首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Characterization of a group of dominant second chromosome suppressor of position-effect variegation (PEV) (Su(var)) mutants has revealed a variety of interesting properties, including: maternal-effect suppression of PEV, homozygous lethality or semilethality and male-specific hemizygous lethality, female infecundity, acute sensitivity to the amount of heterochromatin in the cell and sensitivity to sodium butyrate. Deficiency/duplication mapping and complementation tests have revealed that eight of the mutants define at least two genes in section 31 of the left arm of chromosome 2 and they suggest that a ninth corresponds to an additional nonessential Su(var) gene within or near this region. The effects of specific deficiencies and a duplication on PEV indicate that the expression of one or more of the Su(var) genes in this region of the chromosome is dose-dependent, i.e., capable of haplo-abnormal suppression and triplo-abnormal enhancement. Interestingly, the appearance of certain visible phenotypes among a subset of the mutants suggests that they may possess antimorphic properties. Our results are consistent with the hypothesis that two of these Su(var) genes encode structural components of heterochromatin. We also report that two previously isolated mutants located in 31E and 31F-32A act as recessive suppressors of PEV.  相似文献   

2.
Summary As a result of a genetic analysis of 63 third chromosome suppressor mutations of position-effect variegation 12 different loci showing dominant suppression have been identified and their map positions determined. A compilcation of the genetic data available for each suppressor locus is given. The strong suppressor effects of the mutations have been quantified by measurements of white variegation inw m4h /w m4h ,w m4h /Y andw m4h /O flies. Mutant alleles of three loci were found in these studies to dominate over the strong enhancer effect of complete loss of the Y chromosome. Most of the identified loci suppressing position-effect variegation represent essential genetic funtions; only three loci represent nonessential functions. Mutations of two loci display recessive butyrate sensitivity and lethal interaction with the heterochromatic Y chromosome suggesting that these genes affect chromosomal condensation. Studies with deficiencies and triploids revealed that most of the loci represent haplo-abnormal suppressor functions. The use of the isolated mutant material for genetic, developmental and molecular studies of processes connected with gene inactivation in position-effect variegation is discussed.Dedicated to Prof. H.J. Becker on the occasion of his 6th birthday  相似文献   

3.
Segmental Aneuploidy and the Genetic Gross Structure of the Drosophila Genome   总被引:45,自引:70,他引:45  
By combining elements of two Y-autosome translocations with displaced autosomal breakpoints, it is possible to produce zygotes heterozygous for a deficiency for the region between the breakpoints, and also, as a complementary product, zygotes carrying a duplication for precisely the same region. A set of Y-autosome translocations with appropriately positioned breakpoints, therefore, can in principle be used to generate a non-overlapping set of deficiencies and duplications for the entire autosomal complement.-Using this method, we have succeeded in examining segmental aneuploids for 85% of chromosomes 2 and 3 in order to assess the effects of aneuploidy and to determine the number and location of dosage-sensitive loci in the Drosophila genome (Figure 5). Combining our data with previously reported results on the synthesis of Drosophila aneuploids (see Lindsley and Grell 1968), the following generalities emerge.-1. The X chromosome contains no triplo-lethal loci, few or no haplo-lethal loci, at least seven Minute loci, one hyperploid-sensitive locus, and one locus that is both triplo-abnormal and haplo-abnormal. 2. Chromosome 2 contains no triplo-lethal loci, few or no haplo-lethal loci, at least 17 Minute loci, and at least four other haplo-abnormal loci. 3. Chromosome 3 contains one triplo-lethal locus that is also haplo-lethal, few or no other haplo-lethal loci, at least 16 Minute loci, and at least six other haplo-abnormal loci. 4. Chromosome 4 contains no triplo-lethal loci, no haplo-lethal loci, one Minute locus, and no other haplo-abnormal loci.-Thus, the Drosophila genome contains 57 loci, aneuploidy for which leads to a recognizable effect on the organism: one of these is triplo-lethal and haplo-lethal, one is triplo-abnormal and haplo-abnormal, one is hyperploid-sensitive, ten are haplo-abnormal, 41 are Minutes, and three are either haplo-lethals or Minutes. Because of the paucity of aneuploid-lethal loci, it may be concluded that the deleterious effects of aneuploidy are mostly the consequence of the additive effects of genes that are slightly sensitive to abnormal dosage. Moreover, except for the single triplo-lethal locus, the effects of hyperploidy are much less pronounced than those of the corresponding hypoploidy.  相似文献   

4.
Summary Four dominant suppressor and one enhancer of variegation loci were mapped in the polytene chromosome region extending from section 86C to section 88B of the Drosophila melanogaster third chromosome using a set of deficiencies. The suppressor locus Su-var(3) 14 maps in 86CD, Su-var(3) 13 in 86F4-7, Su-var(3)6 in 87B4-7 and Su-var(3)7 in 87E4-5. The enhancer locus E-var(3)3 maps in 87E12-F11. Su-var(3)13, Su-var(3)6 and Su-var(3)7 are also defined by point mutant alleles originally identified by other criteria (Reuter et al. 1986). Duplications covering the suppressor loci Su-var(3)14, Su-var(3)13, Su-var(3)6 and Su-var(3)7 were found to reduce considerably the haplo-abnormal effect of heterozygous point mutants of the corresponding loci. One suppressor locus, Su-var(3)7, maps within a region which has previously been cloned. The positions of deficiency breakpoints delimiting the suppressor locus indicate that all the necessary sequences for its function are located within 10 kb of cloned DNA.  相似文献   

5.
Three suppressor loci for position-effect variegation, one dominant temperature-sensitive (DTS), three Minute genes, and two recessive visible mutants (ed, tkv) have been cytogenetically localized by using duplications and deficiencies in regions 23-25 of chromosome arm 2L of Drosophila melanogaster. Two of the suppressor loci studied proved to represent haplo-abnormal genes localized in regions 23A6-23F6 and 24E2-25A1, respectively. The third one is a strong triplo-abnormal suppressor mapping in 25F4-26B9 which affects white variegation in wm4h when present in three doses. The l(2)2DTS mutation, which belongs to a group of noncomplementing dominant temperature-sensitive mutations, is localized in the 25A4-B1 region. Furthermore, two Minute genes have been localized in region 24 that are included in Df(2L)M11 and can be separated employing translocation (Y;2)P8 (24E2-4): M(2)LS2 in 24D3-4-24E2-4, and M(2)z in 24E4-5-24F5-7. A third Minute gene (M(2)S1) is localized in 25C3-8-25C9-D1. The usefulness of the isolated chromosomal rearrangements for further genetic studies of region 23-26 is discussed.  相似文献   

6.
P transposon induced modifier mutations of position-effect variegation (PEV) were isolated with the help of hybrid dysgenic crosses (π2 strain) and after transposition of the mutator elements pUChsneory(+) and P[lArB]. Enhancer mutations were found with a ten times higher frequency than suppressors. The 19 pUChsneory(+)- and 15 P[lArB]-induced enhancer mutations can be used for cloning of genomic sequences at the insertion sites of the mutator elements via plasmid rescue. Together with a large sample of X-ray-induced (48) and spontaneous (93) enhancer mutations a basic genetic analysis of this group of modifier genes was performed. On the basis of complementation and mapping data we estimate the number of enhancer genes at about 30 in the third chromosome and between 50 and 60 for the whole autosome complement. Therefore, enhancer of PEV loci are found in the Drosophila genome as frequently as suppressor genes. Many of the enhancer mutations display paternal effects consistent with the hypothesis that some of these mutations can induce genomic imprinting. First studies on the developmentally regulated gene expression of PEV enhancer genes were performed by β-galactosidase staining in P[lArB] induced mutations.  相似文献   

7.
In position-effect variegation (PEV) genes become silenced by heterochromatisation. Genetic dissection of this process has been performed by means of dominant suppressor [Su(var)] and enhancer [E(var)] mutations. Selective genetic screens allowed mass isolation of more than 380 PEV modifier mutations identifying about 150 genes. Genetic fine structure studies revealed unique dosage dependent effects. Most of the haplo-dependent Su(var) and E(var) genes do not display triplo-dependent effects. Several Su(var) loci with triplo-dependent opposite enhancer effects have been identified and shown to encode heterochromatin-associated proteins. From these the evolutionary conserved histone H3 lysine 9 methyltransferase SU(VAR)3-9 plays a central role in heterochromatic gene silencing. Molecular function of most PEV modifier genes is still unknown also including genes identified with mutations displaying lethal interaction to heterochromatin. Their analysis should contribute to further understanding of processes connected with regulation of higher order chromatin structure and epigenetic programming.  相似文献   

8.
Polycomb group (PcG) genes of Drosophila are negative regulators of homeotic gene expression required for maintenance of determination. Sequence similarity between Polycomb and Su(var)205 led to the suggestion that PcG genes and modifiers of position-effect variegation (PEV) might function analogously in the establishment of chromatin structure. If PcG proteins participate directly in the same process that leads to PEV, PcG mutations should suppress PEV. We show that mutations in E(Pc), an unusual member of the PcG, suppress PEV of four variegating rearrangements: In(l)wm4, B(SV), T(2;3)Sb(V) and In(2R)bw(VDe2). Using reversion of a Pelement insertion, deficiency mapping, and recombination mapping as criteria, homeotic effects and suppression of PEV associated with E(Pc) co-map. Asx is an enhancer of PEV, whereas nine other PcG loci do not affect PEV. These results support the conclusion that there are fewer similarities between PcG genes and modifiers of PEV than previously supposed. However, E(Pc) appears to be an important link between the two groups. We discuss why Asx might act as an enhancer of PEV.  相似文献   

9.
10.
SU(VAR)3-9 is a conserved key function in heterochromatic gene silencing   总被引:1,自引:0,他引:1  
Schotta G  Ebert A  Reuter G 《Genetica》2003,117(2-3):149-158
This review summarizes genetic, molecular and biochemical studies of the SU(VAR)3-9 protein and the evidence for its key role in heterochromatin formation and heterochromatic gene silencing. The Su(var)3-9 locus was first identified as a dominant modifier of position-effect variegation (PEV) in Drosophila melanogaster. Together with Su(var)2-5 and Su(var)3-7, Su(var)3-9 belongs to the group of haplo-suppressor loci which show a triplo-dependent enhancer effect. All three genes encode heterochromatin-associated proteins. Su(var)3-9 is epistatic to the PEV modifier effects of Su(var)2-5 and Su(var)3-7, and it also dominates the effect of the Y chromosome on PEV. These genetic data support a central role of the SU(VAR)3-9 protein in heterochromatic gene silencing, one that is correlated with its activity as a histone H3-K9 methyltransferase (HMTase). In fact, SU(VAR)3-9 is the main chromocenter-specific HMTase of Drosophila. SU(VAR)3-9 and HP1, the product of Su(var)2-5, are main constituents of heterochromatin protein complexes and the interaction between these two proteins is interdependent. Functional analysis in fission yeast, Drosophila and mammals demonstrate that SU(VAR)3-9-dependent gene silencing processes are conserved in these organisms. This is also demonstrated by the rescue of Drosophila Su(var)3-9 mutant phenotypes with human SUV39H1 transgenes.  相似文献   

11.
Summary Multigene families are a ubiquitous feature of eukaryotes; however, their presence in Saccharomyces is more limited. The MAL multigene family is comprised of five unlined loci, MAL1, MAL2, MAL3, MAL4 and MAL6, any one of which is sufficient for yeast to metabolize maltose. A cloned MAL6 locus was used as a probe to facilitate the cloning of the other four functional loci as well as two partially active alleles of MAL1. Each locus could be characterized as a cluster of three genes, MALR (regulatory), MALT (maltose transport or permease) and MALS (structural or maltase), encoded by a total of about 7 kb of DNA; however, homologous sequences at each locus extend beyond the coding regions. Our results indicate that there is extensive homology among the MAL loci, especially within their maltase genes. The greatest sequence diversity occurs in their regulatory gene regions. Southern cross analyses of the cloned MAL loci indicate a single duplication of the MAL6R-homologous sequences upstream of the MAL6R gene as well as an extensive duplication of more than 10 kb at the MAL3 locus. The large repeat at the MAL3 locus results in the presence of four copies of MAL3R-homologous sequences and two copies of MAL3T-homologous sequences at that locus. Two naturally occurring inactive alleles of MAL1 show a deletion or divergence of their MALR sequences. The significance of these repeats in the evolution of the MAL multigene family is discussed.  相似文献   

12.
13.
《Fly》2013,7(2):93-97
The JIL-1 kinase is a multidomain protein that localizes specifically to euchromatin interband regions of polytene chromosomes and is the kinase responsible for histone H3S10 phosphorylation at interphase. Genetic interaction assays have suggested that the function of the epigenetic histone H3S10ph mark is to antagonize heterochromatization by participating in a dynamic balance between factors promoting repression and activation of gene expression as measured by position-effect variegation (PEV) assays. Interestingly, JIL-1 loss-of-function alleles can act either as an enhancer or indirectly as a suppressor of wm4 PEV depending on the precise levels of JIL-1 kinase activity. In this study, we have explored the relationship between PEV and the relative levels of the H3S10ph and H3K9me2 marks at the white gene in both wild-type and wm4 backgrounds by ChIP analysis. Our results indicate that H3K9me2 levels at the white gene directly correlate with its level of expression and that H3K9me2 levels in turn are regulated by H3S10 phosphorylation.  相似文献   

14.
Sex-ratio drive, which results in males siring female-biased progeny, has been reported in several Drosophila species, including D. simulans. It is caused by X-linked drivers that prevent the production of Y-bearing sperm. In natural populations of D. simulans, the drivers are usually cryptic, because their spread has elicited the evolution of drive suppressors. We investigated autosomal suppression in flies from Madagascar, Réunion and Kenya. Autosomal suppressors were found in all three places, indicating that they are a regular component of drive suppression over this geographic area, where strong Y-linked suppressors also occur. These suppressors were suspected of being polymorphic in Madagascar and Réunion and proved to be polymorphic in Kenya. We developed a model simulating the evolution of neutral autosomal suppressors in order to explore the effects of the number of suppressor genes, their relative strength and the co-occurrence of Y-linked suppressors. The most interesting prediction of the model is that when suppression is multigenic, suppressor loci can remain polymorphic despite the absence of balancing selection if an equal sex-ratio is restored in the population before the suppressor alleles become fixed at all loci. The model also emphasises the importance of the sterility of distorters sons in suppressor dynamics.  相似文献   

15.
Summary The synthesis of at least 15 zein polypeptides is under the control of regulatory gene loci. One of these, Opaque-2 (chromosome 7, position 16) strongly reduces the zein accumulation without modifying the zein molecular components. The linkage relationship between the regulatory gene 02 and the 5 structural loci (Zp1, Zp2, Zp3, Zp6, Zp12) segregating with sample Mendelian ratios have been studied. Zp1, Zp2, Zp3 are closely linked to each other; moreover this gene cluster is located on chromosome 7 at 5.5 cM from the Opaque-2 locus. The structural loci Zp6 and Zp12 are not linked with each other, with the 02 locus or with Zp1, Zp2, Zp3. From our data it follows that the zein structural genes are located in at least three positions on the maize genome. The scattering in the genome of the genes controlled by the Opaque-2 locus suggests a transacting role for this regulatory element.  相似文献   

16.
Trans-inactivation is the repression of genes on a normal chromosome under the influence of a rearranged homologous chromosome demonstrating the position effect variegation (PEV). This phenomenon was studied in detail on the example of brownDominant allele causing the repression of wild-type brown gene on the opposite chromosome. We have investigated another trans-inactivation-inducing chromosome rearrangement, In(2)A4 inversion. In both cases, brownDominant and In(2)A4, the repression seems to be the result of dragging of the euchromatic region of the normal chromosome into the heterochromatic environment. It was found that cis-inactivation (classical PEV) and trans-inactivation show different patterns of distribution along the chromosome and respond differently to PEV modifying genes. It appears that the causative mechanism of trans-inactivation is de novo heterochromatin assembly on euchromatic sequences dragged into the heterochromatic nuclear compartment. Trans-inactivation turns out to be the result of a combination of heterochromatin-induced position effect and the somatic interphase chromosome pairing that is widespread in Diptera.  相似文献   

17.
Defense responses triggered by dominant and recessive disease resistance ( R) genes are presumed to be regulated by different molecular mechanisms. In order to characterize the genes activated in defense responses against bacterial blight mediated by the recessive R gene xa13, two pathogen-induced subtraction cDNA libraries were constructed using the resistant rice line IRBB13—which carries xa13 —and its susceptible, near-isogenic, parental line IR24. Clustering analysis of expressed sequence tags (ESTs) identified 702 unique expressed sequences as being involved in the defense responses triggered by xa13; 16% of these are new rice ESTs. These sequences define 702 genes, putatively encoding a wide range of products, including defense-responsive genes commonly involved in different host-pathogen interactions, genes that have not previously been reported to be associated with pathogen-induced defense responses, and genes (38%) with no homology to previously described functional genes. In addition, R -like genes putatively encoding nucleotide-binding site/leucine rich repeat (NBS-LRR) and LRR receptor kinase proteins were observed to be induced in the disease resistance activated by xa13. A total of 568 defense-responsive ESTs were mapped to 588 loci on the rice molecular linkage map through bioinformatic analysis. About 48% of the mapped ESTs co-localized with quantitative trait loci (QTLs) for resistance to various rice diseases, including bacterial blight, rice blast, sheath blight and yellow mottle virus. Furthermore, some defense-responsive sequences were conserved at similar locations on different chromosomes. These results reveal the complexity of xa13 -mediated resistance. The information obtained in this study provides a large source of candidate genes for understanding the molecular bases of defense responses activated by recessive R genes and of quantitative disease resistance.Electronic Supplementary Material Supplementary material is available in the online version of this article at The first two authors contributed equally to this workCommunicated by R. Hagemann  相似文献   

18.
Neighboring genes predictably share similar evolutionary histories to an extent delineated by recombination. This correlation should extend across multiple linked genes in a selfing species such as Arabidopsis thaliana due to its low effective recombination rate. To test this prediction, we performed a molecular population genetics analysis of nucleotide polymorphism and divergence in chromosomal regions surrounding four low-diversity loci. Three of these loci, At1g67140, At3g03700, and TERMINAL FLOWER1 (TFL1), have been previously implicated as targets of selection and we would predict stronger correlations in polymorphism between neighboring loci due to genetic hitchhiking around these loci. The remaining locus, At1g04300, was identified in a study of linkage disequilibrium surrounding the CRYPTOCHROME2 (CRY2) locus. Although we found broad valleys of reduced nucleotide variation around two of our focal genes, At1g67140 and At3g03700, all chromosomal regions exhibited extreme variation in the patterns of polymorphism and evolution between neighboring loci. Although three of our four regions contained potential targets of selection, application of the composite-likelihood-ratio test of selection in conjunction with a goodness-of-fit test supports the selection hypothesis only for the region containing At3g03700. The degree of discordance in evolutionary histories between linked loci within each region generally correlated with estimates of recombination and linkage disequilibrium for that region, with the exception of the region containing At1g04300. We discuss the implications of these data for future population genetics analyses and genomics studies in A. thaliana. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

19.
Summary Resistance to watermelon mosaic virus-2 in Phaseolus vulgaris L. is conferred by two distinct dominant alleles at independent loci. Based on segregation data one locus is designated Wmv, the other, Hsw. The dominant allele Wmv from cv. Great Northern 1140 prevents systemic spread of the virus but viral replication occurs in inoculated tissue. In contrast, Hsw confers both local and systemic resistance to WMV-2 below 30C. At higher temperatures, plants that carry this allele in the absence of modifying or epistatic factors develop systemic veinal necrosis upon inoculation with the virus that results in rapid death. Patho-type specificity has not been demonstrated for either allele; both factors confer resistance to every isolate tested. A temperature-sensitive shift in epistasis is apparent between dominant alleles at these loci. Because Hsw is very tightly linked if not identical to the following genes for hypersensitivity to potyviruses I, (bean common mosaic virus), Bcm, (blackeye cowpea mosaic virus), Cam, (cowpea aphid-borne mosaic virus) and Hss (soybean mosaic virus), parental, reciprocal dihybrid F1 populations, and selected F3 families were inoculated with each of these viruses and held at 35 C. F1 populations developed vascular necrosis completely or primarily limited to inoculated tissue, while F3 families from WMV-2-susceptible segregates were uniformly susceptible to these viruses. The relationship between Hsw, Wmv and other genes for potyvirus resistance suggest patterns in the evolution of resistance and viral pathogenicity. Characterization of the resistance spectrum associated with each factor provides an additional criterion to distinguish genes for plant virus resistance.  相似文献   

20.
Summary We have searched for dominant modifiers, i.e., enhancers and suppressors, of the compound eye phenotype of split, a recessive viable allele of Notch. Among the spl modifiers found, we have detected mutations in loci whose functions were previously known to cooperate with Notch in embryonic neurogenesis, such as daughterless, master mind, Delta and Hairless. In addition, other spl modifier mutations have been found in loci that were not previously known to interact with Notch, such as scabrous, glass, roughened eye, and several other genes that have not yet been assigned to known loci. The phenotypes associated with mutations in some of these latter loci suggest the participation of the corresponding genes in embryonic neurogenesis. We show that in some cases the observed interactions are due to genetic haplo-insufficent expression of the genes, whereas allele-specific interactions with spl are observed in master mind and Delta alleles. From this observation, we propose a direct functional association between the proteins encoded by Notch, Delta and master mind.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号