CSP was confirmed by coimmunoprecipitation and showed that G alpha(s) associates with CSP. Furthermore, transient expression of CSP in HEK cells increased cellular cAMP levels in the presence of the beta2 adrenergic agonist isoproterenol. Together, these results demonstrate that CSP modulates G protein function by preferentially targeting the inactive GDP-bound form of G alpha(s) and promoting GDP/GTP exchange. Our results show that the guanine nucleotide exchange activity of full-length CSP is, in turn, regulated by Hsc70-SGT.  相似文献   

3.
Cysteine string protein (CSP), a 34-kDa molecular chaperone, is expressed on synaptic vesicles in neurons and on secretory vesicles in endocrine, neuroendocrine, and exocrine cells. CSP can be found in a complex with two other chaperones, the heat shock cognate protein Hsc70, and small glutamine-rich tetratricopeptide repeat domain protein (SGT). CSP function is vital in synaptic transmission; however, the precise nature of its role remains controversial. We have previously reported interactions of CSP with both heterotrimeric GTP-binding proteins (G proteins) and N-type calcium channels. These associations give rise to a tonic G protein inhibition of the channels. Here we have examined the effects of huntingtin fragments (exon 1) with (huntingtin(exon1/exp)) and without (huntingtin(exon1/nonexp)) expanded polyglutamine (polyQ) tracts on the CSP chaperone system. In vitro huntingtin(exon1/exp) sequestered CSP and blocked the association of CSP with G proteins. In contrast, huntingtin(exon1/nonexp) did not interact with CSP and did not alter the CSP/G protein association. Similarly, co-expression of huntingtin(exon1/exp) with CSP and N-type calcium channels eliminated CSP's tonic G protein inhibition of the channels, while coexpression of huntingtin(exon1/nonexp) did not alter the robust inhibition promoted by CSP. These results indicate that CSP's modulation of G protein inhibition of calcium channel activity is blocked in the presence of a huntingtin fragment with expanded polyglutamine tracts.  相似文献   

4.
Cysteine string protein (CSPalpha) is a member of the cellular folding machinery that is located on regulated secretory vesicles. We have previously shown that CSPalpha in association with Hsc70 (70kDa heat shock cognate protein) and SGT (small glutamine-rich tetratricopeptide repeat domain protein) is a guanine nucleotide exchange factor (GEF) for G(alphas). Association of this CSPalpha complex with N-type calcium channels, a channel key in coupling calcium influx with synaptic vesicle exocytosis, triggers tonic G protein inhibition of the channels. Syntaxin 1A, a plasma membrane SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) critical for neurotransmission, coimmunoprecipitates with the CSPalpha/G protein/N-type calcium channel complex, however the significance of syntaxin 1A as a component of this complex remains unknown. In this report, we establish that syntaxin 1A interacts with CSPalpha, Hsc70 as well as the synaptic protein interaction (synprint) region of N-type channels. We demonstrate that huntingtin(exon1), a putative biologically active fragment of huntingtin, displaces both syntaxin 1A and CSPalpha from N-type channels. Identification of the protein components of the CSPalpha/GEF system is essential in establishing its precise role in synaptic transmission.  相似文献   

5.
Presynaptic voltage-gated calcium (Ca(2+)) channels mediate Ca(2+) influx into the presynaptic terminal that triggers synaptic vesicle fusion and neurotransmitter release. The immediate proximity of Ca(2+) channels to the synaptic vesicle release apparatus is critical for rapid and efficient synaptic transmission. In a series of biochemical experiments, we demonstrate a specific association of the cytosolic carboxyl terminus of the N-type Ca(2+) channel pore-forming alpha(1B) subunit with the modular adaptor proteins Mint1 and CASK. The carboxyl termini of alpha(1B) bind to the first PDZ domain of Mint1 (Mint1-1). The proline-rich region present in the carboxyl termini of alpha(1B) binds to the SH3 domain of CASK. Mint1-1 is specific for the E/D-X-W-C/S-COOH consensus, which defines a novel class of PDZ domains (class III). The Mint1-1 PDZ domain-binding motif is present only in the "long" carboxyl-terminal splice variants of N-type (alpha(1B)) and P/Q-type (alpha(1A)) Ca(2+) channels, but not in R-type (alpha(1E)) or L-type (alpha(1C)) Ca(2+) channels. Our results directly link presynaptic Ca(2+) channels to a macromolecular complex formed by modular adaptor proteins at synaptic junction and advance our understanding of coupling between cell adhesion and synaptic vesicle exocytosis.  相似文献   

6.
At an identified neuro-neuronal synapse of the buccal ganglion of Aplysia, quantal release of acetylcholine (ACh) is increased by FMRFamide and decreased by histamine or buccalin. Activation of presynaptic receptors for these neuromodulators modifies a presynaptic Ca2+ current which is nifedipine-resistant and omega-conotoxin-sensitive. The voltage-sensitivity of these N-type Ca2+ channels is increased by FMRFamide and decreased by histamine through the intermediate of G proteins. Buccalin does not implicate G proteins and reduces the Ca2+ current without affecting the voltage-sensitivity of N-type Ca2+ channels. The possibility of relating the shifts in voltage-dependence of the Ca2+ current induced by FMRFamide and histamine to the phosphorylation state of the N-type Ca2+ channels is discussed. A scheme for the complex regulation of ACh release by presynaptic auto- and heteroreceptors is proposed.  相似文献   

7.
N- and P/Q-type calcium channels are localized in high density in presynaptic nerve terminals and are crucial elements in neuronal excitation–secretion coupling. In addition to mediating Ca2+ entry to initiate transmitter release, they are thought to interact directly with proteins of the synaptic vesicle docking/fusion machinery. As outlined in the preceding article, these calcium channels can be purified from brain as a complex with SNARE proteins which are involved in exocytosis. In addition, N-type and P/Q-type calcium channels are co-localized with syntaxin in high-density clusters in nerve terminals. Here we review the role of the synaptic protein interaction (synprint) sites in the intracellular loop II–III (LII–III) of both 1B and 1A subunits of N-type and P/Q-type calcium channels, which bind to syntaxin, SNAP-25, and synaptotagmin. Calcium has a biphasic effect on the interactions of N-type calcium channels with SNARE complexes, stimulating optimal binding in the range of 10–20 M. PKC or CaM KII phosphorylation of the N-type synprint peptide inhibits interactions with native brain SNARE complexes containing syntaxin and SNAP-25. Introduction of the synprint peptides into presynaptic superior cervical ganglion neurons reversibly inhibits EPSPs from synchronous transmitter release by 42%. At physiological Ca2+ concentrations, synprint peptides cause an approximate 25% reduction in transmitter release of injected frog neuromuscular junction in cultures, consistent with detachment of 70% of the docked vesicles from calcium channels based on a theoretical model. Together, these studies suggest that presynaptic calcium channels not only provide the calcium signal required by the exocytotic machinery, but also contain structural elements that are integral to vesicle docking, priming, and fusion processes.  相似文献   

8.
The modulation of presynaptic calcium (Ca) channels by heterotrimeric G proteins is a key factor for the regulation of neurotransmission. Over the past 20 yr, a significant understanding of the molecular events underlying this regulation has been acquired. It is now widely accepted that binding of G protein betagamma dimers directly to the cytoplasmic region linking domains I and II of the Ca channel alpha1 subunit results in a stabilization of the closed conformation of the channel, thereby inhibiting current activity. The extent of the inhibition is dependent on the Gbeta subunit isoform, and is antagonized by both strong membrane depolarizations and protein kinase C-dependent phosphorylation of the channel. Finally, the inhibition is critically modulated by regulator of G protein signaling proteins, and by proteins forming the presynaptic vesicle release complex. Thus, the regulation of the activities of presynaptic Ca channels is becoming increasingly complex, a feature that may contribute to the overall fine-tuning of Ca entry into presynaptic nerve termini, and thus, neurotransmission.  相似文献   

9.
A trimeric protein complex functions as a synaptic chaperone machine   总被引:12,自引:0,他引:12  
We identify a chaperone complex composed of (1) the synaptic vesicle cysteine string protein (CSP), thought to function in neurotransmitter release, (2) the ubiquitous heat-shock protein cognate Hsc70, and (3) the SGT protein containing three tandem tetratricopeptide repeats. These three proteins interact with each other to form a stable trimeric complex that is located on the synaptic vesicle surface, and is disrupted in CSP knockout mice. The CSP/SGT/Hsc70 complex functions as an ATP-dependent chaperone that reactivates a denatured substrate. SGT overexpression in cultured neurons inhibits neurotransmitter release, suggesting that the CSP/SGT/Hsc70 complex is important for maintenance of a normal synapse. Taken together, our results identify a novel trimeric complex that functions as a synapse-specific chaperone machine.  相似文献   

10.
Cysteine string proteins (CSPs) are secretory vesicle chaperone proteins that contain: (i) a heavily palmitoylated cysteine string (comprised of 14 cysteine residues, responsible for the localization of CSP to secretory vesicle membranes), (ii) an N-terminal J-domain (DnaJ domain of Hsc70, 70 kDa heat-shock cognate protein family of co-chaperones), and (iii) a linker domain (important in mediating CSP effects on secretion). In this study, we investigated the localization of CSP1 in rat parotid acinar cells and evaluated the role of CSP1 in parotid secretion. RT-PCR and western blotting revealed that CSP1 was expressed and associated with Hsc70 in rat parotid acinar cells. Further, CSP1 associated with syntaxin 4, but not with syntaxin 3, on the apical plasma membrane. Introduction of anti-CSP1 antibody into SLO-permeabilized acinar cells enhanced isoproterenol (IPR)-induced amylase release. Introduction of GST-CSP11–112, containing both the J-domain and the adjacent linker region, enhanced IPR-induced amylase release, whereas neither GST-CSP11–82, containing the J-domain only, nor GST-CSP183–112, containing the linker region only, did produce detectable enhancement. These results indicated that both the J-domain and the linker domain of CSP1 are necessary to function an important role in acinar cell exocytosis.  相似文献   

11.
R J Miller 《FASEB journal》1990,4(15):3291-3299
Ca2+ influx into the nerve terminal is normally the trigger for the release of neurotransmitters. Many neurons possess presynaptic receptors whose activation results in changes in the quantity of neurotransmitter released by an action potential. This paper reviews studies that show that presynaptic receptors can regulate the activity of Ca2+ channels in the nerve terminal, resulting in changes in the influx of Ca2+ and in neurotransmitter release. Neurons possess several different types of voltage-sensitive Ca2+ channels. Ca2+ influx through N-type channels appears to trigger transmitter release in many instances. In other cases Ca2+ influx through L channels can influence transmitter release. Neurotransmitters can inhibit N channels through a G protein-mediated transduction mechanism. The G proteins are frequently pertussis toxin substrates. Inhibition of N channels appears to involve changes in their voltage dependence. Neurotransmitters can also regulate neuronal K+ channels. Activation of these K+ channels can lead to a reduction in Ca2+ influx and neurotransmitter release; these effects are also mediated by G proteins. Thus neurotransmitters may often regulate both presynaptic Ca2+ and K+ channels. These two effects may be synergistic mechanisms for the regulation of Ca2+ influx and neurotransmitter release.  相似文献   

12.
In addition to the core vesicle fusion machinery, the SNARE proteins, a large number of regulatory proteins have been implicated in the process of Ca2+-dependent exocytosis. How these exocytotic proteins are properly targeted and how their myriad interactions are temporally and spatially coordinated is poorly understood. Cysteine string protein (CSP), a secretory vesicle membrane protein and a member of the dnaJ family of co-chaperones, may assist in performing this function. Through its interaction with the ubiquitous chaperone, Hsc70, it is thought that cysteine string protein targets chaperone complexes to the exocytotic machinery to facilitate the correct folding of polypeptides or to regulate the assembly of protein complexes. Since its discovery, there have been conflicting reports from different systems concerned with whether cysteine string protein exerts its effects on exocytosis either up- or down-stream of Ca2+-influx. In this review, we summarize recent experiments that associate cysteine string protein with the regulation of vesicle filling, vesicle docking, Ca2+-channels and the SNARE proteins themselves, hence supporting a role for cysteine string protein as a multifunctional secretory co-chaperone. In addition, we provide an update on the mammalian isoforms of cysteine string protein following the recent discovery of two novel cysteine string proteins.  相似文献   

13.
In the past few years several spontaneous or engineered mouse models with mutations in Ca2+ channel genes have become available, providing a powerful approach to defining Ca2+ channel function in vivo. There have been recent advances in outlining the phenotypes and in the functional analysis of mouse models with mutations in genes encoding the pore-forming subunits of Ca(V)2.1 (P/Q-type), Ca(V)2.2 (N-type) and Ca(V)2.3 (R-type) Ca2+ channels, the channels involved in controlling neurotransmitter release at mammalian synapses. These data indicate that Ca(V)2.1 channels have a dominant and efficient specific role in initiating fast synaptic transmission at central excitatory synapses in vivo, and suggest that the Ca(V)2.1 channelopathies are primarily synaptic diseases. The different disorders probably arise from disruption of neurotransmission in specific brain regions: the cortex in the case of migraine, the thalamus in the case of absence epilepsy and the cerebellum in the case of ataxia.  相似文献   

14.
Cysteine string protein alpha (CSPalpha)--an abundant synaptic vesicle protein that contains a DNA-J domain characteristic of Hsp40 chaperones--is thought to regulate Ca2+ channels and/or synaptic vesicle exocytosis. We now show that, in young mice, deletion of CSPalpha does not impair survival and causes no significant changes in presynaptic Ca2+ currents or synaptic vesicle exocytosis as measured in the Calyx of Held synapse. At 2-4 weeks of age, however, CSPalpha-deficient mice develop a progressive, fatal sensorimotor disorder. The neuromuscular junctions and Calyx synapses of CSPalpha-deficient mice exhibit increasing neurodegenerative changes, synaptic transmission becomes severely impaired, and the mutant mice die at approximately 2 months of age. Our data suggest that CSPalpha is not essential for the normal operation of Ca2+ channels or exocytosis but acts as a presynaptic chaperone that maintains continued synaptic function, raising the possibility that enhanced CSPalpha function could attenuate neurodegenerative diseases.  相似文献   

15.
Cysteine string proteins (CSPs) are novel synaptic vesicle-associated protein components characterized by an N-terminal J-domain and a central palmitoylated string of cysteine residues. The cellular localization and functional role of CSP was studied in pancreatic endocrine cells. In situ hybridization and RT-PCR analysis demonstrated CSP mRNA expression in insulin-producing cells. CSP1 mRNA was present in pancreatic islets; both CSP1 and CSP2 mRNAs were seen in insulin-secreting cell lines. Punctate CSP-like immunoreactivity (CSP-LI) was demonstrated in most islets of Langerhans cells, acinar cells and nerve fibers of the rat pancreas. Ultrastructural analysis showed CSP-LI in close association with membranes of secretory granules of cells in the endo- and exocrine pancreas. Subcellular fractionation of insulinoma cells showed CSP1 (34/36 kDa) in granular fractions; the membrane and cytosol fractions contained predominantly CSP2 (27 kDa). The fractions also contained proteins of 72 and 70 kDa, presumably CSP dimers. CSP1 overexpression in INS-1 cells or intracellular administration of CSP antibodies into mouse ob/ob beta-cells did not affect voltage-dependent Ca2+-channel activity. Amperometric measurements showed a significant decrease in insulin exocytosis in individual INS-1 cells after CSP1 overexpression. We conclude that CSP is associated with insulin secretory granules and that CSP participates in the molecular regulation of insulin exocytosis by mechanisms not involving changes in the activity of voltage-gated Ca2+-channels.  相似文献   

16.
The release of neurotransmitter glutamate from isolated nerve terminals (synaptosomes) was found to be tightly coupled to the entry of Ca2+ through voltage-dependent Ca2+ channels, but is relatively unresponsive to "bulk" increases in cytosolic Ca2+ concentrations ([Ca2+]c) effected by Ca2+ ionophore. Under the same conditions, this dependence on Ca2+ influx, specifically through Ca2+ channels, was also seen for the dephosphorylation of a 96-kDa protein, (P96), present in the nerve terminals, as well as the phosphorylation of proteins migrating at 75 kDa (P75), corresponding to the synapsins, a group of well characterized synaptic vesicle-associated proteins. P96 dephosphorylation, following Ca2+ influx, was persistent and insensitive to the phosphatase inhibitor okadaic acid, suggesting a phosphatase other than protein phosphatase 1 and 2A as being responsible. Perhaps through the same phosphatase activity the increase in P75 phosphorylation was rapidly reversed with a time course similar to P96 dephosphorylation. When release, P96 dephosphorylation, and P75 phosphorylation were considered as functions of the [Ca2+]c increases achieved by depolarization and Ca2+ ionophore, there was no correlation of any of these with the overall concentration of Ca2+ in the cytosol. Since the fura-2 method used to measure [Ca2+] gives an averaged [Ca2+]c, these results imply that the release and protein dephosphorylation events are functionally coupled to local [Ca2+]c, in the immediate vicinity of Ca2+ channels. The reported clustering of the latter at the active zone area of the synapse and the parallelism between synaptic vesicle exocytosis and the phosphorylation of synaptic vesicle-associated proteins (p75:synapsins Ia/Ib), suggests that P96 may be similarly localized at the active zone area and, therefore, may be of significance in a modulatory role in glutamate release.  相似文献   

17.
The alpha subunits of heterotrimeric GTP-binding (G) proteins act upon ion channels through both cytoplasmic and membrane-delimited pathways (Brown, A. M., and Birnbaumer, L. (1990) Annu. Rev. Physiol. 52, 197-213). The membrane pathway may involve either a direct interaction between G protein and ion channel or an indirect interaction involving a membrane-delimited second messenger. To distinguish between the two possibilities, we tested whether a purified G protein could interact with a purified channel protein in a defined system to produce changes in channel currents. We selected the alpha subunit of Gs and the dihydropyridine (DHP)-sensitive Ca2+ channel of skeletal muscle T-tubules, the DHP binding protein (DHPBP), because: 1) a membrane-delimited interaction between the two has been shown (Brown, A. M., and Birnbaumer, L. (1990) Annu. Rev. Physiol. 52, 197-213; Yatani, A., Imoto, Y., Codina, J., Hamilton, S. L., Brown, A. M., and Birnbaumer, L. (1988) J. Biol. Chem. 263, 9887-9895); and 2) at the present time, these Ca2+ channels are the only putative G protein channel effectors which, following purification, still retain channel function. We used a defined system in which purified components were studied by direct reconstitution in planar lipid bilayers. Just as we had found in crude skeletal muscle T-tubule membranes (Yatani, A., Imoto, Y., Codina, J., Hamilton, S. L., Brown, A. M., and Birnbaumer, L. (1988) J. Biol. Chem. 263, 9887-9895), alpha*s but not alpha*i-3 stimulated Ca2+ currents. However, in the reconstituted system, this probably represents a direct interaction between Gs alpha and Ca2+ channels. To establish whether the two proteins were physically associated in the native T-tubule membrane, we examined the ability of either endogenous G proteins or exogenous alpha*s to purify with detergent-solubilized DHPBP through a wheat germ agglutinin affinity column and a sucrose gradient. Small amounts of a labeled G protein were found to co-purify with DHPBP. In addition, partially purified DHPBP increased the sedimentation rate of purified alpha*s but not alpha*i-3. G proteins were immunoprecipitated with an antibody to the alpha 1 subunit of the DHPBP, and, in addition, both alpha s and the beta subunit of Gs were detected in Western blots of the partially purified DHPBP. The results suggest that Gs and Ca2+ channels are closely associated in the T-tubule plasma membrane, and we conclude that skeletal muscle Ca2+ channels are direct effectors for Gs.  相似文献   

18.
Regulators of G protein signaling (RGS) proteins bind to the α subunits of certain heterotrimeric G proteins and greatly enhance their rate of GTP hydrolysis, thereby determining the time course of interactions among Gα, Gβγ, and their effectors. Voltage-gated N-type Ca channels mediate neurosecretion, and these Ca channels are powerfully inhibited by G proteins. To determine whether RGS proteins could influence Ca channel function, we recorded the activity of N-type Ca channels coexpressed in human embryonic kidney (HEK293) cells with G protein–coupled muscarinic (m2) receptors and various RGS proteins. Coexpression of full-length RGS3T, RGS3, or RGS8 significantly attenuated the magnitude of receptor-mediated Ca channel inhibition. In control cells expressing α1B, α2, and β3 Ca channel subunits and m2 receptors, carbachol (1 μM) inhibited whole-cell currents by ∼80% compared with only ∼55% inhibition in cells also expressing exogenous RGS protein. A similar effect was produced by expression of the conserved core domain of RGS8. The attenuation of Ca current inhibition resulted primarily from a shift in the steady state dose–response relationship to higher agonist concentrations, with the EC50 for carbachol inhibition being ∼18 nM in control cells vs. ∼150 nM in RGS-expressing cells. The kinetics of Ca channel inhibition were also modified by RGS. Thus, in cells expressing RGS3T, the decay of prepulse facilitation was slower, and recovery of Ca channels from inhibition after agonist removal was faster than in control cells. The effects of RGS proteins on Ca channel modulation can be explained by their ability to act as GTPase-accelerating proteins for some Gα subunits. These results suggest that RGS proteins may play important roles in shaping the magnitude and kinetics of physiological events, such as neurosecretion, that involve G protein–modulated Ca channels.  相似文献   

19.
Catterall WA 《Cell calcium》1998,24(5-6):307-323
Electrophysiological studies of neurons reveal different Ca2+ currents designated L-, N-, P-, Q-, R-, and T-type. High-voltage-activated neuronal Ca2+ channels are complexes of a pore-forming alpha 1 subunit of about 190-250 kDa, a transmembrane, disulfide-linked complex of alpha 2 and delta subunits, and an intracellular beta subunit, similar to the alpha 1, alpha 2 delta, and beta subunits previously described for skeletal muscle Ca2+ channels. The primary structures of these subunits have all been determined by homology cDNA cloning using the corresponding subunits of skeletal muscle Ca2+ channels as probes. In most neurons, L-type channels contain alpha 1C or alpha 1D subunits, N-type contain alpha 1B subunits, P- and Q-types contain alternatively spliced forms of alpha 1A subunits, R-type contain alpha 1E subunits, and T-type contain alpha 1G or alpha 1H subunits. Association with different beta subunits also influences Ca2+ channel gating substantially, yielding a remarkable diversity of functionally distinct molecular species of Ca2+ channels in neurons.  相似文献   

20.
The modulation of calcium channels by metabotropic glutamate receptors (mGluRs) is a key event in the fine-tuning of neurotransmitter release. Here we report that, in cerebrocortical nerve terminals of adult rats, the inhibition of glutamate release is mediated by mGluR7. In this preparation, the major component of glutamate release is supported by P/Q-type Ca2+ channels (72.7%). However, mGluR7 selectively reduced the release component that is associated with N-type Ca2+ channels (29.9%). Inhibition of P/Q channels by mGluR7 is not masked by the higher efficiency of these channels in driving glutamate release when compared with N-type channels. Thus, activation of mGluR7 failed to reduce the release associated with P/Q channels when the extracellular calcium concentration, ([Ca2+]o), was reduced from 1.3 to 0.5 mm. Through Ca2+ imaging, we show that Ca2+ channels are distributed in a heterogeneous manner in individual nerve terminals. Indeed, in this preparation, nerve terminals were observed that contain N-type (31.1%; conotoxin GVIA-sensitive) or P/Q-type (64.3%; agatoxin IVA-sensitive) channels or that were insensitive to these two toxins (4.6%). Interestingly, the great majority of the responses to l-AP4 (95.4%) were observed in nerve terminals containing N-type channels. This specific co-localization of mGluR7 and N-type Ca2+-channels could explain the failure of the receptor to inhibit the P/Q channel-associated release component and also reveal the existence of specific targeting mechanisms to localize the two proteins in the same nerve terminal subset.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号