首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Glutathione and total carnitine (i.e., free carnitine plus acid-soluble carnitine esters) were measured in an affected (superior frontal gyrus; SFG) and unaffected (cerebellum: CBL) region of Alzheimer disease (AD) and control brains. Average glutathione content in AD SFG (n=13) and AD CBL (n=7) (7.9±2.1 and 11.9±4.0 nmol/mg protein, respectively (mean ±S.D.)) was similar to that in control SFG (n=13) and CBL (n=6) (7.7±2.0 and 11.6±2.6 nmol/mg protein, respectively). However, glutathione increased significantly with age in AD brain (p=0.003) but not in control brain. Average total carnitine in AD SFG (84±47 pmol/mg protein; n=10) and AD CBL (108±86 pmol/mg protein; n=7) was not significantly different from that in the corresponding regions of control brain (148±97 (n=10) and 144±107 (n=6) pmol/mg protein, respectively). However, a significant decline of total carnitine with age in both regions was noted for AD brain, but not for control brain. Carnitine acetyltransferase activity in the AD SFG (n=13) was not significantly different from that of control SFG (n=13) (1.83±1.05 and 2.04±0.82 nmol/min/mg protein, respectively). However, carnitine acetyltransferase activity of AD CBL (n=7) was significantly lower than that of control CBL (n=6) (1.33±0.88 versus 2.26±0.66 nmol/min/mg protein; p=0.05).  相似文献   

2.
In patients with myeloproliferative disorders (MPD) an altered sensitivity of platelets to antiaggregatory prostaglandins and to the endoperoxide analogue U 46619 has been found. In this study we examined U 46619-induced platelet aggregation and binding of the endoperoxide/thromboxane A2 (TXA2) receptor antagonist SQ 29548 in 11 patients with MPD and 11 healthy controls. Although platelet responsiveness to U 46619 was significantly enhanced (p less than 0.05) in MPD, binding affinity and binding capacity of the corresponding endoperoxide/TXA2 receptor were not altered (Bmax 0.67 +/- 0.20 vs. 0.58 +/- 0.14 pmol/10(9) platelets, Kd 0.41 +/- 0.11 vs. 0.55 +/- 0.09 nM). These data exclude the possibility that changes in the presentation of endoperoxide/TXA2 receptors are responsible for the enhanced platelet sensitivity to endoperoxides found in MPD.  相似文献   

3.
An Aberration in megakaryopoiesis and thrombopoiesis, 2 important processes that maintain hemostasis, leads to thrombocytopenia. Though platelet transfusions are used to treat this condition, blood banks frequently face a shortage of platelets. Therefore, methods to generate platelets on a large scale are strongly desirable. However, to generate megakaryocytes (MKs) and platelets (PLTs) in numbers sufficient for clinical application, it is essential to understand the mechanism of platelet production and explore efficient strategies accordingly. We have earlier reported that the N-6 and N-3 poly-unsaturated fatty acids (PUFAs), Arachidonic acid (AA)/Docosahexanoic acid (DHA) have beneficial effect on the generation of MKs and PLTs from umbilical cord blood derived CD34+ cells. Here we tested if a similar effect is observed with peripheral blood derived CD34+ cells, which are more commonly used in transplantation settings. We found a significant enhancement in cell numbers, surface marker expression, cellular ploidy and expression of cytoskeletal components during PLT biogenesis in cultures exposed to media containing AA/DHA than control cultures that were not exposed to these PUFAs. The test cells engrafted more efficiently in NOD/SCID mice than control cells. AA/DHA appears to have enhanced MK/PLT generation through upregulation of the NOTCH and AKT pathways. Our data show that PUFAs could be valuable additives in the culture system for large scale production of platelets for clinical applications.  相似文献   

4.
Chronic leptin administration reduces triacylglycerol content in skeletal muscle. We hypothesized that chronic leptin treatment, within physiologic limits, would reduce the fatty acid uptake capacity of red and white skeletal muscle due to a reduction in transport protein expression (fatty acid translocase (FAT/CD36) and plasma membrane-associated fatty acid-binding protein (FABPpm)) at the plasma membrane. Female Sprague-Dawley rats were infused for 2 weeks with leptin (0.5 mg/kg/day) using subcutaneously implanted miniosmotic pumps. Control and pair-fed animals received saline-filled implants. Leptin levels were significantly elevated (approximately 4-fold; p < 0.001) in treated animals, whereas pair-fed treated animals had reduced serum leptin levels (approximately -2-fold; p < 0.01) relative to controls. Palmitate transport rates into giant sarcolemmal vesicles were reduced following leptin treatment in both red (-45%) and white (-84%) skeletal muscle compared with control and pair-fed animals (p < 0.05). Leptin treatment reduced FAT mRNA (red, -70%, p < 0.001; white, -48%, p < 0.01) and FAT/CD36 protein expression (red, -32%; p < 0.05) in whole muscle homogenates, whereas FABPpm mRNA and protein expression were unaltered. However, in leptin-treated animals plasma membrane fractions of both FAT/CD36 and FABPpm protein expression were significantly reduced in red (-28 and -34%, respectively) and white (-44 and -56%, respectively) muscles (p < 0.05). Across all experimental treatments and muscles, palmitate uptake by giant sarcolemmal vesicles was highly correlated with the plasma membrane FAT/CD36 protein (r = 0.88, p < 0.01) and plasma membrane FABPpm protein (r = 0.94, p < 0.01). These studies provide the first evidence that protein-mediated long chain fatty acid transport is subject to long term regulation by leptin.  相似文献   

5.
The enzyme steroid sulfatase (STS) hydrolyses 3-beta-hydroxysteroid sulfates. The female-male STS activity ratio is 1.04-1.7:1 in several cell lines in adults and reaches 2:1 in prepubertal subjects. In fibroblasts, STS values in X-chromosome abnormalities show a partial positive correlation according to the number of X-chromosomes. X-linked ichthyosis (XLI) carriers, with only one copy of the STS gene, present lower STS levels than normal controls. This study analyzes the STS activity in leukocytes of 46,Xi(Xq); 45,X; XLI carriers and normal controls using 7-[3H]-dehydroepiandrosterone sulfate as substrate. X-monosomy (1.07 +/- 0.18 pmol/mg protein/h), Xq isochromosome (1.02 +/- 0.12 pmol/mg protein/h) and normal females (1.03 +/- 0.11 pmol/mg protein/h) had similar STS values (p > 0.05). XLI-carriers and males showed the lowest STS levels (0.34 +/- 0.04 pmol/mg protein/h, p < 0.001 and 0.82 +/- 0.14 pmol/mg protein/h, p < 0.05, respectively). Female-male STS activity ratio in leukocytes was 1.3:1. These data indicate that a complex mechanism regulates the STS expression depending on each type of cell line.  相似文献   

6.
Although HHT accounts for approximately one third of the arachidonic acid (AA) metabolites produced by stimulated platelets, no well defined function has been attributed to this product. We report that HHT stimulates prostacyclin production by endothelial cells, and have identified the mechanism for this effect. In human umbilical venous endothelial cells, HHT (0.5 and 1 microM) stimulated prostacyclin (RIA for 6KPGF1 alpha) by 32 +/- 22% (1SD) and 42 +/- 38% (P less than 0.05 and less than 0.01). Similar changes were observed when the effect of HHT on exogenous [1-14C] AA metabolism in fetal bovine aortic endothelial cells (FBAECs) was studied. Kinetic analyses revealed that HHT affected vascular cyclooxygenase. HHT (1 microM) increased Vmax in test microsomes (706 +/- 21 pmol/mg/min, mean +/- 1SE) when compared to controls (529 +/- 20; P less than 0.02). No concomitant effect on Km was observed. A further effect of HHT on AA release from endothelial cell membrane phospholipids was noted. Prelabeling experiments revealed that HHT (1 microM) increased the ionophore stimulated release of AA from FBAECs (20952 +/- 555 cpm/well control mean +/- 1SE vs 25848 +/- 557 for paired HHT treated cells; P less than 0.05). The effect of HHT on platelet AA metabolism was next studied. Preincubation of washed platelets with HHT (1 microM) did not enhance thrombin or arachidonic acid induced platelet TXB2 formation. In platelets prelabelled with [1-14C]AA, HHT (1 microM) had no effect on AA release post thrombin stimulation. Conversion to cyclooxygenase metabolites was also not enhanced. HHT stimulates vascular prostacyclin without a concomitant effect on platelet AA metabolism. HHT may thus be an important local modulator of platelet plug formation.  相似文献   

7.
Accumulation of polyunsaturated fatty acids (PUFA) in the fetal brain is accomplished predominantly via a highly selective flow of docosahexaenoic acid (22:6n-3, DHA) and arachidonic acid (20:4n-6, AA) through the placenta. Little is known regarding the endogenous capability of the fetus to generate its own DHA and AA from lower homologues such as linolenic (18:3n-3, ALA) and linoleic (18:2n-6, LA) acids, respectively. Deuterium-labeled d5-ALA and d5-LA at millimolar concentrations were injected directly into the amniotic fluid in order to investigate maternal-independent metabolic conversion of the stable isotopes in brain and liver of the fetus near delivery. After 48 h under adequate maternal diet, the levels of d5-ALA metabolites in the fetal brain and fetal liver were 45 ± 2.2 pmol/mg and 86 ± 4 pmol/mg of which 79% and 63.6% were comprised of d5-DHA. At this time point, incorporation of d5-LA metabolites was 103 ± 5 pmol/mg and 772 ± 46 pmol/mg for brain and liver, of which 50% and 30% were comprised of d5-AA. Following sustained maternal dietary ALA deficiency, the levels of total d5-ALA derived metabolites in the fetal brain and fetal liver were increased to 231 pmol/mg and 696 pmol/mg of which 71% and 26% were comprised of d5-DHA. From the time course and relative rates of d5-ALA precursor displacement by d5-DHA in cellular phosphoglycerides, it is concluded that the fetal rat brain can generate its own DHA from its d5-ALA precursors particularly under dietary stress.  相似文献   

8.
In the present study the effects of collagen on platelet aggregation and arachidonic acid (AA) mobilization, specifically from phosphatidylcholine (PC), were investigated in the presence and absence of BW755C, a selective inhibitor of cyclo-oxygenase and lipoxygenases. The inhibition of cyclo-oxygenase and lipoxygenase(s) by BW755C (75 microM) resulted in severe impairment in collagen-induced platelet aggregation. In the presence of BW755C, the aggregation response amounted to 14, 26, 37 and 49% of the corresponding controls (without BW755C) at 10, 25, 50 and 100 micrograms of collagen respectively. On the contrary, the amount of AA released from PC, which ranged from 3.5 to 8.6 nmol/10(9) platelets, in response to the action of collagen (10-100 micrograms) remained unaffected by the presence of BW755C. Substantial amounts of non-esterified AA were detected in the free fatty acid fractions obtained from collagen-stimulated platelets in the presence as well as in the absence of BW755C. However, the presence of BW755C caused a greater accumulation of free AA (mass) and this ranged from 4 to 16 nmol, depending upon the amount of collagen. In addition, small increases in free stearic and oleic acids were observed in collagen-stimulated platelets as compared with unstimulated platelets. The amount of AA lost from PC represented 67, 80, 49 and 52% of the free AA obtained at 10, 25, 50 and 100 micrograms of collagen respectively. Our results adhesion of platelets to collagen fibres may be responsible for much of the AA release from PC Furthermore, these results demonstrate that aggregation and/or cyclo-oxygenase/lipoxygenase metabolites are not obligatory for the release of AA from PC in collagen-stimulated human platelets.  相似文献   

9.
Specific oxidized phospholipids (oxPCCD36) promote platelet hyper-reactivity and thrombosis in hyperlipidemia via the scavenger receptor CD36, however the signaling pathway(s) induced in platelets by oxPCCD36 are not well defined. We have employed mass spectrometry-based tyrosine, serine, and threonine phosphoproteomics for the unbiased analysis of platelet signaling pathways induced by oxPCCD36 as well as by the strong physiological agonist thrombin. oxPCCD36 and thrombin induced differential phosphorylation of 115 proteins (162 phosphorylation sites) and 181 proteins (334 phosphorylation sites) respectively. Most of the phosphoproteome changes induced by either agonist have never been reported in platelets; thus they provide candidates in the study of platelet signaling. Bioinformatic analyses of protein phosphorylation dependent responses were used to categorize preferential motifs for (de)phosphorylation, predict pathways and kinase activity, and construct a phosphoproteome network regulating integrin activation. A putative signaling pathway involving Src-family kinases, SYK, and PLCγ2 was identified in platelets activated by oxPCCD36. Subsequent ex vivo studies in human platelets demonstrated that this pathway is downstream of the scavenger receptor CD36 and is critical for platelet activation by oxPCCD36. Our results provide multiple insights into the mechanism of platelet activation and specifically in platelet regulation by oxPCCD36.  相似文献   

10.
The temporal course of the development of GAD activity in GABAergic neurons was studied in the chick retina, optic lobe and cerebellum. The developmental pattern of GAD activity was similar in the three areas studied, showing typical sigmoideal curves, which reached a maximal value at the 3rd post-hatching day. Kinetic studies during development revealed that Km remained unchanged while Vmax increased 3-fold in the retina (48.99±0.84 nmol/hr/mg protein), almost 4-fold in the optic lobe (162.77±4.32 nmol/hr/mg protein) and 3.5 fold in the cerebellum (69.30±1.26 nmol/hr/mg protein). The developmental pattern of GAD activity in homogenates of the three areas studied from dark-reared and light-reared chicks with respect to normal light-dark cycle animals showed no significant differences. These results indicate that the increase in GAD activity during development are not due to a change in the affinity for its substrate but rather to changes in the concentration of the enzyme. The developmental pattern of GAD activity in the chick visual system was not affected by environmental conditions suggesting that the developmental profile is lightindependent.  相似文献   

11.
The present study tests the hypothesis that pretreatment with allopurinol, a xanthine oxidase inhibitor, will prevent modification of the NMDA receptor during cerebral hypoxia in newborn piglets. Eighteen newborn piglets were studied. Six normoxic control animals were compared to six untreated hypoxic and six allopurinol (20 mg/kg i.v.) pretreated hypoxic piglets. Cerebral hypoxia was induced by lowering the FiO2 to 0.05–0.07 for 1 hour and tissue hypoxia was confirmed biochemically by the measurement of ATP and phosphocreatine. Brain cell membrane Na+,K+-ATPase activity was determined to assess membrane function. Na+,K+-ATPase activity was decreased from control in both the untreated and treated hypoxic animals (46.0 ± 1.0 vs 37.9 ± 2.5 and 37.3 ± 1.4 mol Pi/mg protein/hr, respectively, p < 0.05). [3H]MK-801 binding was determined as an index of NMDA receptor modification. The receptor density (Bmax) in the untreated hypoxic group was decreased compared to normoxic control (1.09 ± 0.17 vs 0.68 ± 0.22 pmol/mg protein, p < 0.01). The dissociation constant (Kd) was also decreased in the untreated group (10.0 ± 2.0 vs 4.9 ± 1.4 nM, p < 0.01), indicating an increase in receptor affinity. However, in the allopurinol treated hypoxic group, the Bmax (1.27 ± 0.09 pmol/mg protein) was similar to normoxic control and the Kd (8.1 ± 1.2 nM, p < 0.05) was significantly higher than in the untreated hypoxic group. The data show that the administration of allopurinol prior to hypoxia prevents hypoxia-induced modification of the NMDA receptor-ion channel binding characteristics, despite neuronal membrane dysfunction. By preventing NMDA receptor-ion channel modification, allopurinol may produce a neuromodulatory effect during hypoxia and attenuate NMDA receptor mediated excitotoxicity.  相似文献   

12.
We have investigated the involvement of store-operated Ca(2+) entry (SOCE) in the abnormal platelet Ca(2+) homeostasis in patients with non insulin-dependent diabetes mellitus (NIDDM). In a medium containing 180 mg/dL glucose, platelets from NIDDM patients showed an increased SOCE compared to controls. We found that tyrosine phosphorylation was elevated in platelets from NIDDM patients. Consistent with this, the activity of the tyrosine kinase pp60(src) is enhanced in platelets from diabetic patients. When the experiments were performed in a medium containing 90 mg/dL both, SOCE and pp60(src) activity, were similar to those found in control platelets. Our results indicate that SOCE is altered in platelets from NIDDM patients probably due to the increased activity of the tyrosine kinase pp60(src). Both, SOCE and pp60(src) activity in platelets from NIDDM patients are more susceptible to the extracellular glucose concentration, which seems to be involved in the dysfunction of these mechanisms.  相似文献   

13.
Increasing evidence suggests that chronic, sub-clinical inflammation plays an important role in the pathogenesis of diabetic retinopathy. We have established the potential role of the inflammatory enzyme, core 2 β-1, 6-N-acetylglucosaminyltransferase (C2GNT) in diabetic retinopathy. The present study was designed to explore the NADPH oxidase signaling pathway in the tumor necrosis factor-alpha (TNF-α)-induced activity of C2GNT in leukocytes. Human leukocytes (U937 cells) and an Epstein-Barr-transformed lymphoblastoid cell line deficient in p47phox (F10007 cells) were used for the study. Cells were exposed to TNF-α for 24 h in the presence and absence of 1) NADPH oxidase inhibitors (apocynin and scrambled and unscrambled gp91ds-tat), 2) LY379196 (specific protein kinase C β1/2 (PKCβ1/2) inhibitor), and 3) the antioxidant tiron. Subsequent C2GNT and NADPH activity was measured and the adhesion of U937 and F10007 cells to endothelial cells was assessed. TNF-α-induced C2GNT activity (1813 ± 326 pmol/h/mg protein) (mean ± SEM) in human leukocytes was significantly reversed with apocynin (153 ± 82 pmol/h/mg protein), unscrambled gp91ds-tat (244 ± 122 pmol/h/mg protein) and tiron (756 ± 87 pmol/h/mg protein). We further supported this C2GNT-NADPH oxidase link using p47phox-deficient leukocytes. The deficiency in p47phox prevented TNF-α-induced NADPH oxidase and C2GNT activity and adherence to endothelial cells. The response to TNF-α was restored by transfection with an expression plasmid containing a p47phox cDNA inserted in the sense direction. Our results demonstrate for the first time a novel signaling crosstalk between TNF-α, NADPH oxidase, PKCβ1/2 and C2GNT in leukocytes.  相似文献   

14.
The “in vitro” effects of α-tocopherol, butylhydroxytoluene (BHT) and butylhydroxyanisole (BHA) were studied on aggregation of human platelets induced by collagen and arachidonic acid (AA), on the metabolic conversion of 14C AA through the cyclooxygenase and lipoxygenase pathways and on the formation of thromboxane B2 (TXB2) in washed platelets after stimulation with collagen.Vitamin E completely inhibited AA induced platelet aggregation only at high concentration (mM) and after 10 minutes of preincubation, with limited effects on AA metabolism in platelets and no effect on TXB2 formation from endogenous substrate. BHA completely inhibited platelet aggregation in the 10−6M range, gave 50% inhibition of AA metabolism in the 10−5M range and almost complete inhibition of thromboxane formation in the 10−4M range. BHT was about 100 times less active on platelet aggregation and AA metabolism. The lipoxygenase and cyclooxygenase pathways were differentially affected at low concentrations of BHA and only at concentrations greater than 5×10−5M were both pathways depressed.  相似文献   

15.
Effects of dietary protein concentration on plasma and cerebrospinal fluid (CSF) amino acids (AA) in dogs with portacaval shunts (PCS) were examined. An 18% protein purified diet (18P) was fed to 4 PCS dogs and 2 controls; at week 10, 2 of the PCS dogs were switched to 36% protein (36P) until week 28. Effects of the diet switch on plasma and CSF AA in 8 normal dogs were determined in another experiment. Neither surgery nor protein level significantly affected average food intake (weeks 10-28). Plasma amino acid patterns typical of PCS animals were observed: phenylalanine and tyrosine increased and branched chain AA decreased with shunting (p less than 0.05). Plasma phenylalanine increased further with 36P in PCS dogs (p less than 0.05), but was not affected by dietary protein concentration in controls. With 36P: CSF arginine, serine, histidine, tryptophan, phenylalanine, glutamate and glutamine increased in PCS dogs; but only arginine decreased in CSF of controls (p less than 0.05). In PCS dogs, significant CSF AA changes with elevated dietary protein were unrelated to plasma AA changes.  相似文献   

16.
Background aimsEx vivo generation of megakaryocytes (MK) from hematopoietic stem cells (HSC) is important for both basic research, to understand the mechanism of platelet biogenesis, and clinical infusions, for rapid platelet recovery in thrombocytopenic patients. We investigated the role of two nutraceuticals, docosahexanoic acid (DHA) and arachidonic acid (AA), in the in vitro generation of MKMethodsUmbilical cord blood (UCB)-derived CD34+cells were cultured with stem cell factor (SCF) and thrombopoietin (TPO) in the presence (test) or absence (control) of the two additives. On day 10, MK and platelets generated were quantitated by morphologic, phenotypic and functional assaysResultsThe cell yield of MK and platelet numbers were significantly higher in test compared with control cells. Phenotypic analyzes and gene expression profiles confirmed these findings. Functional properties, such as colony-forming unit (CFU)-MK formation, chemotaxis and platelet activation, were found to be enhanced in cells cultured with nutraceuticals. The engraftment potential of ex vivo-expanded cells was studied in NOD/SCID mice. Mice that received MK cultured in the presence of DHA/AA engrafted better. There was a reduction in apoptosis and total reactive oxygen species (ROS) levels in the CD41+ compartment of the test compared with control sets. The data suggest that these compounds probably exert their beneficial effect by modulating apoptotic and redox pathwaysConclusionsUse of nutraceuticals like DHA and AA may prove to be a useful strategy for efficient generation of MK and platelets from cord blood cells, for future use in clinics and basic research.  相似文献   

17.
The fundamental mechanisms that underlie platelet activation in atherothrombosis are still obscure. Oxidative stress is involved in central features of atherosclerosis. Platelet-derived microvesicles (PMVs) could be important mediators between oxidative stress and platelet activation. CD36 could be a receptor of PMVs, thus generating a PMV–CD36 complex. We aimed to investigate the detailed pathway by which oxidative damage contributes to platelet activation by the PMV–CD36 complex. We found that oxidized low-density lipoprotein stimulated the generation of PMVs. PMVs enhanced normal platelet activation, as assessed by the expression of integrin αIIbβ3, secretion of soluble P-selectin and platelet aggregation, but CD36-deficient platelets were not activated by PMVs. The function of the PMV–CD36 complex was mediated by the MKK4/JNK2 signaling axis. Meanwhile, PMVs increased the level of 8-iso-prostaglandin-F2α, a marker of oxidative stress, in a CD36- and phosphatidylserine-dependent manner. We concluded that PMVs are important mediators between oxidative stress and platelet activation. PMVs and CD36 may be effective targets for preventing platelet activation in cardiovascular diseases.  相似文献   

18.
In this study, we investigated tissue levels of reduced glutathione (GSH) and carnitine as well as thiobarbituric acid reactive substances (TBARS, as a marker of lipid peroxidation) levels in bladder carcinoma and control group of patients. The average GSH, carnitine and TBARS levels for tumor group were respectively 7.11 ± 3.3 g/mg protein, 1.81 ± 0.39 nmol/mg protein, and 4.29 ± 3.2 mol/mg protein, versus 14.45 ± 4.11 g/mg protein, 2.14 ± 0.66 nmol/mg protein, and 2.3 ± 0.6 mol/mg protein for normal bladder tissues. Thus, tissue reduced glutathione levels (GSH) were significantly lower in patients as compared with the control group (p < 0.001) whereas average TBARS levels in the tumor group were found to be higher than those in control group. The average tissue carnitine levels in the patient group were found to be lower compared with the control group but the difference was not statistically significant (p > 0.05).  相似文献   

19.
The mechanisms responsible for platelet activation, the prothrombotic state, in non‐valvular atrial fibrillation (NVAF) are still obscure. Microvesicles (MVs) can transfer various messages to target cells and may be helpful for exploring the detailed mechanisms. We aimed to investigate the possible mechanisms by which proatherogenic factors of NVAF contribute to platelet activation. Two hundred and ten patients with NVAF were stratified as being at ‘low to moderate risk’ or ‘high risk’ for stroke according to the CHADS2 score. Levels of platelet‐derived MVs (PMVs) and platelet activation were examined. CD36‐positive or CD36‐deficient human platelets were stimulated by MVs isolated from NVAF patients with or without various inhibitors in vitro. Levels of PMVs and platelet activation markers enhanced significantly in high‐risk patients. The MVs isolated from plasma of NVAF patients bound to platelet CD36 and activated platelets by phosphorylating the mitogen‐activated protein kinase 4/Jun N‐terminal kinase 2 (MKK4/JNK2) pathways. However, CD36 deficiency protected against MV‐induced activation of platelets. We reveal a possible mechanism of platelet activation in NVAF and suggest that the platelet CD36 might be an effective target in preventing the prothrombotic state in NVAF.  相似文献   

20.
Mortality and morbidity from coronary heart disease (CHD), diabetes mellitus (DM) and essential hypertension (HTN) are higher in people of South Asian descent than in other groups. There is evidence to believe that essential fatty acids (EFAs) and their metabolites may have a role in the pathobiology of CHD, DM and HTN. Fatty acid analysis of the plasma phospholipid fraction revealed that in CHD the levels of gamma-linolenic acid (GLA), arachidonic acid (AA), eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are low, in patients with HTN linoleic acid (LA) and AA are low, and in patients with non-insulin dependent diabetes mellitus (NIDDM) and diabetic nephropathy the levels of dihomo-gamma-linolenic acid (DGLA), AA, alapha-linolenic acid (ALA) and DHA are low, all compared to normal controls. These results are interesting since DGLA, AA and EPA form precursors to prostaglandin E1, (PGE1), prostacyclin (PGI2), and PGI3, which are potent platelet anti-aggregators and vasodilators and can prevent thrombosis and atherosclerosis. Further, the levels of lipid peroxides were found to be high in patients with CHD, HTN, NIDDM and diabetic nephropathy. These results suggest that increased formation of lipid peroxides and an alteration in the metabolism of EFAs are closely associated with CHD, HTN and NIDDM in Indians. Since insulin resistance and hyperinsulinemia and features of obesity, NIDDM, HTN and CHD, diseases that are common in Indians, and as decreased insulin sensitivity is associated with decreased concentrations of polyunsaturated fatty acids (PUFAs) in skeletal muscle phospholipids and, possibly, in the plasma, the possibility is raised that changes in the metabolism of EFAs may have a fundamental role in the pathobiology of these conditions. If this is true, this suggests that supplementation of GLA, DGLA, AA, EPA and/or DHA may be indicated to prevent CHD, HTN and NIDDM in Indians.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号