首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We describe 11 dinucleotide and three tetranucleotide microsatellite loci for the critically endangered Indian tiger, Panthera tigris tigris. All of them were polymorphic with four to nine alleles per locus and an observed heterozygosity between 0.13 and 1.0. All primers also amplify microsatellite loci in leopard, Panthera pardus, and 12 primer pairs yielded reproducible results in domestic cat, Felis catus. These new microsatellites specifically developed for Indian tiger - in combination with those already available - comprise a reasonable number of loci to genetically analyse wild and captive populations of this illustrative species and might allow for recognition of individual tigers.  相似文献   

2.
The major histocompatibility complex (MHC) plays a crucial role in the immune system, and in some species, it is a target by which individuals choose mates to optimize the fitness of their offspring, potentially mediated by olfactory cues. Under the genetic compatibility hypothesis, individuals are predicted to choose mates with compatible MHC alleles, to increase the fitness of their offspring. Studies of MHC‐based mate choice in wild mammals are under‐represented currently, and few investigate more than one class of MHC genes. We investigated mate choice based on the compatibility of MHC class I and II genes in a wild population of European badgers (Meles meles). We also investigated mate choice based on microsatellite‐derived pairwise relatedness, to attempt to distinguish MHC‐specific effects from genomewide effects. We found MHC‐assortative mating, based on MHC class II, but not class I genes. Parent pairs had smaller MHC class II DRB amino acid distances and smaller functional distances than expected from random pairings. When we separated the analyses into within‐group and neighbouring‐group parent pairs, only neighbouring‐group pairs showed MHC‐assortative mating, due to similarity at MHC class II loci. Our randomizations showed no evidence of genomewide‐based inbreeding, based on 35 microsatellite loci; MHC class II similarity was therefore the apparent target of mate choice. We propose that MHC‐assortative mate choice may be a local adaptation to endemic pathogens, and this assortative mate choice may have contributed to the low MHC genetic diversity in this population.  相似文献   

3.
Eight traditional subspecies of tiger (Panthera tigris),of which three recently became extinct, are commonly recognized on the basis of geographic isolation and morphological characteristics. To investigate the species' evolutionary history and to establish objective methods for subspecies recognition, voucher specimens of blood, skin, hair, and/or skin biopsies from 134 tigers with verified geographic origins or heritage across the whole distribution range were examined for three molecular markers: (1) 4.0 kb of mitochondrial DNA (mtDNA) sequence; (2) allele variation in the nuclear major histocompatibility complex class II DRB gene; and (3) composite nuclear microsatellite genotypes based on 30 loci. Relatively low genetic variation with mtDNA,DRB,and microsatellite loci was found, but significant population subdivision was nonetheless apparent among five living subspecies. In addition, a distinct partition of the Indochinese subspecies P. t. corbetti in to northern Indochinese and Malayan Peninsula populations was discovered. Population genetic structure would suggest recognition of six taxonomic units or subspecies: (1) Amur tiger P. t. altaica; (2) northern Indochinese tiger P. t. corbetti; (3) South China tiger P. t. amoyensis; (4) Malayan tiger P. t. jacksoni, named for the tiger conservationist Peter Jackson; (5) Sumatran tiger P. t. sumatrae; and (6) Bengal tiger P. t. tigris. The proposed South China tiger lineage is tentative due to limited sampling. The age of the most recent common ancestor for tiger mtDNA was estimated to be 72,000-108,000 y, relatively younger than some other Panthera species. A combination of population expansions, reduced gene flow, and genetic drift following the last genetic diminution, and the recent anthropogenic range contraction, have led to the distinct genetic partitions. These results provide an explicit basis for subspecies recognition and will lead to the improved management and conservation of these recently isolated but distinct geographic populations of tigers.  相似文献   

4.
In species with duplicated major histocompatibility complex (MHC) genes, estimates of genetic variation often rely on multilocus measures of diversity. It is possible that such measures might not always detect more detailed patterns of selection at individual loci. Here, we describe a method that allows us to investigate classical MHC diversity in red jungle fowl (Gallus gallus), the wild ancestor of the domestic chicken, using a single locus approach. This is possible due to the well-characterised gene organisation of the ‘minimal essential’ MHC (BF/BL region) of the domestic chicken, which comprises two differentially expressed duplicated class I (BF) and two class II B (BLB) genes. Using a combination of reference strand-mediated conformation analysis, cloning and sequencing, we identify nine BF and ten BLB alleles in a captive population of jungle fowl. We show that six BF and five BLB alleles are from the more highly expressed locus of each gene, BF2 and BLB2, respectively. An excess of non-synonymous substitutions across the jungle fowl BF/BL region suggests that diversifying selection has acted on this population. Importantly, single locus screening reveals that the strength of selection is greatest on the highly expressed BF2 locus. This is the first time that a population of red jungle fowl has been typed at the MHC region, laying the basis for further research into the underlying processes acting to maintain MHC diversity in this and other species.  相似文献   

5.
Bos DH  DeWoody JA 《Immunogenetics》2005,57(10):775-781
Major histocompatibility complex (MHC) class II genes are usually among the most polymorphic in vertebrate genomes because of their critical role (antigen presentation) in immune response. Prior to this study, the MHC was poorly characterized in tiger salamanders (Ambystoma tigrinum), but the congeneric axolotl (Ambystoma mexicanum) is thought to have an unusual MHC. Most notably, axolotl class II genes lack allelic variation and possess a splice variant without a full peptide binding region (PBR). The axolotl is considered immunodeficient, but it is unclear how or to what extent MHC genetics and immunodeficiency are interrelated. To study the evolution of MHC genes in urodele amphibians, we describe for the first time an expressed polymorphic class II gene in wild tiger salamanders. We sequenced the PBR of a class II gene from wild A. tigrinum (n=33) and identified nine distinct alleles. Observed heterozygosity was 73%, and there were a total of 46 polymorphic sites, most of which correspond to amino acid positions that bind peptides. Patterns of nucleotide substitutions exhibit the signature of diversifying selection, but no recombination was detected. Not surprisingly, transspecies evolution of tiger salamander and axolotl class II alleles was apparent. We have no direct data on the immunodeficiency of tiger salamanders, but the levels of polymorphism in our study population should suffice to bind a variety of foreign peptides (unlike axolotls). Our tiger salamander data suggest that the monomorphism and immunodeficiencies associated with axolotl class II genes is a relict of their unique historical demography, not their phylogenetic legacy. Electronic supplementary material Electronic supplementary material is available for this article at and accessible for authorised users.  相似文献   

6.
The major histocompatibility complex (MHC) plays an important role in the immune system of vertebrates. We used the second exon of four MHC class II genes (DRA, DQA1, DQA2 and DRB3) to assess the overall MHC variation in forest musk deer (Moschus berezovskii). We also compared the MHC variation in captive and wild populations. We observed 22 alleles at four loci (four at DRA, four at DQA1, four at DQA2 and 10 at DRB3), 15 of which were newly identified alleles. Results suggest that forest musk deer maintain relatively high MHC variation, which may result from balancing selection. Moreover, considerable diversity was observed at the DRA locus. We found a high frequency of Mobe‐DRA*02, Mobe‐DQA1*01 and Mobe‐DQA2*05 alleles, which may be important for pathogen resistance. A Ewens–Watterson test showed that the DRB3 locus in the wild population had experienced recent balancing selection. We detected a small divergence at the DRA locus, suggesting the effect of weak positive selection on the DRA gene. Alternatively, this locus may be young and not yet adapted a wide spectrum of alleles for pathogen resistance. The significant heterozygosity deficit observed at the DQA1 and DRB3 loci in the captive population and at all four loci in the wild population may be the result of a population bottleneck. Additionally, MHC genetic diversity was higher in the wild population than in the captive, suggesting that the wild population may have the ability to respond to a wider range of pathogens.  相似文献   

7.
8.
The wild boar is an ancestor of the domestic pig and an important game species with the widest geographical range of all ungulates. Although a large amount of data are available on major histocompatibility complex (MHC) variability in domestic pigs, only a few studies have been performed on wild boars. Due to their crucial role in appropriate immune responses and extreme polymorphism, MHC genes represent some of the best candidates for studying the processes of adaptive evolution. Here, we present the results on the variability and evolution of the entire MHC class II SLA‐DRB1 locus exon 2 in 133 wild boars from Croatia. Using direct sequencing and cloning methods, we identified 20 SLA‐DRB1 alleles, including eight new variants, with notable divergence. In some individuals, we documented functional locus duplication, and SLA‐DRB1*04:10 was identified as the allele involved in the duplication. The expression of a duplicated locus was confirmed by cloning and sequencing cDNA‐derived amplicons. Based on individual genotypes, we were able to assume that alleles SLA‐DRB1*04:10 and SLA‐DRB1*06:07 are linked as an allelic combination that co‐evolves as a two‐locus haplotype. Our investigation of evolutionary processes at the SLA‐DRB1 locus confirmed the role of intralocus recombination in generating allelic variability, whereas tests of positive selection based on the dN/dS (non‐synonymous/synonymous substitution rate ratio) test revealed atypically weak and ambiguous signals.  相似文献   

9.
The major histocompatibility complex (MHC) genes code for proteins that play a critical role in the immune system response. The MHC genes are among the most polymorphic genes in vertebrates, presumably due to balancing selection. The two MHC classes appear to differ in the rate of evolution, but the reasons for this variation are not well understood. Here, we investigate the level of polymorphism and the evolution of sequences that code for the peptide-binding regions of MHC class I and class II DRB genes in the Alpine marmot (Marmota marmota). We found evidence for four expressed MHC class I loci and two expressed MHC class II loci. MHC genes in marmots were characterized by low polymorphism, as one to eight alleles per putative locus were detected in 38 individuals from three French Alps populations. The generally limited degree of polymorphism, which was more pronounced in class I genes, is likely due to bottleneck the populations undergone. Additionally, gene duplication within each class might have compensated for the loss of polymorphism at particular loci. The two gene classes showed different patterns of evolution. The most polymorphic of the putative loci, Mama-DRB1, showed clear evidence of historical positive selection for amino acid replacements. However, no signal of positive selection was evident in the MHC class I genes. These contrasting patterns of sequence evolution may reflect differences in selection pressures acting on class I and class II genes.  相似文献   

10.
The major histocompatibility complex (MHC), in vertebrate animals, is a multi-genic protein complex that encodes various receptors. During a disease, MHC interacts with the antigen and triggers a cascade of adaptive immune responses to overcome a disease outbreak. The MHC is very important region from immunological point of view, but it is poorly characterized among Indian leopards. During this investigation, we examined genetic diversity for MHC class I (MHC-I) and MHC class II-DRB (MHC-II) among wild and captive Indian leopards. This study estimated a pool of 9 and 17 alleles for MHC-I and MHC-II, respectively. The wild group of individuals showed higher nucleotide diversity and amino acid polymorphism compared to the captive group. A phylogenetic comparison with other felids revealed a clustering in MHC-I and interspersed presence in MHC-II sequences. A test for selection also revealed a deviation from neutrality at MHC-II DRB loci and higher non-synonymous substitution rate (dN) among the individuals from wild group. Further, the wild individuals showed higher dN for both MHC I and II genes compared to the group that was bred under captive conditions. These findings suggest the role of micro-evolutionary forces, such as pathogen-mediated selection, to cause MHC variations among the two groups of Indian leopards, because the two groups have been bred in two different environments for a substantial period of time. Since, MHC diversity is often linked with the quality of immunological health; the results obtained from this study fill the gap of knowledge on disease predisposition among wild and captive Indian leopards.  相似文献   

11.
The major histocompatibility complex (MHC) is an immunological gene-dense region of high diversity in mammalian species. Sus scrofa was domesticated by at least six independent events over Eurasia during the Holocene period. It has been hypothesized that the level and distribution of MHC variation in pig populations reflect genetic selection and environmental influences. In an effort to define the complexity of MHC polymorphisms and the role of selection in the generation of class II gene diversity (DQB, DRB1, and pseudogene ΨDRB3), DNA from globally distributed unrelated domestic pigs of European and Asian origins and a Suidae out-group was analyzed. The number of pseudogene alleles identified (ΨDRB3 33) was greater than those found in the expressed genes (DQB 20 and DRB1 23) but the level of observed heterozygosity (ΨDRB3 0.452, DQB 0.732, and DRB1 0.767) and sequence diversity (ΨDRB3 0.029, DQB 0.062, and DRB1 0.074) were significantly lower in the pseudogene, respectively. The substitution ratios reflected an excess of d N (DQB 1.476, DRB1 1.724, and ΨDRB3 0.508) and the persistence of expressed gene alleles suggesting the influence of balancing selection, while the pseudogene was undergoing purifying selection. The lack of a clear MHC phylogeographic tree, coupled with close genetic distances observed between the European and Asian populations (DQB 0.047 and DRB1 0.063) suggested that unlike observations using mtDNA, the MHC diversity lacks phylogeographic structure and appears to be globally uniform. Taken together, these results suggest that, despite regional differences in selective breeding and environments, no skewing of MHC diversity has occurred. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

12.
华南虎是世界上密切关注的旗舰物种,在过去的10 年间没有发现野生华南虎存在的证据,因此它是极度濒危的虎亚种。福建梅花山圈养华南虎群体是整个圈养华南虎群体的重要组成部分,拥有 12 只华南虎。基于组合长度为 3934 bp 的线粒体序列分析发现梅花山圈养华南虎拥有 3 种线粒体单倍型; 而基于 20 个微卫星位点基因型分析显示梅花山圈养华南虎一共有71 个等位基因,平均等位基因数是3. 55,等位基因丰度的平均值是3. 32,平均期望杂合度和多态信息含量( PIC) 分别为0. 513 和0. 445。这些提示梅花山华南虎圈养群体维持着较高的遗传多样性。  相似文献   

13.
Genes of the major histocompatibility complex (MHC) play a pivotal role in the vertebrate immune system and are attractive markers for functional, fitness-related, genetic variation. Although bats (Chiroptera) represent the second largest mammalian order and are prone to various emerging infectious diseases, little is known about MHC evolution in bats. In the present study, we examined expressed MHC class II DRB sequences (exons 1 to 4) of New World bat species, Saccopteryx bilineata, Carollia perspicillata, Noctilio albiventris and Noctilio leporinus (only exon 2). We found a wide range of copy number variation of DRB loci with one locus detected in the genus Noctilio and up to ten functional loci observed in S. bilineata. Sequence variation between alleles of the same taxa was high with evidence for positive selection. We found statistical support for recombination or gene conversion events among sequences within the same but not between bat species. Phylogenetic relationships among DRB alleles provided strong evidence for independent evolution of the functional MHC class II DRB genes in the three investigated species, either by recent gene duplication, or homogenization of duplicated loci by frequent gene conversion events. Phylogenetic analysis of all available chiropteran DRB exon 2 sequences confirmed their monophyletic origin within families, but revealed a possible trans-species mode of evolution pattern in congeneric bat species, e.g. within the genera Noctilio and Myotis. This is the first study investigating phylogenetic relationships of MHC genes within bats and therefore contributes to a better understanding of MHC evolution in one of the most dominant mammalian order.  相似文献   

14.
15.
Cutrera AP  Lacey EA 《Immunogenetics》2007,59(12):937-948
Balancing selection acting over the evolutionary history of a lineage can result in the retention of alleles among species for longer than expected under neutral evolution. The associated pattern of trans-species polymorphism, in which similar or even identical alleles are shared among species, is often used to infer that balancing selection has occurred. The genes of the major histocompatibility complex (MHC) are thought to be subject to balancing selection that maintains alleles associated with response to specific pathogens. To explore the role of balancing selection in shaping MHC diversity in ctenomyid rodents, we examined allelic variability at the class II DRB and DQA loci in 18 species in the genus Ctenomys. Previous studies of four of these species had revealed significant within-population evidence of positive selection on MHC loci. The current study expands upon these analyses to (1) evaluate among-species evidence of positive selection and (2) explore the potential for balancing selection on MHC genes. Interspecific nucleotide sequence variation revealed significant evidence of positive selection on the DRB and DQA loci. At the same time, comparisons of phylogenetic trees for these MHC loci with a putative species tree based on mitochondrial sequence data revealed multiple examples of trans-specific polymorphism, including sharing of identical DRB and DQA alleles among distantly related species of Ctenomys. These findings suggest that MHC genes in these animals have historically been subject to balancing selection and yield new insights into the complex suite of forces shaping MHC diversity in free-living vertebrates.  相似文献   

16.
The genomic sequences of 15 horse major histocompatibility complex (MHC) class I genes and a collection of MHC class I homozygous horses of five different haplotypes were used to investigate the genomic structure and polymorphism of the equine MHC. A combination of conserved and locus-specific primers was used to amplify horse MHC class I genes with classical and nonclassical characteristics. Multiple clones from each haplotype identified three to five classical sequences per homozygous animal and two to three nonclassical sequences. Phylogenetic analysis was applied to these sequences, and groups were identified which appear to be allelic series, but some sequences were left ungrouped. Sequences determined from MHC class I heterozygous horses and previously described MHC class I sequences were then added, representing a total of ten horse MHC haplotypes. These results were consistent with those obtained from the MHC homozygous horses alone, and 30 classical sequences were assigned to four previously confirmed loci and three new provisional loci. The nonclassical genes had few alleles and the classical genes had higher levels of allelic polymorphism. Alleles for two classical loci with the expected pattern of polymorphism were found in the majority of haplotypes tested, but alleles at two other commonly detected loci had more variation outside of the hypervariable region than within. Our data indicate that the equine major histocompatibility complex is characterized by variation in the complement of class I genes expressed in different haplotypes in addition to the expected allelic polymorphism within loci.  相似文献   

17.
18.
In recent years, the bank voleMyodes glareolus (Schreber, 1780) has emerged as a model system for parasitological, behavioural and ecological studies and seems ideally suited to address questions concerning the importance of MHC variation at individual and population levels. Here, we provide the first extensive survey of sequence variation in the MHC class II DRB genes in this species. Among 34 analysed voles we found 15 unique sequences, representing most likely two loci, at least one of them expressed. Despite very high overall sequence divergence, particularly in the Antigen Binding Sites (ABS), we detected signatures of positive selection that has been acting on DRB in the bank vole. Phylogenetic analysis demonstrated that the bank vole DRB alleles do not form a monophyletic group but are intermingled with other rodent alleles that is consistent with long-term persistence of ancient allelic lineages maintained through balancing selection. Our sequence data will forward the design of efficient genotyping methods, which will permit testing hypotheses pertaining to the ecological causes and consequences of MHC variation in the bank vole.  相似文献   

19.
Modo-UG is a class I gene located in the MHC of the marsupial Monodelphis domestica, the gray, short-tailed opossum. Modo-UG is expressed as three alternatively spliced mRNA forms, all of which encode a transmembrane form with a short cytoplasmic tail that lacks phosphorylation sites typically found in classical class I molecules. The three alternative mRNAs would encode a full-length form, an isoform lacking the α2 domain, and one lacking both α2 and α3 domains. Genotyping both captive-bred and wild M. domestica from different geographic regions revealed no variation in the residues that make up Modo-UG’s peptide-binding groove. Modo-UG’s low polymorphism is contrasting to that of a nearby class I locus, Modo-UA1, which has a highly polymorphic peptide-binding region. Absence of functional polymorphism in Modo-UG is therefore not a general feature of opossum class I genes but the result of negative selection. Modo-UG is the first MHC linked marsupial class I to be described that appears to clearly have nonclassical features.Electronic Supplementary Material Supplementary material is available for this article at  相似文献   

20.
饲养东北虎的微卫星变异研究   总被引:6,自引:0,他引:6  
东北虎是世界上濒危动物之一,具有极其重要的研究价值和保护意义。该研究利用10个在东北虎基因组中表现多态性的微卫星基因座(Fca005, Fca075, Fca094, Fca152, Fca161, Fca294, Pti002, Pti003, Pti007和Pti010)对113只饲养东北虎进行了遗传多样性检测。用非变性聚丙烯酰胺凝胶电泳检测微卫星的PCR扩增产物,计算了10个微卫星基因座的等位基因频率、基因杂合度、多态信息含量和有效等位基因数。在113只东北虎样品中,10个基因座的等位基因数为3~6个,其中Fca152最多;等位基因频率处于0.009~0.767之间。基因杂合度值在0.385~0.707间,平均为0.616,多态信息含量值在0.353~0.658间,平均为0.558,有效等位基因数处于1.629~3.409之间,平均为2.784,表明所选用的10个微卫星基因座在研究样品中均为中高度多态性基因座,具有比较明显的遗传变异。113只样品中包括75只毛发样品,23只血液样品和15只组织样品,不同样品的结果比较表明,毛发、血液和组织样品均可以得到清晰的扩增结果。所以,微卫星基因座与非损伤性DNA分析方法可以成功地应用于濒危珍稀动物的遗传多样性研究。 Abstract:. The tiger is one of the most threatened wildlife species since the abundance and distribution of tiger have decreased dramatically in the last century. The wild Amur tiger (Panthera tigris altaica) only distributed in northeast China, the far east area of Russia and the north Korea and its size of wild population is about 450 in the world and 20 in China. Several hundred captive populations of Amur tigers are the main source to protect gene library of tiger and the source of recovering the wild populations. The Breeding Center for Felidae at Hengdaohezi and Ha’erbin Tiger Park in Heilongjiang Province is the biggest captive breeding base in China. How to make clear the genetic pedigree and establish reasonable breeding system is the urgent issues. So we use the microsatellite DNA markers and non-invasive technology to research on the genetic diversity of captive Amur tiger in this study. Ten microsatellite loci (Fca005, Fca075, Fca094, Fca152, Fca161, Fca294, Pti002, Pti003, Pti007 and Pti010), highly variable nuclear markers, were studied their genetic diversity in 113 captive Amur tigers. The PCR amplified products of microsatellite loci were detected by non-denatured polyacry lamide gel electrophoresis. Allele numbers, allelic frequency, gene heterozygosity(He), polymorphism information content(PIC) and effective number of allele(Ne) were calculated. 41 alleles were found and their size were ranged from 110bp to 250bp in ten microsatellite loci, Fca152 had 6 alleles, Fca075, Fca094 and Fca294 had 5 alleles, Fca005 and Pti002 had 4 alleles and the others had 3 alleles in all tiger samples, respectively. The allelic frequencies were from 0.009 to 0.767; The He ranged from 0.385 to 0.707, and Fca294 and Pti010 locus had the highest and lowest value; the PIC were from 0.353 to 0.658, Fca294 and Pti010 locus had the highest and lowest value; and Ne were from 1.626 to 3.409, Fca294 and Pti010 locus had the highest and lowest value, which showed the ten microsatellie loci had high or medium polymorphism in these Amur tigers and had high genetic diversity. At the same time, we only found even bases variability which showed the even bases repeat sequence (CA/GT) maybe the basic unit for length variability of microsatellite in all loci. In this study, the samples were made up of 75 hair specimens, 23 blood specimens and 15 tissue specimens, we obtained the genome DNA from hairs using the non-invasive DNA technology and demonstrated that DNA derived from hair samples is as good as that obtained from blood samples for the analaysis of microsatellite polymorphism. These results imply that microsatellite DNA markers and non-invasive DNA technology can help study the genetic diversity of Amur tiger. This method could be used in the captive management of other endangered species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号