首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Selenium deficiency has been associated with hypercholesterolemia. Present study was aimed to determine the effect of selenium (Se) deficiency on LDL receptor (LDL-R) activity as well as mRNA expression during experimental hypercholesterolemia in SD male rats. Animals were fed Se adequate (0.2 ppm) and deficient (0.02 ppm) control diet as well as high cholesterol (2%) diet (HCD) for 1 and 2 months. LDL-R activity was measured in vivo by injecting radiolabeled LDL to rats and percent decrease in cpm with time was taken as a measure of LDL clearance and in turn LDL-R activity. LDL-R mRNA expression was studied by RT-PCR. LDL-R activity and mRNA expression decreased significantly on HCD feeding in both Se deficient and adequate diet fed rats after 2 months. In Se deficiency receptor activity and mRNA expression decreased significantly. After 2 months LDL-R activity and expression decreased in both the Se deficient groups and in Se adequate HCD fed group in comparison to 1 month data. But after 4 month there was no significant difference observed in LDL-R activity and mRNA expression in selenium deficiency as well as on HCD feeding. So the present results demonstrate that Se deficiency act synergistically with hypercholesterolemia to downregulate LDL-R activity as well as mRNA expression.  相似文献   

2.
Selenium (Se) status has been associated with cardiovascular disorders. Present study was aimed to elucidate the protective role of Se supplementation on LDL receptor (LDL-R) activity as well as mRNA expression during experimental hypercholesterolemia in SD male rats. Animals were fed 0.2 and 1 ppm Se supplemented control diet as well as 2% cholesterol supplemented diet for 3 months. LDL-R activity was measured in-vivo by injecting radiolabeled LDL to rats and decrease in counts per minute with time was taken as a measure of LDL clearance and in turn LDL-R activity. LDL-R mRNA expression was studied by RT-PCR. LDL-R activity and mRNA expression decreased significantly on 2% cholesterol supplemented diet feeding. On 1 ppm Se supplementation LDL-R activity as well as mRNA expression increased significantly. Present results demonstrate that Se supplementation upto 1 ppm is responsible for up regulation of LDL-R activity as well as mRNA expression, during hypercholesterolemia. These findings highlight the therapeutic potential of Se supplementation in lipid metabolism.  相似文献   

3.
The low density lipoprotein receptor (LDLR) plays a major role in regulation of plasma cholesterol levels as a ligand for apolipoprotein B-100 and apolipoprotein E (apoE). Consequently, LDLR-deficient mice fed a Western-type diet develop significant hypercholesterolemia and atherosclerosis. ApoE not only mediates uptake of atherogenic lipoproteins via the LDLR and other cell-surface receptors, but also directly inhibits atherosclerosis. In this study, we examined the hypothesis that coexpression of the LDLR and apoE would have greater effects than either one alone on plasma cholesterol levels and the development of atherosclerosis in LDLR-deficient mice. LDLR-deficient mice fed a Western-type diet for 10 weeks were injected with recombinant adenoviral vectors encoding the genes for human LDLR, human apoE3, both LDLR and apoE3, or lacZ (control). Plasma lipids were analyzed at several time points after vector injection. Six weeks after injection, mice were analyzed for extent of atherosclerosis by two independent methods. As expected, LDLR expression alone induced a significant reduction in plasma cholesterol due to reduced VLDL and LDL cholesterol levels, whereas overexpression of apoE alone did not reduce plasma cholesterol levels. When the LDLR and apoE were coexpressed in this model, the effects on plasma cholesterol levels were no greater than with expression of the LDLR alone. However, coexpression did result in a substantial increase in large apoE-rich HDL particles. In addition, although the combination of cholesterol reduction and apoE expression significantly reduced atherosclerosis, its effects were no greater than with expression of the LDLR or apoE alone. In summary, in this LDLR-deficient mouse model fed a Western-type diet, there was no evidence of an additive effect of expression of the LDLR and apoE on cholesterol reduction or atherosclerosis.  相似文献   

4.
Lrp5/6 co-receptor is known to play a role in bone formation and lipid metabolism. This gene encodes a member of the low-density lipoprotein (LDL) receptor gene family. This study tests the hypothesis that Lrp5/6 is necessary for the development of valve calcification in experimental hypercholesterolemia. Experimental hypercholesterolemia mouse models were tested: Lrp5(-/-) /ApoE(-/-):Lrp5(-/-) /ApoE(-/-) mice (n = 180). Group I (n = 60) normal diet, Group II (n = 60) 0.25% chol diet (w/w), and Group III (n = 60) 0.25% (w/w) chol diet + atorv for the development of calcification by MicroCT and Synchrotron MicroCT Scan and by Masson trichrome stain. Finally gene expression for Lrp5, Lrp6, and Runx2 PCR was performed to evaluate the expression in the control and the cholesterol valves. The ApoE(-/-) cholesterol treated mice developed calcification and increase in Lrp5, Runx2 (P < 0.05) as compared to control. The Lrp5(-/-) mice developed no calcification by MicroCT and Synchrotron and positive gene expression for Lrp5/6 or Runx2. The double knockout ApoE(-/-):Lrp5(-/-) developed mild mineralization in the cholesterol treated valves with an increase in Lrp6 and Runx2 expression(P < 0.05). There was no mineralization in the right sided hearts valves. In conclusion Lrp5/6 is necessary for calcification in the aortic valve in the presence of experimental hypercholesterolemia. These data demonstrate the first mouse genetic evidence for the LDL-Density-Pressure theory in cardiac valves.  相似文献   

5.
The effects of diets enriched with cholesterol and different fats upon plasma lipoproteins and hepatic low density lipoprotein (LDL) receptor mRNA levels were studied in a group of 18 normal baboons. Animals were fed diets containing 1% cholesterol and 25% fat as either coconut oil, peanut oil, or olive oil for a period of 20 weeks. Plasma total cholesterol, high density lipoprotein (HDL) cholesterol, beta-lipoprotein (LDL + very low density lipoprotein) cholesterol, apolipoprotein B and apolipoprotein A-I were measured in samples obtained at 4-week intervals. All three diet groups demonstrated a statistically significant increase in plasma cholesterol as compared to base line throughout the experiment. Hepatic LDL receptor (LDL-R) mRNA levels were quantified by dot blot hybridization in serial liver biopsies. Animals fed saturated fat sustained a significant reduction in hepatic LDL-R mRNA as compared to those fed either monounsaturated or polyunsaturated fat. A strong negative correlation between LDL-R mRNA and plasma total cholesterol (r = -0.71), HDL cholesterol (r = -0.76), and plasma apo A-I (r = -0.77) was observed only in those animals fed coconut oil. Weak negative correlations between LDL-R mRNA and other plasma parameters did not achieve statistical significance. We conclude that saturated and unsaturated oils may influence plasma cholesterol levels in part through differential effects on LDL receptor biosynthesis in baboons.  相似文献   

6.
The LDL receptor (LDL-R) has been proposed as the viral receptor for Hepatitis C virus (HCV). This hypothesis has been based exclusively on in vitro studies. In human mononuclear cells, LDL-R gene expression has been demonstrated to be parallel and be coordinately regulated to gene expression in the human liver. The purpose of the current study was to determine the mononuclear cell surface expression of the LDL receptor in patients with HCV chronic infection according to viral load. Sixty-eight consecutive untreated chronic hepatitis C patients were studied to determine the mononuclear cell surface expression of the LDL-R. LDL-Rs were quantified at the surface of mononuclear cells in fresh blood samples taken after fasting using flow cytometry. LDL-R expression was significantly associated with LDL-cholesterol (r = -0.25; P = 0.03) and HCV-viral load (r = 0.37, P = 0.002). In multivariate analysis, the LDL-R expression was significantly associated with HCV viral load, whereas genotype, age, body mass index, and fibrosis were not. In conclusion, our data provided by a human study, suggest that the LDL-R may be one of the receptors implicated in HCV replication.  相似文献   

7.
Proprotein Convertase Subtilisin Kexin9 (PCSK9), originally called Neural Apoptosis-Regulated Convertase1 (NARC1), is the latest member of mammalian subtilase super-family. Since its discovery in 2003, it has drawn significant attention because of its function in the degradation of Low Density Lipoprotein Receptor (LDL-R). LDL-R removes circulating LDL-cholesterol (LDL-C) in the blood. Increased level of PCSK9 functional activity will lead to an accumulation of cholesterol in the blood - a high risk factor for cardiovascular disease. This is confirmed by PCSK9 knock out and transgenic animals, various biochemical and clinical studies involving "gain and loss of function" genetic mutations of PCSK9 found in various subset of populations. Owing to this finding, development of strategies for inhibition of PCSK9 function has drawn significant research interest for therapeutic intervention of hypercholesterolemia. Thus PCSK9 is a target for the development of new cholesterol lowering drugs.  相似文献   

8.
It is known that, in the general human population, serum fatty acid composition is correlated with serum triacylglycerol and cholesterol concentrations. The goal of the present study was to analyze whether the same is true of individuals who have a low density lipoprotein receptor (LDL-R) defect. Concentrations of 16 different fatty acids, cholesterol, triacylglycerol, and major lipoproteins in serum were determined in eight individuals who had (FH-North Karelia), the most common LDL-R defect in Finland, which causes familial hypercholesterolemia, and in their 30 relatives belonging to a single large pedigree as controls. The average number of double bonds (i.e., degree of desaturation) in serum fatty acids correlated negatively with the concentrations of serum total cholesterol (r = 0.27, P < 0.05) and total triacylglycerol (r = -0.71, P < 0.001) and positively with the number of fish meals per week (r = 0.50, P < 0.01), which was analyzed in all pedigree members jointly. These effects were similar in individuals having LDL-R defect, in which group the correlation coefficients were -0.31 (P = NS), -0.99 (P < 0.001), and 0.79 (P = NS) for serum total cholesterol, triacylglycerol, and weekly fish meals, respectively. Thus, LDL-R defect does not impair the correlation between serum fatty acid composition and serum triacylglycerol concentration. This result is in agreement with dietary studies that have shown that familial hypercholesterolemia patients respond very favorably to dietary therapy.  相似文献   

9.
The immune system has to be optimally balanced to be highly effective against infections with cytopathic microbial pathogens and must guarantee efficient destruction of cells infected with noncytopathic agents while leaving the integrity of noninfected cells largely unaltered. We describe here the effects of genetically induced hypercholesterolemia on cellular immunity in apolipoprotein E (ApoE(-/-)) and low density lipoprotein receptor-deficient (LDLR(-/-)) mice during infection with the hepatotropic lymphocytic choriomeningitis virus WE strain. In both ApoE(-/-) and LDLR(-/-) mice hypercholesterolemia aggravated virus-induced immunopathologic liver disease. ApoE(-/-) mice exhibited a higher susceptibility to virus-induced immunopathology than LDLR(-/-) mice and usually succumbed to immunopathologic disease when infected with high doses of virus. Initial virus spread was not influenced by the hypercholesterolemia, whereas clearance of the virus from spleen and nonlymphoid organs, including liver, was delayed. Activation of antiviral CTL, measured by ex vivo cytotoxicity and IFN-gamma production, and recruitment of specific CTL into blood and liver were impaired in hypercholesterolemic mice, indicating that hypercholesterolemia had a significant suppressive effect on cellular immunity. Taken together, these data provide evidence that hypercholesterolemia suppresses antiviral immune responses, thereby changing the host-virus balance, and can increase susceptibility to acute or chronic and potentially lethal virus-induced immunopathologic disease. These findings impinge on our understanding of hypercholesterolemia as a disease parameter and may explain aspects of the frequent association of persistent pathogens with hypercholesterolemia-induced diseases, such as atherosclerosis.  相似文献   

10.
Targeted gene disruption or overexpression of 12/15-lipoxygenase in mice on the genetic background of apolipoprotein E or low density lipoprotein-receptor (LDL-R) deficiency has implicated 12/15-lipoxygenase in atherogenesis. The data support indirectly a role for 12/15-lipoxygenase in the oxidative modification of low density lipoprotein. In this study we set out to explore other potential mechanisms for 12/15-lipoxygenase in atherosclerosis using apolipoprotein B mRNA editing catalytic polypeptide-1/LDL-R double-deficient mice, a model highly related to the human condition of familial hypercholesterolemia. 12/15-Lipoxygenase deficiency in this strain led to approximately 50% decrease in aortic lesions in male and female mice at 8 months on a chow diet in the absence of cholesterol differences. While studying 12/15-lipoxygenase-deficient macrophages in culture, we discovered a remarkable selective defect (75-90% decrease) in interleukin-12 production but not in tumor necrosis factor-alpha or nitric oxide release, in response to lipopolysaccharide in the presence or absence of interferon-gamma priming. The lipopolysaccharide/interferon-gamma response was associated with a 33-50% decrease in nuclear interferon consensus sequence-binding protein, which is consistent with interferon consensus sequence-binding protein containing protein complex-dependent regulation of the interleukin-12 p40 gene. The decrease in interleukin-12 production was recapitulated in vivo in mouse aortas of the triple knockout group and was reflected in a marked decrease in interferon-gamma expression. The data provide support for a novel mechanism linking the 12/15-lipoxygenase pathway to a known immunomodulatory Th1 cytokine in atherogenesis.  相似文献   

11.

Background

Apolipoprotein E (ApoE), a cholesterol carrier associated with atherosclerosis, is a major risk factor for Alzheimer''s disease (AD). The low-density lipoprotein receptor (LDLR) regulates ApoE levels in the periphery and in the central nervous system. LDLR has been identified on astrocytes and a number of studies show that it modulates amyloid deposition in AD transgenic mice. However these findings are controversial on whether LDLR deletion is beneficial or detrimental on the AD-like phenotype of the transgenic mice.

Methodology/Principal Findings

To investigate the role of LDLR in the development of the amyloid related phenotype we used an APP/PS1 transgenic mouse (5XFAD) that develops an AD-like pathology with amyloid plaques, astrocytosis and microgliosis. We found that 4 months old 5XFAD transgenic mice on the LDLR deficient background (LDLR-/-) have increased amyloid plaque deposition. This increase is associated with a significant decrease in astrocytosis and microgliosis in the 5XFAD/LDLR-/- mice. To further elucidate the role of LDLR in relation with ApoE we have generated 5XFAD transgenic mice on the ApoE deficient (ApoE-/-) or the ApoE/LDLR double deficient background (ApoE-/-/LDLR -/-). We have found that ApoE deletion in the 4 months old 5XFAD/ApoE-/- mice decreases amyloid plaque formation as expected, but has no effect on astrocytosis or microgliosis. By comparison 5XFAD/ApoE-/-LDLR -/- double deficient mice of the same age have increased amyloid deposition with decreased astrocytosis and microgliosis.

Conclusions

Our analysis shows that LDL deficiency regulates astrocytosis and microgliosis in an AD mouse model. This effect is independent of ApoE, as both 5XFAD/LDLR -/- and 5XFAD/ApoE-/- LDLR -/- mice show reduction in inflammatory response and increase in amyloid deposition compared to control mice. These results demonstrate that LDLR regulates glial response in this mouse model independently of ApoE and modifies amyloid deposition.  相似文献   

12.
Prostate cancer (PCa) is the second most common cancer in men. Androgen deprivation therapy (ADT) leads to tumor involution and reduction of tumor burden. However, tumors eventually reemerge that have overcome the absence of gonadal androgens, termed castration resistant PCa (CRPC). Theories underlying the development of CRPC include androgen receptor (AR) mutation allowing for promiscuous activation by non-androgens, AR amplification and overexpression leading to hypersensitivity to low androgen levels, and/or tumoral uptake and conversion of adrenally derived androgens. More recently it has been proposed that prostate tumor cells synthesize their own androgens through de novo steroidogenesis, which involves the step-wise synthesis of androgens from cholesterol. Using the in vivo LNCaP PCa xenograft model, previous data from our group demonstrated that a hypercholesterolemia diet potentiates prostatic tumor growth via induction of angiogenesis. Using this same model we now demonstrate that circulating cholesterol levels are significantly associated with tumor size (R = 0.3957, p = 0.0049) and intratumoral levels of testosterone (R = 0.41, p = 0.0023) in LNCaP tumors grown in hormonally intact mice. We demonstrate tumoral expression of cholesterol uptake genes as well as the spectrum of steroidogenic enzymes necessary for androgen biosynthesis from cholesterol. Moreover, we show that circulating cholesterol levels are directly correlated with tumoral expression of CYP17A, the critical enzyme required for de novo synthesis of androgens from cholesterol (R = 0.4073, p = 0.025) Since hypercholesterolemia does not raise circulating androgen levels and the adrenal gland of the mouse synthesizes minimal androgens, this study provides evidence that hypercholesterolemia increases intratumoral de novo steroidogenesis. Our results are consistent with the hypothesis that cholesterol-fueled intratumoral androgen synthesis may accelerate the growth of prostate tumors, and suggest that treatment of CRPC may be optimized by inclusion of cholesterol reduction therapies in conjunction with therapies targeting androgen synthesis and the AR.  相似文献   

13.
Small leucine‐rich proteoglycans (SLRPs), such as decorin and biglycan, regulate the assembly and turnover of collagenous matrix. The aim of the study was to analyse the effect of chronic rosuvastatin treatment on decorin, biglycan and the collagen matrix in ApoE‐deficient mice. Twenty‐week‐old male ApoE‐deficient mice received normal chow or 20 mg rosuvastatin/kg × day for 32 weeks. Subsequently, matrix composition was analysed by histochemistry and immunostaining at the aortic root and in innominate arteries of ApoE deficient mice as well as in human carotid endarterectomy specimens. Immunoblotting of proteoglycans was performed from aortic extracts of ApoE‐deficient mice. Immunohistochemistry and immunoblotting revealed strongly increased decorin and biglycan deposition in atherosclerotic plaques at the aortic root and in innominate arteries. In contrast, versican and perlecan expression was not changed by rosu‐vastatin. Furthermore, matrix metalloproteinase 2 and gelatinolytic activity were decreased in response to rosuvastatin and a condensed collagen‐rich matrix was formed. In carotid endarterectomy specimens of statin‐treated patients increased decorin and biglycan accumulation was detected as well. Drug treatment did not change low‐density lipoprotein (LDL) plasma levels in ApoE‐deficient mice and did not significantly affect lipid retention at the aortic root level as demonstrated by oil‐red O staining and immunohistochemistry of LDL. Long‐term treatment with rosuvastatin caused pronounced remodelling of atherosclerotic plaque matrix characterized specifically by enrichment with SLRPs and formation of a condensed collagen matrix. Therefore, decorin and biglycan might represent novel targets of statin treatment that contribute to a stable plaque phenotype.  相似文献   

14.
As part of highly active antiretroviral therapy, protease inhibitor treatment has significantly increased the lifespan of human immunodeficiency virus (HIV)-infected individuals. Many patients, however, develop negative side effects, including premature atherosclerosis. We have previously demonstrated that in male low density lipoprotein receptor (LDL-R) null mice, HIV protease inhibitors induce atherosclerotic lesions and cholesterol accumulation in macrophages in the absence of changes in plasma lipid levels. We determined that these increases were due to an up-regulation of the scavenger receptor, CD36. In the present study, we examined the effects of HIV protease inhibitors in female LDL-R null mice. Female mice given ritonavir and amprenavir (23 and 10 microg/mouse/day, respectively) developed fewer atherosclerotic lesions than males. Furthermore, peritoneal macrophages isolated from ritonavir-treated females had reduced levels of cholesterol accumulation as compared with males, and CD36 protein levels were increased to a significantly lesser degree in females than in males. To investigate the molecular mechanisms of this gender difference, we examined the effect of genetically removing estrogen receptor-alpha (ERalpha). In female mice lacking both LDL-R and ERalpha, the protective effect of gender was lost. Additionally, the reduced levels of cholesterol accumulation in macrophages observed in females was reversed. Furthermore, the absence of ERalpha resulted in increased expression of CD36 protein in a macrophage-specific manner in mice treated with ritonavir. These data demonstrate that ERalpha is directly involved in the regulation of cholesterol metabolism in macrophages and plays an important role in the gender differences observed in HIV protease inhibitor-induced atherosclerosis.  相似文献   

15.
Cholesterol-lowering treatment has been suggested to delay progression of prostate cancer by decreasing serum LDL. We studied in vitro the effect of extracellular LDL-cholesterol on the number of prostate epithelial cells and on the expression of key regulators of cholesterol metabolism. Two normal prostatic epithelial cell lines (P96E, P97E), two in vitro immortalized epithelial cell lines (PWR-1E, RWPE-1) and two cancer cell lines (LNCaP and VCaP) were grown in cholesterol-deficient conditions. Cells were treated with 1-50 μg/ml LDL-cholesterol and/or 100 nM simvastatin for seven days. Cell number relative to control was measured with crystal violet staining. Changes in mRNA and protein expression of key effectors in cholesterol metabolism (HMGCR, LDLR, SREBP2 and ABCA1) were measured with RT-PCR and immunoblotting, respectively. LDL increased the relative cell number of prostate cancer cell lines, but reduced the number of normal epithelial cells at high concentrations. Treatment with cholesterol-lowering simvastatin induced up to 90% reduction in relative cell number of normal cell lines but a 15-20% reduction in relative number of cancer cells, an effect accompanied by sharp upregulation of HMGCR and LDLR. These effects were prevented by LDL. Compared to the normal cells, prostate cancer cells showed high expression of cholesterol-producing HMGCR but failed to express the major cholesterol exporter ABCA1. LDL increased relative cell number of cancer cell lines, and these cells were less vulnerable than normal cells to cholesterol-lowering simvastatin treatment. Our study supports the importance of LDL for prostate cancer cells, and suggests that cholesterol metabolism in prostate cancer has been reprogrammed to increased production in order to support rapid cell growth.  相似文献   

16.
17.
Recent studies have indicated a causal link between high dietary cholesterol intake and brain oxidative stress. In particular, we have previously shown a positive correlation between elevated plasma cholesterol levels, cortico-cerebral oxidative stress and mitochondrial dysfunction in low density lipoprotein receptor knockout (LDLr?/?) mice, a mouse model of familial hypercholesterolemia. Here we show that the organoselenium compound diphenyl diselenide (PhSe)2 (1 mg/kg; o.g., once a day for 30 days) significantly blunted the cortico-cerebral oxidative stress and mitochondrial dysfunction induced by a hypercholesterolemic diet in LDLr?/? mice. (PhSe)2 effectively prevented the inhibition of complex I and II activities, significantly increased the reduced glutathione (GSH) content and reduced lipoperoxidation in the cerebral cortex of hypercholesterolemic LDLr?/? mice. Overall, (PhSe)2 may be a promising molecule to protect against hypercholesterolemia-induced effects on the central nervous system, in addition to its already demonstrated antiatherogenic effects.  相似文献   

18.
Individuals with elevated levels of plasma low density lipoprotein (LDL) cholesterol (LDL-C) are considered to be at risk of developing coronary heart disease. LDL particles are removed from the blood by a process known as receptor-mediated endocytosis, which occurs mainly in the liver. A series of classical experiments delineated the major steps in the endocytotic process; apolipoprotein B-100 present on LDL particles binds to a specific receptor (LDL receptor, LDL-R) in specialized areas of the cell surface called clathrin-coated pits. The pit comprising the LDL–LDL-R complex is internalized forming a cytoplasmic endosome. Fusion of the endosome with a lysosome leads to degradation of the LDL into its constituent parts (that is, cholesterol, fatty acids, and amino acids), which are released for reuse by the cell, or are excreted. In this paper, we formulate a mathematical model of LDL endocytosis, consisting of a system of ordinary differential equations. We validate our model against existing in vitro experimental data, and we use it to explore differences in system behavior when a single bolus of extracellular LDL is supplied to cells, compared to when a continuous supply of LDL particles is available. Whereas the former situation is common to in vitro experimental systems, the latter better reflects the in vivo situation. We use asymptotic analysis and numerical simulations to study the longtime behavior of model solutions. The implications of model-derived insights for experimental design are discussed.  相似文献   

19.
Recent findings suggest that hypercholesterolemia may contribute to the onset of Alzheimer's disease-like dementia but the underlying mechanisms remain unknown. In this study, we evaluated the cognitive performance in rodent models of hypercholesterolemia in relation to neuroinflammatory changes and amyloid precursor protein (APP) processing, the two key parameters of Alzheimer's disease pathogenesis. Groups of normal C57BL/6 and low density lipoprotein receptor (LDLR)-deficient mice were fed a high fat/cholesterol diet for an 8-week period and tested for memory in a radial arm maze. It was found that the C57BL/6 mice receiving a high fat diet were deficient in handling an increasing working memory load compared with counterparts receiving a control diet while the hypercholesterolemic LDLR−/− mice showed impaired working memory regardless of diet. Immunohistochemical analysis revealed the presence of activated microglia and astrocytes in the hippocampi from high fat-fed C57BL/6 mice and LDLR−/− mice. Consistent with a neuroinflammatory response, the hyperlipidemic mice showed increased expression of cytokines/mediators including tumor necrosis factor-α, interleukin-1β and -6, nitric oxide synthase 2, and cycloxygenase 2. There was also an induced expression of the key APP processing enzyme i.e. β-site APP cleaving enzyme 1 in both high fat/cholesterol-fed C57BL/6 and LDLR−/− mice accompanied by an increased generation of C-terminal fragments of APP. Although ELISA for beta-amyloid failed to record significant changes in the non-transgenic mice, a threefold increase in beta-amyloid 40 accumulation was apparent in a strain of transgenic mice expressing wild-type human APP on high fat/cholesterol diet. The findings link hypercholesterolemia with cognitive dysfunction potentially mediated by increased neuroinflammation and APP processing in a non-transgenic mouse model.  相似文献   

20.
Hypertension is a well-established etiological factor for atherogenesis. We previously showed that transgenic mice overexpressing translationally controlled tumor protein (TCTP) develop systemic arterial hypertension. In this study we explored the cardiovascular effects of TCTP overexpression and possibly of the resultant hypertension on the severity of atherosclerosis in apolipoprotein E-deficient mice. Through multiple mating of TCTP-overexpressing transgenic mice (TCTP-TG) with apolipoprotein E knock-out mice (ApoE KO), we generated non-transgenic (nTG), TCTP-TG, nTG/ApoE KO and TCTP-TG/ApoE KO mice with similar genetic background. Male mice, 7-week old, were fed a lipid-enriched Western diet for 16?weeks, and blood pressure and body weight change were monitored every 2?weeks. Plasma lipid profiles and atherosclerotic lesions in aorta were quantified at the end of study. We found that blood pressure levels of TCTP-TG and TCTP-TG/ApoE KO, were similarly elevated while nTG and nTG/ApoE KO mice were normotensive. TCTP overexpression in ApoE KO mice led to significant exacerbation of atherosclerotic lesions. Feeding Western diet resulted in increases in total cholesterol, triglyceride (TG) and low density lipoprotein, and decreased high density lipoprotein (HDL) in ApoE KO mice. No significant differences were found in plasma lipid profiles of nTG/ApoE KO and TCTP-TG/ApoE KO. This study suggests that overexpression of TCTP, which induces hypertension, also accelerates the development of atherosclerotic lesion caused by high-fat and high-cholesterol diet without significantly altering plasma lipid profiles. We conclude that TCTP-induced hypertension could increase the severity of atherosclerotic lesion and suggest that inhibition of TCTP or its signaling pathways may be a potential approach to the therapy of both diseases, hypertension and atherosclerosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号