共查询到20条相似文献,搜索用时 15 毫秒
1.
Interaction between vestibulosympathetic and skeletal muscle reflexes on sympathetic activity in humans 总被引:2,自引:0,他引:2
Evidence from animalsindicates that skeletal muscle afferents activate the vestibular nucleiand that both vestibular and skeletal muscle afferents have inputs tothe ventrolateral medulla. The purpose of the present study was toinvestigate the interaction between the vestibulosympathetic andskeletal muscle reflexes on muscle sympathetic nerve activity (MSNA)and arterial pressure in humans. MSNA, arterial pressure, and heartrate were measured in 17 healthy subjects in the prone position duringthree experimental trials. The three trials were 2 min of 1)head-down rotation (HDR) to engage the vestibulosympathetic reflex,2) isometric handgrip (IHG) at 30% maximal voluntarycontraction to activate skeletal muscle afferents, and 3)HDR and IHG performed simultaneously. The order of the three trials wasrandomized. HDR and IHG performed alone increased total MSNA by 46 ± 16 and 77 ± 24 units, respectively (P < 0.01). During the HDR plus IHG trial, MSNA increased 142 ± 38 units (P < 0.01). This increase was not significantlydifferent from the sum of the individual trials (130 ± 41 units).This finding was also observed with mean arterial pressure (sum = 21 ± 2 mmHg and HDR + IHG = 22 ± 2 mmHg). Thesefindings suggest that there is an additive interaction for MSNA andarterial pressure when the vestibulosympathetic and skeletal musclereflexes are engaged simultaneously in humans. Therefore, no centralmodulation exists between these two reflexes with regard to MSNA outputin humans. 相似文献
2.
Kerman IA Yates BJ McAllen RM 《American journal of physiology. Regulatory, integrative and comparative physiology》2000,279(1):R109-R117
To investigate the possibility that expression of vestibulosympathetic reflexes (VSR) is related to a nerve's anatomic location rather than its target organ, we compared VSR recorded from the same type of postganglionic fiber [muscle vasoconstrictor (MVC)] located at three different rostrocaudal levels: hindlimb, forelimb, and face. Experiments were performed on chloralose-anesthetized cats, and vestibular afferents were stimulated electrically. Single MVC unit activity was extracted by spike shape analysis of few-fiber recordings, and unit discrimination was confirmed by autocorrelation. Poststimulus time histogram analysis revealed that about half of the neurons were initially inhibited by vestibular stimulation (type 1 response), whereas the other MVC fibers were initially strongly excited (type 2 response). MVC units with types 1 and 2 responses were present in the same nerve fascicle. Barosensitivity was equivalent in the two groups, but fibers showing type 1 responses fired significantly faster than those giving type 2 responses (0.29 +/- 0.04 vs. 0.20 +/- 0.02 Hz). Nerve fibers with type 1 responses were most common in the hindlimb (21 of 29 units) and least common in the face (2 of 11 units), the difference in relative proportion being significant (P < 0.05, chi(2) test). These results support the hypothesis that VSR are anatomically patterned. 相似文献
3.
Activation of the vestibular otolith organs with head-down rotation (HDR) increases muscle sympathetic nerve activity (MSNA) in humans. Previously, we demonstrated this vestibulosympathetic reflex (VSR) elicits increases in MSNA during baroreflex unloading (i.e., lower body negative pressure) in humans. Whether such an effect persists during baroreflex loading is unknown. We tested the hypothesis that the ability of the VSR to increase MSNA is preserved during baroreflex unloading and inhibited during baroreflex loading. Ten subjects (26 +/- 1 yr) performed three trials of HDR to activate the VSR. These trials were performed after a period of sustained saline (control), nitroprusside (baroreflex unloading: 0.8-1.0 microg.kg(-1).min(-1)), and phenylephrine (baroreflex loading: 0.6-0.8 microg.kg(-1).min(-1)) infusion. Nitroprusside infusion decreased (Delta7 +/- 1 mmHg, where Delta is change; P < 0.001) and phenylephrine infusion increased mean arterial pressure (Delta8 +/- 1 mmHg; P < 0.001) at rest. HDR performed during the control [Delta3 +/- 2 bursts/min, Delta314 +/- 154 arbitrary units (au) total activity, Delta41 +/- 18% total activity; P < 0.05] and nitroprusside trials [Delta5 +/- 2 bursts/min, Delta713 +/- 241 au total activity, Delta49 +/- 20% total activity; P < 0.05] increased MSNA similarly despite significantly elevated levels at rest (13 +/- 2 to 26 +/- 3 bursts/min) in the latter. In contrast, HDR performed during the phenylephrine trial failed to increase MSNA (Delta0 +/- 1 bursts/min, Delta-15 +/- 33 au total activity, Delta-8 +/- 21% total activity). These results confirm previous findings that the ability of the VSR to increase MSNA is preserved during baroreflex unloading. In contrast, the ability of the VSR to increase MSNA is abolished during baroreflex loading. These results provide further support for the concept that the VSR may act primarily to defend against hypotension in humans. 相似文献
4.
Otolith organs have been shown to activate the sympathetic nervous system in the prone position by head-down rotation (HDR) in humans. To date, otolithic stimulation by HDR has not been comprehensively studied in the upright posture. The purpose of the present study was to determine whether otolithic stimulation increases muscle sympathetic nerve activity (MSNA) in the upright posture. It was hypothesized that stimulation of the otolith organs would increase MSNA in the upright posture, despite increased baseline sympathetic activation due to unloading of the baroreceptors. MSNA, arterial blood pressure, heart rate, and degree of head rotation were measured during HDR in 18 volunteers (23 +/- 1 yr) in different postures. Study 1 (n = 11) examined HDR in the prone and sitting positions and study 2 (n = 7) examined HDR in the prone and 60 degrees head-up tilt positions. Baseline MSNA was 8 +/- 4, 15 +/- 4, and 33 +/- 2 bursts/min for prone, sitting, and head-up tilt, respectively. HDR significantly increased MSNA in the prone (Delta4 +/- 1 and Delta105 +/- 37% for burst frequency and total activity, respectively), sitting (Delta5 +/- 1 and Delta43 +/- 12%), and head-up tilt (Delta7 +/- 1 and Delta110 +/- 41%; P < 0.05). Sensitivity of the vestibulosympathetic reflex (%DeltaMSNA/DeltaHDR; degree of head rotation) was significantly greater in the sitting and head-up tilt than prone position (prone = 74 +/- 22; sitting = 109 +/- 30; head-up tilt = 276 +/- 103; P < 0.05). These data indicate that stimulation of the otolith organs can mediate increases in MSNA in the upright posture and suggest a greater sensitivity of the vestibulosympathetic reflex in the upright posture in humans. 相似文献
5.
Dyckman DJ Sauder CL Ray CA 《American journal of physiology. Regulatory, integrative and comparative physiology》2011,300(3):R630-R634
The glycerol dehydration test (GDT) has been used to test for the presence of Ménière's disease and elicits acute alterations in vestibular reflexes in both normal and pathological states. Activation of the vestibulosympathetic reflex (VSR) increases muscle sympathetic nerve activity (MSNA) and peripheral vascular resistance. We hypothesized that the GDT would attenuate the VSR through fluid shifts of the inner ear. Sixteen male subjects (26 ± 1 yr) were randomly assigned to be administered either glycerol mixed with cranberry juice (97 ± 3 ml glycerol + equal portion of cranberry juice; n = 9) or a placebo control [water + cranberry juice (100 ml each); n = 7]. Subjects in both groups performed head-down rotation (HDR), which engages the VSR, before and after administration of either the glycerol or placebo. MSNA (microneurography), arterial blood pressure, and leg blood flow (venous occlusion plethysmography) were measured during HDR. Before glycerol administration, HDR significantly increased MSNA burst frequency (Δ8 ± 1 bursts/min; P < 0.01) and total activity (Δ77 ± 18%; P < 0.01) and decreased calf vascular conductance (-Δ20 ± 3%; P < 0.01). However, HDR performed postadministration of glycerol resulted in an attenuated MSNA increase (Δ3 ± 1 bursts/min, Δ22 ± 3% total activity) and decrease in calf vascular conductance (-Δ7 ± 4%). HDR significantly increased MSNA burst frequency (Δ5 ± 1 and Δ5 ± 2 bursts/min) and total activity (Δ58 ± 13% and Δ52 ± 18%) in the placebo group before and after placebo, respectively (P < 0.01). Likewise, decreases in calf vascular conductance during HDR before and after placebo were not different (-Δ13 ± 4% and -Δ14 ± 2%, respectively; P < 0.01). These results suggest that fluid shifts of the inner ear via glycerol dehydration attenuate the VSR. These data provide support that inner ear fluid dynamics can have a significant impact on blood pressure regulation via the VSR in humans. 相似文献
6.
Animal studies indicate that opioids inhibit the firing rate of vestibular neurons, which are important in mediating the vestibulosympathetic reflex. Furthermore, this inhibition appears to be greater in more mature rats. In the present study, we tested the hypotheses that opioids inhibit the vestibulosympathetic reflex in humans and that endogenous opioids contribute to the age-related impairment of the vestibulosympathetic reflex. These hypotheses were tested by measuring muscle sympathetic nerve activity (MSNA), arterial blood pressure, and heart rate responses to otolith organ engagement during head-down rotation (HDR) in young (24 +/- 2 yr old) and older (63 +/- 2 yr) subjects before and after administration of either an opioid-receptor antagonist (16 mg naloxone in 9 young and 8 older subjects) or an opioid-receptor agonist (60 mg codeine in 7 young and 7 older subjects). Naloxone did not augment the reflex increase in MSNA during HDR in young (Delta7 +/- 2 vs. Delta4 +/- 2 bursts/min and Delta81 +/- 23 vs. Delta60 +/- 24% change in burst frequency and total MSNA before and after naloxone, respectively) or older subjects (Delta2 +/- 2 vs. Delta1 +/- 2 burst/min and Delta8 +/- 7 vs. Delta8 +/- 9% before and after naloxone). Similarly, codeine did not attenuate the increase in MSNA during HDR in young (Delta8 +/- 1 vs. Delta7 +/- 2 bursts/min and Delta53 +/- 4 vs. Delta64 +/- 16% before and after codeine) or older subjects (Delta6 +/- 4 vs. Delta3 +/- 3 bursts/min and Delta38 +/- 21 vs. Delta33 +/- 20%). Mean arterial blood pressure and heart rate responses to HDR were not altered by either naloxone or codeine. These data do not provide experimental support for the concept that opioids modulate the vestibulosympathetic reflex in humans. Moreover, endogenous opioids do not appear to contribute the age-associated impairment of the vestibulosympathetic reflex. 相似文献
7.
Thermoregulatory reflexes and cutaneous active vasodilation during heat stress in hypertensive humans 总被引:1,自引:0,他引:1
Kellogg D. L. Jr.; Morris S. R.; Rodriguez S. B.; Liu Y.; Grossmann M.; Stagni G.; Shepherd A. M.M. 《Journal of applied physiology》1998,85(1):175-180
During dynamic exercise in the heat, increasesin skin blood flow are attenuated in hypertensive subjects whencompared with normotensive subjects. We studied responses to passiveheat stress (water-perfused suits) in eight hypertensive and eightnormotensive subjects. Forearm blood flow was measured byvenous-occlusion plethysmography, mean arterial pressure (MAP) wasmeasured by Finapres, and forearm vascular conductance (FVC) wascalculated. Bretylium tosylate (BT) iontophoresis was used to blockactive vasoconstriction in a small area of skin. Skin blood flow was indexed by laser-Doppler flowmetry at BT-treated and untreated sites,and cutaneous vascular conductance was calculated. In normothermia, FVCwas lower in hypertensive than in normotensive subjects(P < 0.01). During heat stress, FVCrose to similar levels in both groups(P > 0.80); concurrent cutaneousvascular conductance increases were unaffected by BT treatment(P > 0.60). MAP was greater in hypertensive than in normotensive subjects during normothermia (P < 0.05, hypertensive vs.normotensive subjects). During hyperthermia, MAP fell in hypertensivesubjects but showed no statistically significant change in normotensivesubjects (P < 0.05, hypertensive vs.normotensive subjects). The internal temperature at which vasodilationbegan did not differ between groups (P > 0.80). FVC is reduced during normothermia in unmedicatedhypertensive subjects; however, they respond to passive heat stress ina fashion no different from normotensive subjects. 相似文献
8.
Neck afferents and muscle sympathetic activity in humans: implications for the vestibulosympathetic reflex 总被引:6,自引:0,他引:6
Ray, Chester A., and Keith M. Hume. Neck afferents andmuscle sympathetic activity in humans: implications for the vestibulosympathetic reflex. J. Appl.Physiol. 84(2): 450-453, 1998.We have shownpreviously that head-down neck flexion (HDNF) in humans elicitsincreases in muscle sympathetic nerve activity (MSNA). The purpose ofthis study was to determine the effect of neck muscle afferents onMSNA. We studied this question by measuring MSNA before and after headrotation that would activate neck muscle afferents but not thevestibular system (i.e., no stimulation of the otolith organs orsemicircular canals). After a 3-min baseline period with the head inthe normal erect position, subjects rotated their head to the side(~90°) and maintained this position for 3 min. Head rotation wasperformed by the subjects in both the prone(n = 5) and sitting(n = 6) positions. Head rotation did not elicit changes in MSNA. Average MSNA, expressed asburst frequency and total activity, was 13 ± 1 and 13 ± 1 bursts/min and 146 ± 34 and 132 ± 27 units/min during baselineand head rotation, respectively. There were no significant changes incalf blood flow (2.6 ± 0.3 to 2.5 ± 0.3 ml · 100 ml1 · min1;n = 8) and calf vascular resistance(39 ± 4 to 41 ± 4 units; n = 8). Heart rate (64 ± 3 to 66 ± 3 beats/min;P = 0.058) and mean arterial pressure(90 ± 3 to 93 ± 3; P < 0.05)increased slightly during head rotation. Additional neck flexionstudies were performed with subjects lying on their side(n = 5). MSNA, heart rate, and meanarterial pressure were unchanged during this maneuver, which also doesnot engage the vestibular system. HDNF was tested in 9 of the 13 subjects. MSNA was significantly increased by 79 ± 12% (P < 0.001) during HDNF. Thesefindings indicate that neck afferents activated by horizontal neckrotation or flexion in the absence of significant force development donot elicit changes in MSNA. These findings support the concept thatHDNF increases MSNA by the activation of the vestibular system. 相似文献
9.
R Banzett K Strohl B Geffroy J Mead 《Journal of applied physiology (Bethesda, Md. : 1985)》1981,51(3):660-664
Inspiratory muscle activity increases when lung volume is increased by continuous positive-pressure breathing in conscious human subjects (Green et al., Respir. Physiol. 35: 283-300, 1978). Because end-tidal CO2 pressure (PETCO2) does not change, these increases have not been attributed to chemoreflexes. However, continuous positive-pressure breathing at 20 cmH2O influences the end-tidal to arterial CO2 pressure differences (Folkow and Pappenheimer, J. Appl. Physiol. 8: 102-110, 1955). We have compared PETCO2 with arterial CO2 pressure (PaCO2). We have compared PETCO2 with arterial CO2 pressure (PaCO2) in healthy human subjects exposed to continuous positive airway pressure (10 cmH2O) or continuous negative pressure around the torso (-15 cmH2O) sufficient to increase mean lung volume by about 650 ml. The difference between PETCO2 and PaCO2 was not decreased, and we conclude that PETCO2 is a valid measure of chemical drive to ventilation in such circumstances. We observed substantial increases in respiratory muscle electromyograms during pressure breathing as seen previously and conclude this response must originate by proprioception. On average, the compensation of tidal volume thus afforded was complete, but the wide variability of individual responses suggests that there was a large cerebral cortical component in the responses seen here. 相似文献
10.
11.
Hypoxia and monosynaptic reflexes in humans 总被引:1,自引:0,他引:1
The recruitment curves of the monosynaptic Hoffmann (H) reflex and of the direct motor (M) excitation of alpha-motor fibers of the posterior popliteal nerve were studied in seven human subjects in normoxic and hypoxic conditions at sea level. The amplitude of the H and M responses were determined from the computerized full-wave rectified and integrated surface electromyographic (EMG) signal derived from bipolar surface electrodes placed over the soleus muscle. Hypoxic exposure [end-tidal O2 fraction (FETO2) = 0.066 +/- 0.003 and end-tidal CO2 fraction (FETCO2) = 0.0504 +/- 0.001 (SE)] did not affect the maximal M (Mmax) response but decreased significantly (7%) the maximal H (Hmax) response. The Hmax/Mmax ratio decreased from 0.60 to 0.53. Furthermore, by fitting the rising phase of the recruitment curves of the H and M responses vs. stimulus intensity with linear regressions, hypoxia was found to produce a significant decrease of similar magnitude (6%) in the threshold of both the H and M responses with no change in slope. Using a constant stimulus strength eliciting an H response of half the maximum (H50%) of the control conditions, hypoxia resulted in a 50% increase in the amplitude of the H response within 12 min. These results suggest that the effects of hypoxia on the nervous system consist of a direct depolarizing action on the peripheral alpha-fibers and 1A sensory fibers and of a central effect on supraspinal structures affecting the spinal alpha-motoneurons. 相似文献
12.
Six male subjects exercised for 50 min at 25% (light exercise) and 55% (moderate exercise) of their estimated aerobic capacities in environments of 42 degrees C db, 35 degrees C wb and 30 degrees C db, 24 degrees C wb, respectively. Alterations in the hematocrit, hemoglobin, and plasma protein concentrations, and in the activity of an injected aliquot of isotopically labeled albumin were each used to calculate the percentage change in plasma volume occurring during exercise and recovery. Changes in each measure were consistent with a reduction in plasma volume during exercise and a return to preexercise levels during recovery. There was no significant difference between the measures when exercising in the heat, but during the more severe exercise in the cooler environment disproportional changes in protein, hematocrit, and hemoglobin were observed. Disproportional changes were also seen during the recovery phase, when the hematocrit and hemoglobin concentration indicated a more rapid return of the plasma volume to preexercise levels than did either the plasma protein concentration or albumin activity. During moderate exercise and recovery there was a 1% decrease in red cell volume. It is concluded that exercise accelerates the rate of protein movement from extravascular compartments to the intravascular compartment, leading to elevated plasma protein levels during recovery which favor the return of water to the intravascular space. Hemoglobin concentration is considered to be the most reliable measure of plasma volume change during exercise. 相似文献
13.
Gabrielsen A Petersen HH Johansen LB Foldager N Christensen NJ Norsk P 《Journal of gravitational physiology : a journal of the International Society for Gravitational Physiology》1996,3(1):29-36
In order to determine the relative role of low- and high-pressure reflexes, respectively, on forearm sympathetic nerve activity (fSNA), 10 normal male subjects underwent a 4-step (5 min each) graded lower body negative pressure (LBNP) from -10 to -50 mmHg. Central venous pressure (CVP) and stroke volume gradually decreased (p<0.05), and arterial pulse pressure (PP) abruptly decreased at LBNP of -50 mmHg. Mean arterial pressure (MAP) remained unchanged. Forearm venous plasma norepinephrine concentration (fvNE) increased significantly at LBNP of -35 mmHg (p<0.05) and with a further sharp increase during LBNP of -50 mmHg (p<0.05). High degrees of intra-individual correlations were observed between changes in Log [fvNE] and CVP (r-values from -0.78 to -0.96, p<0.01). We conclude that low-pressure reflexes are the major determinants of fSNA during non-hypotensive gravitational stress (MAP and PP unchanged). When the gravitational stress is more pronounced, a decrease in PP further augments fSNA through inhibition of high-pressure arterial baroreflexes. 相似文献
14.
Park Y. H.; Iwamoto J.; Tajima F.; Miki K.; Park Y. S.; Shiraki K. 《Journal of applied physiology》1988,64(5):1916-1922
The present work was undertaken to determine the critical water temperature (Tcw), defined as the lowest water temperature a subject can tolerate at rest for 3 h without shivering, of wet-suited subjects during water immersion at different ambient pressures. Nine healthy males wearing neoprene wet suits (5 mm thick) were subjected to immersion to the neck in water at 1, 2, and 2.5 ATA while resting for 3 h. Continuous measurements of esophageal (T(es)) and skin (Tsk) temperatures and heat loss from the skin (Htissue) and wet suits (Hsuit) were recorded. Insulation of the tissue (Itissue), wet suits (Isuit), and overall total (Itotal) were calculated from the temperature gradient and the heat loss. The Tcw increased curvilinearly as the pressure increased, whereas the metabolic heat production during rest and immersion was identical over the range of pressure tested. During the 3rd h of immersion, Tes was identical under all atmospheric pressures; however, Tsk was significantly higher (P less than 0.05) at 2 and 2.5 ATA compared with 1 ATA. A 42 (P less than 0.001) and 50% (P less than 0.001), reduction in Isuit from the 1 ATA value was detected at 2 and 2.5 ATA, respectively. However, overall mean Itissue was maximal and independent of the pressure during immersion at Tcw. The Itotal was also significantly smaller in 2 and 2.5 ATA compared with 1 ATA. The Itissue provided most insulation in the extremities, such as the hand and foot, and the contribution of Isuit in these body parts was relatively small. On the other hand, Itissue of the trunk areas, such as the chest, back, and thigh, was not high compared with the extremities, and Isuit played a major role in the protection of heat drain from these body parts. 相似文献
15.
Muscular reflexes elicited by electrical stimulation of the anterior cruciate ligament in humans. 总被引:7,自引:0,他引:7
Anterior cruciate ligament (ACL)-deficient knees have impaired proprioception, and, although mechanoreceptors have been found in the ACL, the existence of a reflex elicited from these receptors has not been directly demonstrated in humans. In eight patients that underwent knee arthroscopy and had no sign of ACL disease, thin wire electrodes were inserted into the proximal and mid parts of the ACL. Postoperatively, the sensory nerve fibers inside the ACL were stimulated electrically while motor activity in the knee muscles was recorded using electromyography. In seven of the eight patients, a muscular contraction of the semitendinosus muscle could be elicited with stimulus trains consisting of at least two stimuli. The latency was 95 +/- 35 ms. Stimulation during isometric contraction of either extensor or flexor muscles elicited a short, complete inhibition of the muscle activity in the contracting muscles. The latency of the inhibitory responses was 65 +/- 20 ms in the semitendinosus muscle and 70 +/- 15 ms in the rectus femoris muscle. 相似文献
16.
The effects of nebulized diuretics on citric acid-induced cough and airway obstruction in guinea pigs and capsaicin-induced cough and increase in airway resistance in humans have been studied. Half-maximum inhibition of cough in the guinea pig was produced by 1.3 mM furosemide and 0.25 mM hydrochlorothiazide. Cough was inhibited by 78 +/- 9% by 3 mM furosemide (P less than 0.05) and 89 +/- 11% by 3 mM hydrochlorothiazide (P less than 0.01). At the same time, airway obstruction was inhibited by 50 +/- 9% (P less than 0.001) and 42 +/- 15% (P less than 0.05), respectively. Nebulized furosemide (3 mM) was without effect on the airway obstruction produced by inhaled histamine or acetylcholine in the guinea pigs. Intravenously administered furosemide (270 nmol/kg) did not affect citric acid-induced responses. In humans, aerosolized furosemide (9 mM) and hydrochlorothiazide (3.4 mM) reduced the percent increase in respiratory resistance from 22.1 +/- 3.7 and 15.6 +/- 3.4 to 10.5 +/- 4.9 and 9.4 +/- 3.3%, respectively (P less than 0.05), but were without effect on cough due to capsaicin. Thus both furosemide and hydrochlorothiazide inhibited airway obstruction in the guinea pig and reduced the capsaicin-induced increase in airway resistance in humans. However, whereas coughing was inhibited in the guinea pig, neither drug affected cough in humans. This difference in the action of the loop diuretic and thiazide, which interact differently with Na(+)-K(+)-Cl-transport within the airway mucosa, on the cough and airflow obstruction in guinea pig and humans supports the view that different sensory limbs are involved in these reflexes.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
17.
18.
M Tafil-Klawe F Raschke G Hildebrandt 《European journal of applied physiology and occupational physiology》1990,60(5):402-405
The reflex cardiac response to activation (CBA) and inactivation (CBI) of the left and right carotid baroreceptors was studied in 30 healthy subjects, aged between 24 and 38 years. The CBA was evoked by applying negative pressure (from -20 to -60 mmHg) for 10 s to the left and right carotid sinus regions separately or both together, using two small neck capsules. The CBI was produced by applying left and right positive neck pressure (from 20 to 60 mmHg) for 10 s. The blood flow velocity was measured non-invasively with a Doppler scanner placed in the suprasternal notch. Blood flow acceleration was calculated and used as an indication of left cardiac contractility. Heart rate was measured continuously. Differences were found between right and left carotid sinus responses to CBA and CBI. The maximal response of the R-R interval was significantly greater during right CBA than during left CBA (the average gain: R-R.mmHg-1 2.69 ms.mmHg-1 and 1.75 ms.mmHg-1, respectively). Also, the reflex CBI response was significantly greater for the right (3.16 ms.mmHg-1) than for the left (2.22 ms.mmHg-1). The reflex decrease/increase in blood-flow acceleration in response to CBA/CBI was significantly greater during left than during right-sided activation/inactivation. It is suggested that the functional asymmetry was related to differences in right/left-sided cardiac innervation as well as to central ipsilateral projection of the carotid baroreceptor afferents to the nuclei tractus solitarii. 相似文献
19.
Inhibitory effects of CO2 on airway defensive reflexes in enflurane-anesthetized humans 总被引:1,自引:0,他引:1
We investigated responses of respiration, blood pressure, and heart rate to tracheal mucosa irritation induced by injection of distilled water at three different levels of CO2 ventilatory drive in 11 spontaneously breathing female patients under a constant depth of enflurane anesthesia [1.1 minimum alveolar concentration (MAC)]. The airway irritation at the resting level of spontaneous breathing caused a variety of respiratory responses such as coughing, expiration reflex, apnea, and spasmodic panting, with considerable increases in blood pressure and heart rate. Although the latency of respiratory responses after water injection was much shorter than those of blood pressure and heart rate responses, blood pressure and heart rate responses, once elicited, were prolonged much longer than was the respiratory response. An increase in CO2 ventilatory drive decreased the degree and duration of respiratory, blood pressure, and heart rate responses to the airway irritation, whereas a decrease in CO2 ventilatory drive had the opposite effect on these responses. Our results indicate that changes in CO2 ventilatory drive can modify reflex responses of respiration, blood pressure, and heart rate to airway irritation. 相似文献