首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper continues previous work on the analysis of nucleic acid-terbium complexes in the solid state. The fluorescence excitation and emission spectra of the RNA-terbium(III) complex is reported. The fluorescence excitation and emission spectra of both the RNA-terbium(III) and DNA-terbium(III) complexes as trapped on millipore filters is reported. One hundred percent of the DNA combined with terbium was trapped on millipore filters. Deoxyribonucleic acid was recovered from DNA-terbium(III) complexes trapped on millipore filters using SDS-extraction. Energy transfer was shown to occur from the bases in nucleic acids to the terbium ion, whereas the actual binding of terbium to nucleic acids was due to phosphate groups. The relative fluorescence of homopolyribonucleotide-terbium complexes showed that the guanine moiety was responsible for most of the observed fluorescence. Binding studies showed an equal affinity of radioactive terbium for all the homopolyribonucleotides. The fluorescence of solid-state DNA and RNA terbium complexes was used to measure picomole quantities of DNA or RNA.  相似文献   

2.
T G Wensel  C H Chang  C F Meares 《Biochemistry》1985,24(12):3060-3069
Energy transfer in the "rapid-diffusion" limit reflects the equilibrium properties of a donor-acceptor system. Rates of energy transfer from freely diffusing terbium chelates to DNA-binding chromophores change dramatically when DNA is added; energy transfer from an electrically neutral chelate is reduced because the energy acceptor becomes partially buried in DNA, while energy transfer from a positive chelate is increased because of electrostatic attraction. The rate constants for energy transfer to DNA-bound chromophores from a positively charged terbium chelate, relative to those from a neutral chelate, were used to estimate the following values for the electrostatic potential near the surface of each DNA-bound acceptor at 298 K in the presence of 1.0 mM added salt (in units of -e/kT): acridine orange, 4.54 +/- 0.11; ethidium, 4.66 +/- 0.07; green Co(III) bleomycin A2, 4.06 +/- 0.11; orange Co(III) bleomycin A2, 3.11 +/- 0.10. Smaller numbers indicate less negative potentials; these can be due to a combination of (1) positive charge on the chromophore, (2) location of the chromophore [particularly Co(III) bleomycin] away from the DNA phosphates, and/or (3) separation of DNA phosphate negative charges by an intercalator. The magnitudes of the individual rate constants indicate that all the DNA-bound chromophores can be directly encountered by the terbium probes. Energy-transfer rate constants from a neutral terbium chelate to DNA-bound and free acceptors can provide a measure of the accessibility of the terbium probe to each bound chromophore. The ratios of these rate constants were as follows: acridine orange, 0.17 +/- 0.01; ethidium, 0.27 +/- 0.02; green form of Co(III) bleomycin A2, 0.48 +/- 0.06; orange form of Co(III) bleomycin A2, 0.71 +/- 0.06. These results are consistent with the probable differences in binding mechanisms for the intercalating chromophores (ethidium and acridine orange) as compared to the Co(III) bleomycins (in which the relevant chromophores are nonintercalating metal centers). In addition, all the results imply that the green Co(III) bleomycin chromophore binds closer to DNA than the orange; this provides a first step toward understanding the structural basis for the different biological properties of these metallobleomycins. Control experiments and theoretical considerations necessary to establish the validity of the results are also presented.  相似文献   

3.
BackgroundThere is a crucial need for finding and developing new compounds as the anticancer and antimicrobial agents with better activity, specific target, and less toxic side effects.ObjectivesBase on the potential anticancer properties of lanthanide complexes, in the paper, the biological applications of terbium (Tb) complex, containing 2,9-dimethyl- 1,10-phenanthroline (Me2Phen) such as anticancer, antimicrobial, DNA cleavage ability, the interaction with FS-DNA (Fish-Salmon DNA) and BSA (Bovine Serum Albumin) was examined.MethodsThe interaction of Tb-complex with BSA and DNA was studied by emission spectroscopy, absorption titration, viscosity measurement, CD spectroscopy, competitive experiments, and docking calculation. Also, the ability of this complex to cleave DNA was reported by gel electrophoresis. Tb-complex was concurrently screened for its antibacterial activities by different methods. Besides, the nanocarriers of Tb-complex (lipid nanoencapsulation (LNEP) and the starch nanoencapsulation (SNEP)), as active anticancer candidates, were prepared. MTT technique was applied to measure the antitumor properties of these compounds on human cancer cell lines.ResultsThe experimental and docking results suggest significant binding between DNA as well as BSA with terbium-complex. Besides, groove binding plays the main role in the binding of this compound with DNA and BSA. The competitive experiment with hemin demonstrated that the terbium complex was bound at site III of BSA, which was confirmed by the docking study. Also, Tb-complex was concurrently screened for its DNA cleavage, antimicrobial, and anticancer activities. The anticancer properties of LNEP and SNEP are more than the terbium compound.ConclusionsTb-complex can bond to DNA/BSA with high binding affinity. Base on biological applications of Tb-complex, it can be concluded that this complex and its nanocarriers can suggest as novel anticancer, antimicrobial candidates.  相似文献   

4.
The kinetics of cadmium and terbium dissociation from bovine testis calmodulin and its tryptic fragments have been studied by stopped-flow fluorescence methods, using the calcium indicator Quin 2. Studies of the tryptic fragments TR1C and TR2C, comprising the N-terminal or C-terminal half of calmodulin, have clearly identified cadmium binding sites I and II as the low-affinity (rapidly dissociating) sites and sites III and IV as the high-affinity (slowly dissociating) sites. Thus the site preference of cadmium is the same as that of calcium. For terbium, however, sites I and II are the high-affinity sites and sites III and IV are the low-affinity sites. Thus, the site preference or terbium is not the same as that of calcium and cadmium. In contrast to previous studies with calcium, we observe two kinetic processes for dissociation from sites III and IV for experiments with both cadmium and terbium. Possible models for the binding of metal ions are discussed.  相似文献   

5.
In this work, the terbium(III), dysprosium(III), and ytterbium(III) complexes containing 2, 2′-bipyridine (bpy) ligand have been synthesized and characterized using CHN elemental analysis, FT-IR, UV–Vis and 1H-NMR techniques and their binding behavior with human serum albumin (HSA) was studied by UV–Vis, fluorescence and molecular docking examinations. The experimental data indicated that all three lanthanide complexes have high binding affinity to HSA with effective quenching of HSA fluorescence via static mechanism. The binding parameters, the type of interaction, the value of resonance energy transfer, and the binding distance between complexes and HSA were estimated from the analysis of fluorescence measurements and Förster theory. The thermodynamic parameters suggested that van der Waals interactions and hydrogen bonds play an important role in the binding mechanism. While, the energy transfer from HSA molecules to all these complexes occurs with high probability, the order of binding constants (BpyTb > BpyDy > BpyYb) represents the importance of radius of Ln3+ ion in the complex-HSA interaction. The results of molecular docking calculation and competitive experiments assessed site 3 of HSA, located in subdomain IB, as the most probable binding site for these ligands and also indicated the microenvironment residues around the bound mentioned complexes. The computational results kept in good agreement with experimental data.  相似文献   

6.
Luminescence methods were used to examine the interaction of Eu(III) and Tb(III) with parvalbumin isozyme III from pike (Esox lucius). The bound lanthanide ions were excited both directly, via laser irradiation, and indirectly, via fluorescence energy transfer from adjacent phenylalanine residues. At high (175 microM) protein concentrations, the lanthanide titration curves exhibited pronounced quenching of luminescence at Ln3+:parvalbumin ratios above 2:1, in agreement with earlier reports (Donato, H., Jr., and Martin, R. B. (1974) Biochemistry 13, 4575-4579). However, in experiments performed with lower concentrations (10 microM), the titrations were well behaved and indicated a lanthanide:protein stoichiometry of 2:1. Equilibrium dialysis measurements performed with Eu(III) ruled out the existence of a third strong binding site which could cause the quenching of the luminescence at high protein concentrations. Similarly, careful analysis of the spectrum that results from direct excitation of the 7F0----5D0 transition of parvalbumin-bound Eu3+ ion revealed no peak attributable to a third Ln3+-binding site. The peak which has been construed by others (Rhee, M.-J., Sudnick, D. R., Arkle, V. K., and Horrocks, W. DeW., Jr. (1981) Biochemistry 20, 3328-3334) as evidence for a third site was shown to result from a pH-dependent spectral transition involving the europium ions bound at the CD and EF sites. Luminescent lifetime measurements performed on Tb(III)/parvalbumin solutions follow Stern-Volmer quenching kinetics at terbium:protein ratios in excess of 2:1, suggesting that the quenching results from collisional deactivation of the tightly bound ions by excess terbium ion free in solution.  相似文献   

7.
To understand the key determinants in calcium-binding affinity, a calcium-binding site with pentagonal bipyramid geometry was designed into a non-calcium-binding protein, domain 1 of CD2. This metal-binding protein has five mutations with a net charge in the coordination sphere of -5 and is termed DEEEE. Fluorescence resonance energy transfer was used to determine the metal-binding affinity of DEEEE to the calcium analog terbium. The addition of protein concentration to Tb(III) solution results in a large enhancement of Tb(III) fluorescence due to energy transfer between terbium ions and aromatic residues in CD2-D1. In addition, both calcium and lanthanum compete with terbium for the same desired metal binding pocket. Our designed protein exhibits a stronger affinity for Tb(III), with a K(d) of 21 microM, than natural calcium-binding proteins with a similar Greek key scaffold.  相似文献   

8.
Helical complexes formed between fd DNA and reductively methylated fd gene 5 protein were indistinguishable by electron microscopy from complexes formed with the nonmethylated protein. 13C NMR spectroscopy of 13C-enriched N epsilon, N epsilon-dimethyllsyl residues of the protein showed that three of these residues (Lys-24, Lys-46, and Lys-69) were selectively perturbed by binding of the oligomer d(pA)7. These were the same lysyl residues that we previously found to be most protected from methylation by binding of the protein to poly[r(U)] [Dick, L. R., Sherry, A. D., Newkirk, M. M., & Gray D. M. (1988) J. Biol. Chem. 263, 18864-18872]. Thus, these lysines are probably directly involved in the nucleic acid binding function of the protein. Negatively charged chelates of lanthanide ions were used to perturb the 13C NMR resonances of labeled lysyl and amino-terminal residues of the gene 5 protein. The terbium chelate was found to bind tightly (Ka approximately 10(5) M-1) to the protein with a stoichiometry of 1 chelate molecule per protein dimer. 13C resonances of Lys-24, Lys-46, and Lys-69 were maximally shifted by the terbium chelate and were maximally relaxed by the gadolinium chelate. Also, the terbium chelate was excluded by the oligomer d(pA)7. Computer fits of the induced chemical shifts of 13C resonances with those expected for various positions of the terbium chelate failed to yield a possible chelate binding site unless the chemical shift for Lys-24 was excluded from the fitting process.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Fluorescence titrations were performed by adding varying mole ratios of terbium(III) to antibody conjugates formed by benzyl isothiocyanate derivatives of three different polyaminopolycarboxylate chelators (NTA, EDTA, and DTPA) and the results compared to values for average chelator content obtained by cobalt-57 binding assays. For two different murine monoclonal antibodies, the average chelator content obtained by terbium fluorescence titration correlated closely with that measured by the cobalt-57 binding assay. It is concluded that lanthanide fluorescence titrations provide a useful alternative to radiometal binding assays for the determination of chelator content in protein-chelator conjugates.  相似文献   

10.
M Takahashi  P Hagmar 《FEBS letters》1991,279(2):270-272
In vitro binding of RecA protein to double-stranded DNA (dsDNA) was studied using ion-exchange liquid chromatography. The method allowed quantification of both free DNA and free protein. The results unambiguously showed a binding stoichiometry of 3 base pairs per RecA monomer. The binding exhibited cooperativity, and the stoichiometry suggested that RecA does not form complexes with two molecules of dsDNA. More than 90% of RecA molecules in the sample were active for DNA binding.  相似文献   

11.
Terbium ions bind with a 2:1 stoichiometry per subunit to inorganic pyrophosphatase from bakers' yeast (EC 3.6.1.1) as measured by an increase of terbium fluorescence. The Tb3+ inhibition of the Mg2+ activated pyrophosphate hydrolysis is caused by a competitive binding at the substrate site of the active centre. The second Mg2+ binding site--the so-called "stabilization site"--is discussed as an additional binding site for Tb3+. Thereby, Tb3+ causes also a stabilization of the enzyme against heat denaturation. The dissociation constants of the terbium-pyrophosphatase interaction are in the micromolar range.  相似文献   

12.
Four subunits of the acetylcholine receptor molecule, obtained from the electric organ of Torpedo ocellata, have been isolated using polyacrylamide gel electrophoresis, and assayed by titration with a fluorescent lanthanide, terbium, and by affinity-labeling with p-(N-maleimido)benzyl [trimethyl-3H] ammonium iodide. The site with which the activator-analogue affinity label reacts, as well as the terbium-binding sites, are mainly associated with the smallest of the subunits of an apparent molecular weight of 40,000. Calcium competes with terbium for these binding sites. The affinity for terbium is the same in the intact molecule as in the subunit (KTb ? 19 ± 1 μM), but the affinity for calcium decreases by a factor of 4 (KCa ? 4 mM) in the subunit. Hydrolysis of the receptor, catalyzed by trypsin and chymotrypsin, to peptides with an apparent molecular weight of 8000 or less, does not affect the terbium-binding sites. These experiments indicate that the binding sites for neural activators and for calcium are associated with the same subunit, and that the terbium- and calcium-binding sites reflect structural properties of the polypeptide chain rather than the three-dimensional structure of the protein.  相似文献   

13.
A strong interaction between iron(III) and calf thymus DNA at pH 7.4 was demonstrated in the present study by separation of the complex by column chromatography and by the slow kinetics of iron(III) removal from DNA by disodium-1,2-dihydroxybenzene-3,5-disulfonate (Tiron). An equilibrium constant of 2.1 x 10(14) was calculated by measurements of bound iron(III) by flame atomic absorption spectroscopy and assuming a one iron to two nucleotide stoichiometry. Graphic analysis of the interaction however, indicated that DNA has two binding sites for iron(III) characterized by a stoichiometry of one iron to 12 nucleotides and one iron to 2 nucleotides, and association constants of 4.8 x 10(12) and 2.3 x 10(11), respectively. The DNA-iron(III) complex isolated by column chromatography was shown to catalyze the oxidation of both 2-phenylethylhydrazine and methylhydrazine by spin-trapping experiments with alpha-(4-pyridyl 1-oxide)-N-tert-butylnitrone (POBN). By contrast, oxidation of 1,2-dimethylhydrazine was not catalyzed. Catalysis of 2-phenylethylhydrazine oxidation was confirmed by oxygen consumption studies. The results suggest that iron chelated to DNA may be significant in DNA damage induced by oxidizable chemicals.  相似文献   

14.
To determine whether accessory proteins mediate the ligand- and DNA sequence-dependent specificity of estrogen receptor (ER) interaction with DNA, the binding of partly purified vs highly purified bovine ER to various estrogen response elements (EREs) was measured in the presence of different ER ligands. Partly purified estradiol-liganded ER (E2-ER) binds cooperatively to stereoaligned tandem EREs flanked by naturally occurring AT-rich sequences, with a stoichiometry of one E2-ER dimer per ERE. In contrast, highly purified E2-ER binds with a 10-fold lower affinity and non-cooperatively to EREs flanked by the AT-rich region. Moreover, the binding stoichiometry of highly purified E2-ER was 0.5 E2-ER dimer, or one monomer per ERE, independent of the ERE flanking sequence. Interestingly, the binding of ER liganded with the antiestrogen 4-hydroxytamoxifen (4-OHT-ER) was non-cooperative with an apparent stoichiometry of 0.5 4-OHT-ER dimer per ERE, regardless of ER purity or ERE flanking sequence. We recently showed that when 4-OHT-ER binds DNA, one molecule of 4-OHT dissociates from the dimeric 4-OHT-ER-ERE complex, accounting for the reduced apparent binding stoichiometry. In contrast, ER covalently bound by tamoxifen aziridine (TAz) gave an ERE binding stoichiometry of one TAz-ER dimer per ERE, and TAz-ER binds cooperatively to multiple AT-rich EREs, regardless of the purity of the receptor. We have obtained evidence that purification of ER removes an accessory protein(s) that interacts with ER in a sequence- and/or DNA conformational-dependent manner, resulting in stabilization of E2, but not 4-OHT, in the ligand binding domain when the receptor binds to DNA. We postulate that retention of ligand by ER maintains the receptor in a conformation necessary to achieve high-affinity, cooperative ERE binding.  相似文献   

15.
The protein dyes Light Green and Orange II were studied separately and in combination with the Feulgen-Pararosanilin(SO2) and -Thionin(SO2) method for the simultaneous determination of DNA and protein. - With polyacrylamide modelfilms the pH dependency, specificity and stoichiometry of Light Green and Orange II have been investigated. The results of both staining methods with different biological objects have been compared. - In addition, the Feulgen-Thionin(SO2) method was studied with model films with respect to its specificity and stoichiometry. In biological objects it has been compared with the Feulgen-Pararosanilin(SO2) method. - When combining the Light Green staining with the Feulgen-Pararosanilin(SO2) procedure and the Orange II staining with Feulgen-Thionin(SO2), both Feulgen-DNA stainings, which were first applied, proved to be unaffected by the following protein staining procedure. When the Feulgen procedure was carried out without the dye, followed by Light Green staining, the latter became reduced when a sulfite water rinse was included but was unaffected when a running tap water rinse was used. In the case of the Orange II staining a serious reduction in dye binding capacity was found in both situations. - When the Feulgen-Pararosanilin(SO2) Light Green procedure was carried out on isolated nuclei with all dyes present, a decrease of protein dye binding was observed, similar to that found with the well-known Feulgen-Pararosanilin(SO2) Naphthol Yellow S combination. It is concluded that in spite of this reduction the latter two combinations can be used for the cytophotometric analysis of DNA and protein in the same object.  相似文献   

16.
A synthetic octapeptide, H-GlyGluGlyGluGlySerGlyGly-OH, and its phosphorylated Ser derivative were synthetized and their solution speciation and binding modes in their complexes with Al(III) were measured. One goal of the work was find a lead compound for the design of a selective peptide-based Al(III) chelator. pH-potentiometry was used to characterize the stoichiometry and the stability of the species formed in the interactions of the metal ion and the peptides, while multinuclear NMR was applied to characterize the binding sites of the metal ion in the complexes. CD spectroscopy revealed a difference in the conformational behaviour of the phosphorylated peptide as compared with its non-phosphorylated parent derivative. The Al(III) is presumed to enhance aggregation through the -PO3H(-)-Al(3+)-PO3(2-)-Al(3+)- intermolecular bindings between the peptide chains. The results of molecular dynamics calculations supported the experimentally obtained secondary structures and the binding position of Al(III).  相似文献   

17.
V W Burns 《Biopolymers》1985,24(7):1293-1300
Energy transfer in nucleic acids or polynucleotides at room temperature can be studied by using the fluorescence of complexed terbium (III) as a tool. Complexing the heavy atom thallium (I) enhances energy transfer from poly(G) to terbium (III). Thallium has no effect on transfer from GMP to terbium and a small negative effect on the transfer from single-stranded DNA to terbium. Use of the Medinger-Wilkinson model to analyze the poly(G) results provides an estimate of the room-temperature intersystem crossing constant.  相似文献   

18.
The guanine-rich sequence, specifically in DNA, telomeric DNA, is a potential target of anticancer drugs. In this work, a mononuclear Fe(III) complex containing two meloxicam ligands was synthesized as a G-quadruplex stabilizer. The interaction between the Fe(III) complex and G-quadruplex with sequence of 5′-G3(T2AG3)3-3′ (HTG21) was investigated using spectroscopic methods, molecular modeling, and polymerase chain reaction (PCR) assays. The spectroscopic methods of UV–vis, fluorescence, and circular dichroism showed that the metal complex can effectively induce and stabilize G-quadruplex structure in the G-rich 21-mer sequence. Also, the binding constant between the Fe(III) complex and G-quadruplex was measured by these methods and it was found to be 4.53(±0.30)?×?105 M?1). The PCR stop assay indicated that the Fe(III) complex inhibits DNA amplification. The cell viability assay showed that the complex has significant antitumor activities against Hela cells. According to the UV–vis results, the interaction of the Fe(III) complex with duplex DNA is an order of magnitude lower than G-quadruplex. Furthermore, the release of the complex incorporated in bovine serum albumin nanoparticles was also investigated in physiological conditions. The release of the complex followed a bi-phasic release pattern with high and low releasing rates at the first and second phases, respectively. Also, in order to obtain the binding mode of the Fe(III) complex with G-quadruplex, molecular modeling was performed. The molecular docking results showed that the Fe(III) complex was docked to the end-stacked of the G-quadruplex with a ππ interaction, created between the meloxicam ligand and the guanine bases of the G-quadruplex.  相似文献   

19.
Terbium as a fluorescent probe for DNA and chromatin.   总被引:3,自引:0,他引:3  
Terbium reacted with DNA and chromatin to form a complex in which terbium acted as a sensitive fluorescent probe. By measuring the narrow-line emission of Tb-3+ when DNA is selectively excited, the relative amount of Tb-3+ bound to the DNA can be calculated. Terbium was bound to DNA until one Tb-3+ was present for each phosphate group. After this point no more terbium was bound. TbCl3 was bound to chromatin in a linear manner until approximately 0.48 TbCl3 was added for each phosphate group in the chromatin-DNA solution. From these data it appears that 52% of the phosphate groups in chromatin were unavailable for binding. The binding of Tb-3+ to DNA can be reversed by prolonged dialysis against 0.5 M NaCl and chelating agents. The terbium ion is ideal in that it binds DNA tight enough so that completion of the reaction can be assumed but loose enough so that it can be removed by gentle means. Low concentrations of salt (up to 2 mM NaCl) enhance the quantum efficiency. Below pH 3 and above pH 7 the DNA-terbium complex will not form. Between pH 3 and pH 7 the quantum efficiency of the DNA terbium complex increases from either pH to a maximum at pH 5.5 to 5.6. Several biochemical uses for Tb-3+ ion are suggested.  相似文献   

20.
X-ray crystal and other structural analyses indicate that Yb(III) and all four newly synthesized ligands can form a binuclear Yb(III) complex with a 1:1 metal to ligand stoichiometry by octacoordination at the Yb(III) center. Investigations of DNA binding properties show that all the ligands and Yb(III) complexes can bind to Calf thymus DNA through intercalations with the binding constants at the order of magnitude 105–107 M−1, but Yb(III) complexes present stronger affinities to DNA than ligands. All the ligands and Yb(III) complexes may be used as potential anticancer drugs. Investigations of antioxidation properties show that all the ligands and Yb(III) complexes have strong scavenging effects for hydroxyl radicals and superoxide radicals but Yb(III) complexes show stronger scavenging effects for hydroxyl radicals than ligands. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号