首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
2.
3.
The [beta] subunit of tomato (Lycopersicon esculentum Mill.) fruit polygalacturonase 1 is a cell wall glycoprotein that binds to and apparently regulates the catalytic PG2 polypeptide in vivo. [beta] Subunit and polygalacturonase 2 (PG2) expression have been investigated in both wild-type and ripening inhibitor (rin) mutant fruit. During fruit development and ripening, [beta] subunit expression was unrelated to expression of the catalytic PG2 protein. In wild-type fruit, [beta] subunit mRNA and protein were first detected early in development and increased to maximal levels before PG2 mRNA and protein were detected. At the onset of ripening [beta] subunit mRNA decreased dramatically, but [beta] subunit protein levels remained stable. In rin fruit, which fail to ripen, [beta] subunit expression was similar to that in wild type, although PG2 mRNA and protein were not detected. These data suggest that [beta] subunit expression is ethylene independent and regulated primarily by developmental cues. This conclusion is supported by results from ethylene-treated immature (20 days after pollination) wild-type and rin fruit in which no significant differences were observed in [beta] subunit expression patterns in response to ethylene treatment. Surprisingly, RNA blot analysis indicated that catalytic PG2 mRNA was induced in immature rin fruit after 3 d of exogenous ethylene treatment. In addition, [beta] subunit mRNA and protein were also detected at lower levels in root, leaf, and flower tissues of both genotypes, suggesting a broader functional role for the protein.  相似文献   

4.
Proteomic analysis of ripening tomato fruit infected by Botrytis cinerea   总被引:1,自引:0,他引:1  
Botrytis cinerea, a model necrotrophic fungal pathogen that causes gray mold as it infects different organs on more than 200 plant species, is a significant contributor to postharvest rot in fresh fruit and vegetables, including tomatoes. By describing host and pathogen proteomes simultaneously in infected tissues, the plant proteins that provide resistance and allow susceptibility and the pathogen proteins that promote colonization and facilitate quiescence can be identified. This study characterizes fruit and fungal proteins solubilized in the B. cinerea-tomato interaction using shotgun proteomics. Mature green, red ripe wild type and ripening inhibited (rin) mutant tomato fruit were infected with B. cinerea B05.10, and the fruit and fungal proteomes were identified concurrently 3 days postinfection. One hundred eighty-six tomato proteins were identified in common among red ripe and red ripe-equivalent ripening inhibited (rin) mutant tomato fruit infected by B. cinerea. However, the limited infections by B. cinerea of mature green wild type fruit resulted in 25 and 33% fewer defense-related tomato proteins than in red and rin fruit, respectively. In contrast, the ripening stage of genotype of the fruit infected did not affect the secreted proteomes of B. cinerea. The composition of the collected proteins populations and the putative functions of the identified proteins argue for their role in plant-pathogen interactions.  相似文献   

5.
6.
A cDNA library produced from mRNA isolated from the pericarp of wild-type tomato fruit (Lycopersicon esculentum Mill. cv Ailsa Craig) at the first visible sign of fruit ripening was differentially screened to identify clones whose homologous mRNAs were present at reduced levels in fruit of the tomato ripening mutant, ripening inhibitor,rin. Five clones were isolated (pERT 1, 10, 13, 14, 15). Accumulation of mRNA homologous to each of these clones increased during the ripening of wild-type fruit and showed reduced accumulation in ripening rin fruit. The levels of three of them (homologous to ERT 1, 13 and 14) were increased by ethylene treatment of the mutant fruit. A further clone, ERT 16 was identified for a mRNA present at a high level in both normal and mutant fruit at early stages of ripening. Database searches revealed no significant homology to the DNA sequence of ERT 14 and 15; however, DNA and derived amino acid sequence of ERT 1 both contain regions of homology with several reported UDP-glucosyl and glucuronosyl transferases (UDPGT) and with a conserved UDPGT motif. A derived amino acid sequence from the ERT 10 cDNA contains a perfect match to a consensus sequence present in a number of dehydrogenases. The ERT 13 DNA sequence has homology with an mRNA present during potato tuberisation. The presence of these mRNAs in tomato fruit is unreported and their role in ripening is unknown. The ERT 16 DNA sequence has homology with a ripening/stress-related cDNA isolated from tomato fruit pericarp.  相似文献   

7.
8.
9.
Since ethylene application did not induce ripening in detached fruits of the nonripening mutant rin we initiated studies to determine possible involvement of other hormones. We proposed that the lack of ripening in mutant rin tomato fruit may result from a lack of abscisic acid or from excessive endogenous levels of cytokiuin. Application of abscisic acid (3 x 10(-5)m and 10(-3)m) to detached fruits of a normal strain (Lycopersicon esculentum Mill. cv. ;Rutgers') reduced the time to initiate ripening by about 50%. This acceleration of the onset of ripening appeared not to be due to an increased rate of ethylene production. Abscisic acid did not alter respiration or ethylene production or induce ripening in rin fruit. Ripening in Rutgers fruit was not influenced by treatment with 6-benzyladenine (4.44 x 10(-6)m, 4.44 x 10(-5)m or 1.8 x 10(-4)m). Fruits of the mutant rin showed no response to exogenous BA. However, senescence rates of leaf disks of both Rutgers and rin were significantly inhibited by as little as 10(-7)m exogenous benzyladenine. The results are discussed in relation to previous studies of the physiology of rin fruits and it is concluded that endogenous levels of ABA and cytokinins do not account for the lack of ripening in rin fruit.  相似文献   

10.
11.
Cell walls extracted from cv. Rutgers, 7711 (ripening inhibited), and nor (non-ripening) tomato ( Lycopersicon eseulentum Mill.) pericarp tissue at various stages of post-maturation development have been separated into four distinct fractions and their carbohydrate composition characterized. The amount of ionically-associated, chelator-soluble (CDTA, cyclohexanediaminetetraacetic acid) uronic acid in 'Rutgers' fruit cell walls remained constant during ripening, whereas the amount of residual pectin, which was extracted with cold alkali (Na2CO3) and was apparently covalently bound, decreased. These changes did not occur in rin and nor mutant fruit at a similar chronological age. The galactose content in pectic polysaccharide preparations extracted from tomato cell walls with CDTA and Na2,CO3, decreased by 65% during ripening. A similar but diminished decrease also occurred in rin and nor fruit. A non-cellulosic polysaccharide(s) was present in walls which resisted extraction with Na-acetate/CDTA, Na2CO3, and 4 M KOH. In 'Rutgers' fruit, the content of galactose in this polysaccharide(s) decreased 44% during ripening, whereas little or no significant change was observed in rin or nor mutant fruit.  相似文献   

12.
13.
In ripening fruits of tomato (Lycopersicon esculentum L. var 83-G-38), the amounts of cellulose and xyloglucan (XG) remained constant during tissue softening, but the relative molecular weight (Mr) of XG decreased markedly and the Mr of cellulose declined slightly. These changes could have been due to activities of non-specific endo-1,4-[beta]-glucanases and/or buffer-soluble XG endo-transglycosylase, both of which increased when tissue firmness declined most rapidly. Tomato extracts also reduced the viscosity of XG solutions, especially in the presence of added XG oligosac-charides. This depolymerizing (XGase) capacity differed from [beta]-glucanase and XG transglycosylase activity (a) by being almost entirely buffer insoluble, and (b) by declining precipitously during fruit softening. Although it disappeared from ripe fruit, XGase may have functioned in promoting wall loosening at earlier stages of fruit development when its activity was highest. By contrast, during aging of fruit in the ripening-inhibited mutant rin there was no change in Mr of XG or cellulose, and activities of [beta]-glucanases and XG transglycosylase were lower than in wild-type tomato. Nevertheless, some softening of the fruit did take place over time and XG amounts declined, possibly because high XGase activity was maintained in the mutant, unlike in wild-type fruit.  相似文献   

14.
15.
K D Kausch  A K Handa 《Plant physiology》1997,113(4):1041-1050
A 94-kD protein that accumulates predominately in tomato (Ly-copersicon esculentum) fruit during ripening was purified, and antibodies specific for the purified protein were used to isolate cDNA clones from a red-ripe fruit cDNA library. A sequence analysis of these cDNAs and cross-reactivity of the 94-kD-specific antibodies to the soybean lipoxygenase (LOX) L-1, L-2, and L-3 proteins and soybean LOX L-1-specific antibodies to the 94-kD protein identified it as a member of the LOX gene family. Maximum levels of the 94-kD LOX mRNA and protein are present in breaker to ripe and red-ripe stages, respectively. Expression of 94-kD LOX in different tissues from mature green and red-ripe tomato fruits was found to be greatest in the radial walls of ripe fruit, but immunocytolocalization using tissue printing suggests that the highest accumulation of its protein occurs in locular jelly. None of 94-kD LOX is expressed in nonripening mutant fruits of any age. Never-ripe mutant fruit accumulate the 94-kD LOX mRNA to levels similar to those obtained in wild-type fruit, but fail to accumulate the 94-kD LOX protein. Collectively, the results show that expression of 94-kD LOX is regulated by the ripening process, and ethylene may play a role in its protein accumulation.  相似文献   

16.
The mRNA accumulation of two endo-1,4-[beta]-D-glucanase genes, Cel1 and Cel2, was examined in the pericarp and locules throughout the development of normal tomato (Lycopersicon esculentum) fruit and the ripening-impaired mutants rin and Nr. Both Cel1 and Cel2 were expressed transiently at the earliest stages of fruit development during a period corresponding to cell division and early cell expansion. In the pericarp, the mRNA abundance of both genes increased markedly at the breaker stage; the level of Cel1 mRNA decreased later in ripening, and that of Cel2 increased progressively. Cel2 mRNA levels also increased at the breaker stage in locules but after initial locule liquefaction was already complete. In rin fruit mRNA abundance of Cel1 was reduced and Cel2 was virtually absent, whereas in Nr Cel1 was expressed at wild-type levels and Cel2 was reduced. In wild-type fruit ethylene treatment slightly promoted the mRNA accumulation of both genes. In rin fruit ethylene treatment strongly increased the mRNA abundance of Cel1 to an extent greater than in wild-type fruit, but Cel2 mRNA was absent even after ethylene treatment. These two endo-1,4-[beta]-D-glucanase genes, therefore, do not show coordinated expression during fruit development and are subject to distinct regulatory control. These results suggest that the product of the Cel2 gene contributes to ripening-associated cell-wall changes.  相似文献   

17.
Polygalacturonase (PG) gene expression was studied in normally ripening tomato fruit (Lycopersicon esculentum Mill, cv Rutgers) and in three ripening-impaired mutants, rin, nor, and Nr. Normal and mutant fruit of identical chronological age were analyzed at 41, 49, and 62 days after pollination. These stages corresponded to mature-green, ripe, and overripe, respectively, for Rutgers. The amount of PG mRNA in Rutgers was highest at 49 days and accounted for 2.3% of the total mRNA mass but at 62 days had decreased to 0.004% of the total mRNA mass. In Nr, the amount of PG mRNA steadily increased between 41 and 62 days after pollination, reaching a maximum level of 0.5% of the total mRNA mass. The mutant nor exhibited barely detectable levels of PG mRNA at all stages tested. Surprisingly, PG mRNA, comprising approximately 0.06% of the mRNA mass, was detected in 49 day rin fruit. This mRNA accumulation occurred in the absence of elevated ethylene production by the fruit and resulted in the synthesis of enzymically active PG I. The different patterns of PG mRNA accumulation in the three mutants suggests that distinct molecular mechanisms contribute to reduced PG expression in each ripening-impaired mutant.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号