首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This review summarises the functions of the enzyme tissue transglutaminase (TG2) in the extracellular matrix (ECM) both as a matrix stabiliser through its protein cross-linking activity and as an important cell adhesion protein involved in cell survival. The contribution of extracellular TG2 to the pathology of important diseases such as cancer and fibrosis are discussed with a view to the potential importance of TG2 as a therapeutic target. The medical applications of TG2 are further expanded by detailing the use of transglutaminase cross-linking in the development of novel biocompatible biomaterials for use in soft and hard tissue repair.  相似文献   

2.
Transglutaminase 2 (TG2) is an inducible transamidating acyltransferase that catalyzes Ca2+-dependent protein modifications. It acts as a G protein in transmembrane signaling and as a cell surface adhesion mediator, this distinguishes it from other members of the transglutaminase family. The sequence motifs and domains revealed in the TG2 structure, can each be assigned distinct cellular functions, including the regulation of cytoskeleton, cell adhesion, and cell death. Though many biological functions of the enzyme have already been described or proposed previously, studies of TG2 null mice by our laboratory during the past years revealed several novel in vivo roles of the protein. In this review we will discuss these novel roles in their biological context.  相似文献   

3.
Objective: Transglutaminase 2 (TG2) is a multifunctional protein with an important role in vascular biology, where it is involved in cell–matrix interaction, cell attachment and cell population expansion. In efforts to elucidate the role of TG2 in endothelial cell biology, in this study, we measured several endothelial cell characteristics in cells where TG2 was specifically knocked down by RNAi. Materials and methods: The effect of small interfering RNA (siRNA)‐TG2 on human umbilical vein endothelial cells was studied. Adhesion and cell viability were assessed by chemical reduction of MTT, and cell proliferation was analysed by flow cytometry. Apoptosis was evaluated by annexin V/PI dual staining and protein expression level was assayed by western blotting. Results: We found that siRNA‐TG2 reduced endothelial cell number, lead to cell adhesion deficiency, cell cycle arrest in G1 phase and induction of apoptosis. Our results show that exogenously added TG2 could reverse loss of adhesion but did not overcome the defect in cell proliferation, nor could it inhibit siRNA‐TG2‐induced apoptosis. Conclusion: We conclude that TG2 loss in endothelial cells causes reduction in cell number as a result of cell cycle arrest, flaws in adhesion and induction of apoptosis. Our results imply that reduction in cell number and increased apoptosis in response to TG2 silencing is independent of the cell adhesion process. Altogether, our findings underline the significance of TG2 in endothelial cell cycle progression and cell survival, in vitro.  相似文献   

4.
Tissue transglutaminase (TG2) is a multifunctional Ca(2+)-activated protein cross-linking enzyme secreted into the extracellular matrix (ECM), where it is involved in wound healing and scarring, tissue fibrosis, celiac disease, and metastatic cancer. Extracellular TG2 can also facilitate cell adhesion important in wound healing through a nontransamidating mechanism via its association with fibronectin, heparan sulfates (HS), and integrins. Regulating the mechanism how TG2 is translocated into the ECM therefore provides a strategy for modulating these physiological and pathological functions of the enzyme. Here, through molecular modeling and mutagenesis, we have identified the HS-binding site of TG2 (202)KFLKNAGRDCSRRSSPVYVGR(222). We demonstrate the requirement of this binding site for translocation of TG2 into the ECM through a mechanism involving cell surface shedding of HS. By synthesizing a peptide NPKFLKNAGRDCSRRSS corresponding to the HS-binding site within TG2, we also demonstrate how this mimicking peptide can in isolation compensate for the RGD-induced loss of cell adhesion on fibronectin via binding to syndecan-4, leading to activation of PKCα, pFAK-397, and ERK1/2 and the subsequent formation of focal adhesions and actin cytoskeleton organization. A novel regulatory mechanism for TG2 translocation into the extracellular compartment that depends upon TG2 conformation and the binding of HS is proposed.  相似文献   

5.
Tissue transglutaminase (TG2) has been identified as an important extracellular crosslinking enzyme involved in matrix turnover and in bone differentiation. Here we report a novel cell adhesion/survival mechanism in human osteoblasts (HOB) which requires association of FN bound TG2 with the cell surface heparan sulphates in a transamidase independent manner. This novel pathway not only enhances cell adhesion on FN but also mediates cell adhesion and survival in the presence of integrin competing RGD peptides. We investigate the involvement of cell surface receptors and their intracellular signalling molecules to further explore the pathway mediated by this novel TG-FN heterocomplex. We demonstrate by siRNA silencing the crucial importance of the cell surface heparan sulphate proteoglycans syndecan-2 and syndecan-4 in regulating the compensatory effect of TG-FN on osteoblast cell adhesion and actin cytoskeletal formation in the presence of RGD peptides. By use of immunoprecipitation and inhibitory peptides we show that syndecan-4 interacts with TG2 and demonstrate that syndecan-2 and the α5β1 integrins, but not α4β1 function as downstream modulators in this pathway. Using function blocking antibodies, we show activation of α5β1 occurs by an inside out signalling mechanism involving activation and binding of protein kinase PKCα and phosphorylation of focal adhesion kinase (FAK) at Tyr861 and activation of ERK1/2.  相似文献   

6.
Enhanced osteoblast adhesion on transglutaminase 2-crosslinked fibronectin   总被引:1,自引:0,他引:1  
Fibronectin (FN) is a cell adhesion protein that binds integrins in a process also involving the protein-crosslinking enzyme transglutaminase 2 (TG2) as a co-receptor. The cell-adhesive property of TG2 has been linked to a complex formation with FN and to its ability to crosslink and polymerize FN on the cell surface. We tested here the effects of extracellular FN, before and after in vitro crosslinking and polymerization by TG2, on MC3T3-E1 osteoblast adhesion. We show that TG2-mediated crosslinking creates large, compacted chain-like protein clusters that include both TG2 and FN molecules as analyzed by Western blotting and atomic force microscopy. Crosslinking of FN significantly promotes osteoblast adhesion as measured by crystal violet staining, and enhances β1-integrin clustering on the cell surface as visualized by immunofluorescence microscopy. We hypothesize that TG2-mediated crosslinking enhances the cell-adhesive properties of FN by increasing the molecular rigidity of FN in the extracellular matrix.  相似文献   

7.
Transglutaminase 2 (TG2) is a hypoxia-responsive protein that is a calcium-activated transamidating enzyme, a GTPase and a scaffolding/linker protein. Upon activation TG2 undergoes a large conformational change, which likely affects not only its enzymatic activities but its non-catalytic functions as well. The focus of this study was on the role of transamidating activity, conformation and localization of TG2 in ischemic cell death. Cells expressing a GTP binding deficient form of TG2 (TG2-R580A) with high basal transamidation activity and a more extended conformation showed significantly increased cell death in response to oxygen-glucose deprivation; however, targeting TG2-R580A to the nucleus abrogated its detrimental role in oxygen-glucose deprivation. Treatment of cells expressing wild type TG2, TG2-C277S (a transamidating inactive mutant) and TG2-R580A with Cp4d, a reversible TG2 inhibitor, did not affect cell death in response to oxygen-glucose deprivation. These findings indicate that the pro-cell death effects of TG2 are dependent on its localization to the cytosol and independent of its transamidation activity. Further, the conformational state of TG2 is likely an important determinant in cell survival and the prominent function of TG2 in ischemic cell death is as a scaffold to modulate cellular processes.  相似文献   

8.
Wang Z  Griffin M 《Amino acids》2012,42(2-3):939-949
TG2 is multifunctional enzyme which can be secreted to the cell surface by an unknown mechanism where its Ca(2+)-dependent transamidase activity is implicated in a number of events important to cell behaviour. However, this activity may only be transient due to the oxidation of the enzyme in the extracellular environment including its reaction with NO probably accounting for its many other roles, which are transamidation independent. In this review, we discuss the novel roles of TG2 at the cell surface and in the ECM acting either as a transamidating enzyme or as an extracellular scaffold protein involved in cell adhesion. Such roles include its ability to act as an FN co-receptor for β integrins or in a heterocomplex with FN interacting with the cell surface heparan sulphate proteoglycan syndecan-4 leading to activation of PKCα. These different properties of TG2 involve this protein in various physiological processes, which if not regulated appropriately can also lead to its involvement in a number of diseases. These include metastatic cancer, tissue fibrosis and coeliac disease, thus increasing its attractiveness as both a therapeutic target and diagnostic marker.  相似文献   

9.
Transglutaminase 2 (TG2) is a multifunctional protein that can function as a transglutaminase, G protein, kinase, protein disulfide isomerase, and as an adaptor protein. These multiple biochemical activities of TG2 account for, at least in part, its involvement in a wide variety of cellular processes encompassing differentiation, cell death, inflammation, cell migration, and wound healing. The individual biochemical activities of TG2 are regulated by several cellular factors, including calcium, nucleotides, and redox potential, which vary depending on its subcellular location. Thus, the microenvironments of the subcellular compartments to which TG2 localizes, such as the cytosol, plasma membrane, nucleus, mitochondria, or extracellular space, are important determinants to switch on or off various TG2 biochemical activities. Furthermore, TG2 interacts with a distinct subset of proteins and/or substrates depending on its subcellular location. In this review, the biological functions and molecular interactions of TG2 will be discussed in the context of the unique environments of the subcellular compartments to which TG2 localizes.  相似文献   

10.
Transglutaminase 2 (TG2) is an autoantigen in celiac disease (CD) and it has multiple biologic functions including involvement in cell adhesion through interactions with integrins, fibronectin (FN), and heparan sulfate proteoglycans. We aimed to delineate the heparin‐binding regions of human TG2 by studying binding kinetics of the predicted heparin‐binding peptides using surface plasmon resonance method. In addition, we characterized immunogenicity of the TG2 peptides and their effect on cell adhesion. The high‐affinity binding of human TG2 to the immobilized heparin was observed, and two TG2 peptides, P1 (amino acids 202–215) and P2 (261–274), were found to bind heparin. The amino acid sequences corresponding to the heparin‐binding peptides were located close to each other on the surface of the TG2 molecule as part of the α‐helical structures. The heparin‐binding peptides displayed increased immunoreactivity against serum IgA of CD patients compared with other TG2 peptides. The cell adhesion reducing effect of the peptide P2 was revealed in Caco‐2 intestinal epithelial cell attachment to the FN and FN‐TG2 coated surfaces. We propose that TG2 amino acid sequences 202–215 and 261–274 could be involved in binding of TG2 to cell surface heparan sulfates. High immunoreactivity of the corresponding heparin‐binding peptides of TG2 with CD patient's IgA supports the previously described role of anti‐TG2 autoantibodies interfering with this interaction. Copyright © 2012 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

11.
Fibronectin (FN) deposition mediated by fibroblasts is an important process in matrix remodeling and wound healing. By monitoring the deposition of soluble biotinylated FN, we show that the stress-induced TG-FN matrix, a matrix complex of tissue transglutaminase (TG2) with its high affinity binding partner FN, can increase both exogenous and cellular FN deposition and also restore it when cell adhesion is interrupted via the presence of RGD-containing peptides. This mechanism does not require the transamidase activity of TG2 but is activated through an RGD-independent adhesion process requiring a heterocomplex of TG2 and FN and is mediated by a syndecan-4 and β1 integrin co-signaling pathway. By using α5 null cells, β1 integrin functional blocking antibody, and a α5β1 integrin targeting peptide A5-1, we demonstrate that the α5 and β1 integrins are essential for TG-FN to compensate RGD-induced loss of cell adhesion and FN deposition. The importance of syndecan-2 in this process was shown using targeting siRNAs, which abolished the compensation effect of TG-FN on the RGD-induced loss of cell adhesion, resulting in disruption of actin skeleton formation and FN deposition. Unlike syndecan-4, syndecan-2 does not interact directly with TG2 but acts as a downstream effector in regulating actin cytoskeleton organization through the ROCK pathway. We demonstrate that PKCα is likely to be the important link between syndecan-4 and syndecan-2 signaling and that TG2 is the functional component of the TG-FN heterocomplex in mediating cell adhesion via its direct interaction with heparan sulfate chains.  相似文献   

12.
Heparan sulfate proteoglycans are critical binding partners for extracellular tranglutaminase-2 (TG2), a multifunctional protein involved in tissue remodeling events related to organ fibrosis and cancer progression. We previously showed that TG2 has a strong affinity for heparan sulfate (HS)/heparin and reported that the heparan sulfate proteoglycan syndecan-4 acts as a receptor for TG2 via its HS chains in two ways: by increasing TG2-cell surface trafficking/externalization and by mediating RGD-independent cell adhesion to fibronectin-TG2 matrix during wound healing. Here we have investigated the molecular basis of this interaction. Site-directed mutagenesis revealed that either mutation of basic RRWK (262-265) or KQKRK (598-602) clusters, forming accessible heparin binding sequences on the TG2 three-dimensional structure, led to an almost complete reduction of heparin binding, indicating that both clusters contribute to form a single binding surface. Mutation of residues Arg(19) and Arg(28) also led to a significant reduction in heparin binding, suggesting their involvement. Our findings indicate that the heparin binding sites on TG2 mainly comprise two clusters of basic amino acids, which are distant in the linear sequence but brought into spatial proximity in the folded "closed" protein, forming a high affinity heparin binding site. Molecular modeling showed that the identified site can make contact with a single heparin-derived pentasaccharide. The TG2-heparin binding mutants supported only weak RGD-independent cell adhesion compared with wild type TG2 or mutants with retained heparin binding, and both heparin binding clusters were critical for TG2-mediated cell adhesion. These findings significantly advance our knowledge of how HS/heparin influences the adhesive function of TG2.  相似文献   

13.
An important neuropathological feature of neuroinflammatory processes that occur during e.g. Multiple Sclerosis (MS) is the formation of an astroglial scar. Astroglial scar formation is facilitated by the interaction between astrocytes and extracellular matrix proteins (ECM) such as fibronectin. Since there is evidence indicating that glial scars strongly inhibit both axon growth and (re)myelination in brain lesions, it is important to understand the factors that contribute to the interaction between astrocytes and ECM proteins. Tissue Transglutaminase (TG2) is a multifunctional enzyme with an ubiquitous tissue distribution, being clearly present within the brain. It has been shown that inflammatory cytokines can enhance TG2 activity. In addition, TG2 can mediate cell adhesion and migration and it binds fibronectin with high affinity. We therefore hypothesized that TG2 is involved in astrocyte-fibronectin interactions. Our studies using primary rat astrocytes show that intracellular and cell surface expression and activity of TG2 is increased after treatment with pro-inflammatory cytokines. Astrocyte-derived TG2 interacts with fibronectin and is involved in astrocyte adhesion onto and migration across fibronectin. TG2 is involved in stimulating focal adhesion formation which is necessary for the interaction of astrocytes with ECM proteins. We conclude that astrocyte-derived TG2 contributes to the interaction between astrocytes and fibronectin. It might thereby regulate ECM remodeling and possibly glial scarring.  相似文献   

14.
Fibronectin (FN) is a ubiquitously expressed cell adhesion protein capable of assembling into large, extended fibrillar networks as part of an extracellular matrix (ECM) that regulates cell behavior. FN is a substrate for certain members of the transglutaminase family of protein-crosslinking enzymes-enzymes which can modify the ability of FN to support cell adhesion. In this study, we have analyzed the thermo-chemical stability of plasma FN in its noncrosslinked form, and after crosslinking by transglutaminase 2 (TG2), using dynamic light scattering. We report that FN is found in a generally globular (8.7 nm hydrodynamic radius), dimerized form in aqueous solutions, but unfolds into a linear arrangement at high ionic (1 M NaCl) and chaotropic (5 M urea) environments. FN conformation remained stable after multiple heating and cooling cycles ranging from 4 to 60 degrees C. Crosslinking of FN with TG2 formed large, multimeric complexes having high chemical stability in aqueous, high ionic and chaotropic environments, demonstrating that this covalent modification stabilizes FN. Given recent data that substrate (e.g. ECM) rigidity profoundly affects cell differentiation and behavior, we further studied how TG2 crosslinking affects the molecular rigidity of FN by obtaining atomic force microscopy nanoindentation measurements from untreated and crosslinked FN samples embedded in acrylamide gels. We demonstrate that TG2-mediated crosslinking of FN significantly increases Young's modulus (of elasticity), an observation of increased rigidity having important implications with respect to the biological role of ECM protein-crosslinking in cell signaling and guiding cell differentiation.  相似文献   

15.
Kuo TF  Tatsukawa H  Kojima S 《The FEBS journal》2011,278(24):4756-4767
  相似文献   

16.
Tu Y  Wu S  Shi X  Chen K  Wu C 《Cell》2003,113(1):37-47
Cell-extracellular matrix adhesion is an important determinant of cell morphology. We show here that migfilin, a LIM-containing protein, localizes to cell-matrix adhesions, associates with actin filaments, and is essential for cell shape modulation. Migfilin interacts with the cell-matrix adhesion protein Mig-2 (mitogen inducible gene-2), a mammalian homolog of UNC-112, and the actin binding protein filamin through its C- and N-terminal domains, respectively. Loss of Mig-2 or migfilin impairs cell shape modulation. Mig-2 recruits migfilin to cell-matrix adhesions, while the interaction with filamin mediates the association of migfilin with actin filaments. Migfilin therefore functions as an important scaffold at cell-matrix adhesions. Together, Mig-2, migfilin and filamin define a connection between cell matrix adhesions and the actin cytoskeleton and participate in the orchestration of actin assembly and cell shape modulation.  相似文献   

17.
18.
Teesalu K  Panarina M  Uibo O  Uibo R  Utt M 《Amino acids》2012,42(2-3):1055-1064
Autoantibodies from patients with celiac disease (CD) can influence transglutaminase 2 (TG2) activity and its cellular functions, but the exact mechanisms have remained unknown. Our objective was to study whether autoantibodies could modulate TG2 binding to heparin/heparan sulfate (HS) and intestinal epithelial cell attachment to fibronectin-TG2 matrix. Anti-TG2 antibodies were purified by TG2 affinity chromatography from sera of patients with active CD. Serum and antibody effects on TG2 binding to heparin/HS, on transamidase activity of TG2, as well as on Caco-2 cell attachment to fibronectin-TG2 matrix were assessed using microplate assays. Both sera and purified anti-TG2 antibodies from CD patients with high anti-TG2 IgA levels reduced TG2 binding to heparin/HS as compared with those with low anti-TG2 IgA or controls. There was a negative correlation between anti-TG2 IgA levels and TG2 binding to heparin/HS. Treatment of fibronectin-TG2 coated wells with CD patients' sera or purified anti-TG2 antibodies reduced attachment of Caco-2 cells onto the plate as compared with the control samples. The effect of CD patients' antibodies on Caco-2 cell attachment to fibronectin-TG2 matrix occurred independently of the inhibition of cell adhesion by Arg-Gly-Asp sequence containing peptides. Anti-TG2 autoantibodies had no effect on transamidase activity of TG2 in vitro. We suggest that modulation of adhesion function of TG2 by autoantibodies from patients with CD could be related to the inhibition of TG2 binding to HS residues of cell surface proteoglycans and could have possible implications for CD pathogenesis.  相似文献   

19.
Heterotropic association of tissue transglutaminase (TG2) with extracellular matrix-associated fibronectin (FN) can restore the adhesion of fibroblasts when the integrin-mediated direct binding to FN is impaired using RGD-containing peptide. We demonstrate that the compensatory effect of the TG-FN complex in the presence of RGD-containing peptides is mediated by TG2 binding to the heparan sulfate chains of the syndecan-4 cell surface receptor. This binding mediates activation of protein kinase Calpha (PKCalpha) and its subsequent interaction with beta(1) integrin since disruption of PKCalpha binding to beta(1) integrins with a cell-permeant competitive peptide inhibits cell adhesion and the associated actin stress fiber formation. Cell signaling by this process leads to the activation of focal adhesion kinase and ERK1/2 mitogen-activated protein kinases. Fibroblasts deficient in Raf-1 do not respond fully to the TG-FN complex unless either the full-length kinase competent Raf-1 or the kinase-inactive domain of Raf-1 is reintroduced, indicating the involvement of the Raf-1 protein in the signaling mechanism. We propose a model for a novel RGD-independent cell adhesion process that could be important during tissue injury and/or remodeling whereby TG-FN binding to syndecan-4 activates PKCalpha leading to its association with beta(1) integrin, reinforcement of actin-stress fiber organization, and MAPK pathway activation.  相似文献   

20.
TSAd/Lad is a T cell adaptor molecule involved in p56 lck -mediated T cell activation. To investigate the functions of TSAd in T cells, we generated transgenic (TG) mice expressing the SH2 domain of TSAd (TSAd-SH2) under the control of the p56 lck proximal promoter. In T cells from TSAd-SH2 TG mice, T cell receptor (TCR)-mediated early signaling events, such as Ca2+ flux and ERK activation, were normal; however, late activation events, such as IL-2 production and proliferation, were significantly reduced. Moreover, TCR-induced cell adhesion to extracellular matrix (ECM) proteins and migration through ECM proteins were defective in T cells from TSAd-SH2 TG mice. Furthermore, the contact hypersensitivity (CHS) reaction, an inflammatory response mainly mediated by T helper 1 (Th1) cells, was inhibited in TSAd-SH2 TG mice. Taken together, these results show that TSAd, particularly the SH2 domain of TSAd, is essential for the effector functions of T cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号