首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Palytoxin, a non-12-O-tetradecanoylphorbol-13-acetate type tumor promoter, has been shown to inhibit epidermal growth factor (EGF) binding to both high and low affinity receptors through a protein kinase C-independent pathway. In the present paper, we have investigated the mechanism of palytoxin action in Swiss 3T3 cells. Two lines of evidence indicate that calcium is not required for palytoxin activity. First, palytoxin can induce the loss of EGF binding sites in the absence of external calcium. Second, studies with the photosensitive protein aequorin indicate that palytoxin does not cause the influx of external calcium or the release of calcium from internal stores under the conditions used in these studies. However, palytoxin action does appear to be dependent upon the presence of sodium. When extracellular sodium is replaced by either choline, Tris, or sucrose, palytoxin is unable to decrease EGF binding to either high or low affinity receptors. Studies of sodium influx indicate that palytoxin induces rapid sodium uptake and that the rate of sodium uptake is dose-dependent. Furthermore, there appears to be a direct correspondence between the extent of inhibition of EGF binding by palytoxin and the rate of sodium uptake. Finally, the palytoxin-induced inhibition of EGF binding can be mimicked by monensin, a sodium ionophore. The specificity of this sodium dependence was tested by substituting lithium, potassium, or cesium for sodium. Although lithium is an effective substitute for sodium, palytoxin can no longer inhibit EGF binding when sodium is replaced by either potassium or cesium. Marked inhibition of palytoxin action is also obtained when 5.4 mM potassium or 5.4 mM cesium are added to the sodium-containing medium. These studies suggest that palytoxin is able to down-modulate the EGF receptor through a novel mechanism involving the activation or formation of a sodium pump or channel.  相似文献   

2.
Na(+),K(+)-ATPase is inhibited by cardiac glycosides such as ouabain, and palytoxin, which do not inhibit gastric H(+),K(+)-ATPase. Gastric H(+),K(+)-ATPase is inhibited by SCH28080, which has no effect on Na(+),K(+)-ATPase. The goal of the current study was to identify amino acid sequences of the gastric proton-potassium pump that are involved in recognition of the pump-specific inhibitor SCH 28080. A chimeric polypeptide consisting of the rat sodium pump alpha3 subunit with the peptide Gln(905)-Val(930) of the gastric proton pump alpha subunit substituted in place of the original Asn(886)-Ala(911) sequence was expressed together with the gastric beta subunit in the yeast Saccharomyces cerevisiae. Yeast cells that express this subunit combination are sensitive to palytoxin, which interacts specifically with the sodium pump, and lose intracellular K(+) ions. The palytoxin-induced K(+) efflux is inhibited by the sodium pump-specific inhibitor ouabain and also by the gastric proton pump-specific inhibitor SCH 28080. The IC(50) for SCH 28080 inhibition of palytoxin-induced K(+) efflux is 14.3 +/- 2.4 microm, which is similar to the K(i) for SCH 28080 inhibition of ATP hydrolysis by the gastric H(+),K(+)-ATPase. In contrast, palytoxin-induced K(+) efflux from cells expressing either the native alpha3 and beta1 subunits of the sodium pump or the alpha3 subunit of the sodium pump together with the beta subunit of the gastric proton pump is inhibited by ouabain but not by SCH 28080. The acquisition of SCH 28080 sensitivity by the chimera indicates that the Gln(905)-Val(930) peptide of the gastric proton pump is likely to be involved in the interactions of the gastric proton-potassium pump with SCH 28080.  相似文献   

3.
The addition of platelet-derived growth factor (PDGF) to many types of cells causes a rapid decrease in high affinity binding of 125I-epidermal growth factor (EGF), a process which has been termed transmodulation. Treatment with the tumor promoter, 12-O-tetradecanoylphorbol-13-acetate (TPA) also results in the transmodulation of the EGF receptor in many cell types. PDGF can transmodulate EGF binding through a mechanism that is not dependent on protein kinase C activity. A recent report (Wattenberg, E. V., McNeil, P. L., Fujiki, H., and Rosner, M. R. (1989) J. Biol. Chem. 264, 213-219) described the requirement for a sodium ion influx in the down-modulation of the EGF receptor stimulated by a non-TPA-type tumor promoter, palytoxin, in Swiss 3T3 cells. We tested for a similar sodium requirement in Balb/c/3T3 and Swiss 3T3 cells stimulated by PDGF or TPA in Balb cells treated with TPA for prolonged periods to down-regulate protein kinase C activity. Our results clearly show that the PDGF- and TPA-stimulated transmodulation of the EGF receptor does not require external sodium nor is the process affected by amiloride. In each of these experiments, the loss of 125I-EGF binding occurred to a similar extent and at a similar rate in the presence or absence of sodium. Intracellular pH also did not appear to have a role in the response. The sodium ionophore, monensin, was previously shown to bring about the down-modulation of 125I-EGF binding in Swiss cells. However, our results indicate that monensin-induced transmodulation of the EGF receptor occurs with or without external sodium, suggesting that the loss of binding is not the result of a sodium ion influx. These findings demonstrate that an increase in intracellular sodium does not cause nor is it required for PDGF- or TPA-stimulated EGF receptor transmodulation.  相似文献   

4.
《Life sciences》1997,60(7):PL91-PL97
Palytoxin induced increases in cytosolic Ca2+ and tension, which were dependent on external Ca2+, and depolarized the membrane in endothelium-denuded porcine coronary arteries. When the endothelium was present, however, these effects were greatly inhibited, suggesting that some factors from endothelium inhibited the palytoxin-actions. Pretreatment with 100 μM Nω-nitro-L-arginine partially reversed the inhibitory effect of endothelium on the Ca2+ movement and the contraction but not that on the depolarization. Pretreatment with 10 μM indomethacin did not affect the inhibition. These results suggest that palytoxin released both nitric oxide and endothelium-derived hyperpolarizing factor (EDHF) from the endothelium, both of which counteracted the actions of palytoxin on smooth muscle cells. It is thought that the palytoxin-induced depolarization was attenuated by hyperpolarization due to EDHF.  相似文献   

5.
Palytoxin, a toxin isolated from the Caribean corrall Palythoa caribaeorum, increases the cation permeability of excitable membranes in vitro. Three membrane systems have been investigated: axonal membranes from crayfish walking leg nerves, membranes rich in nicotinic acetylcholine receptor isolated from Torpedo californica electric tissue and, for control, artificial liposomes. Ion permeability of the latter was not affected by palytoxin, but with both biological membranes an increase in cation permeability was observed at a palytoxin concentration of 0.14 microM. Palytoxin-induced cation flow through the axonal membrane was not inhibited by tetrodotoxin, indicating that the voltage-dependent sodium channels were not involved. The effect of palytoxin on the receptor-rich membranes was not blocked by alpha-bungarotoxin, a competitive antagonist of the nicotinic acetylcholine receptor, nor by triphenylmethylphosphonium, a blocker of the receptor-ion channel. But with both the axonal and the receptor-rich membranes ouabain was an inhibitor of the palytoxin-induced cation flow. Evidence is presented that it is not the (Na+ + K+)-ATPase which is affected by palytoxin as has been postulated for similar observations with non-neuronal membranes (Chhatwal, G.S., Hessler, H.-J. and Habermann, E. (1983) Naunyn-Schmiedeberg's Arch. Pharmacol. 323, 261-268).  相似文献   

6.
Palytoxin acidifies chick cardiac cells and activates the Na+/H+ antiporter   总被引:2,自引:0,他引:2  
The cardiotoxic action of palytoxin was investigated using embryonic chick ventricular cells. Under normal ionic conditions, palytoxin produced an intracellular acidification which is partially compensated for by the Na+/H+ antiporter thereby leading to an increased rate of ethylisopropylamiloride-sensitive 22Na+ uptake. Under depolarizing membrane conditions, palytoxin produced a cellular acidification, a cellular alkalinization or no change in intracellular pH depending on the value of the extracellular pH. We propose that palytoxin acidifies cardiac cells by opening preexisting H+ conducting pathways in the plasma membrane.  相似文献   

7.
Palytoxin stimulated a cation-dependent short-circuit current (Isc) in rat distal and proximal colon in a concentration-dependent fashion when applied to the mucosal surface of the tissue. The distal colon exhibited a higher sensitivity to the toxin. The palytoxin-induced Isc was blocked by vanadate but was resistant to ouabain or scilliroside, suggesting the conversion of a vanadate-sensitive H+/K+-ATPase into an electrogenic cation transporter. Cation substitution experiments with basolaterally depolarized tissues suggested an apparent permeability of the palytoxin-induced conductance of Na+>K+>Li+. Immunohistochemical control experiments confirmed the absence of the Na+/K+-ATPase in the apical membrane. Consequently, the pore-forming action of palytoxin is not restricted to Na+/K+-ATPase but is also observed with the colonic H+/K+-ATPase.  相似文献   

8.
Proton block of unitary currents through BK channels was investigated with single-channel recording. Increasing intracellular proton concentration decreased unitary current amplitudes with an apparent pKa of 5.1 without discrete blocking events, indicating fast proton block. Unitary currents recorded at pH(i) 8.0 and 9.0 had the same amplitudes, indicating that 10(-8) M H(+) had little blocking effect. Increasing H(+) by recording at pH(i) 7.0, 6.0, and 5.0 then reduced the unitary currents by 13%, 25%, and 53%, respectively, at +200 mV. Increasing K(+)(i) relieved the proton block in a manner consistent with competitive inhibition of K(+)(i) action by H(+)(i). Proton block was voltage dependent, increasing with depolarization, indicating that block was coupled to the electric field of the membrane. Proton block was not described by the Woodhull equation for noncompetitive voltage-dependent block, but was described by an equation for cooperative competitive inhibition that included voltage-dependent block from the Woodhull equation. Proton block was still present after replacing the eight negative charges in the ring of charge at the entrance to the intracellular vestibule by uncharged amino acids. Thus, the ring of charge is not the site of proton block or of competitive inhibition of K(+)(i) action by H(+)(i). With 150 mM symmetrical KCl, unitary current amplitudes increased with depolarization, reaching 66 pA at +350 mV (pH(i) 7.0). The increase in amplitude with voltage became sublinear for voltages >100 mV. The sublinearity was unaffected by removing from the intracellular solutions Ca(2+) and Ba(2+) ions, the Ca(2+) buffers EGTA and HEDTA, the pH buffer TES, or by replacing Cl(-) with MeSO(3)(-). Proton block accounted for approximately 40% of the sublinearity at +200 mV and pH 7.0, indicating that factors in addition to proton block contribute to the sublinearity of the unitary currents through BK channels.  相似文献   

9.
J C Fearn  A C King 《Cell》1985,40(4):991-1000
Phorbol esters specifically reduce the binding of epidermal growth factor to surface receptors in intact cells, but not when added directly to isolated membranes. We show that after treatment of intact cells with phorbol myristate acetate, 125I-EGF binding is reduced in membranes prepared subsequently. High-affinity binding of 125I-EGF is modulated by an intracellular calcium-dependent regulatory process. Preventing calcium entry with EGTA or enhancing intracellular calcium with A23187 in intact cells modulates EGF receptor affinity in membranes isolated subsequently. Also, EGTA attenuates the usual inhibition of EGF binding caused by phorbol esters. Membrane preparations do not respond to phorbol ester treatment because the calcium- and phospholipid-dependent protein kinase C is removed or inactivated during membrane isolation. Reconstitution of unresponsive membranes with purified C kinase alters phosphorylation of the EGF receptor and restores the inhibitory effect of phorbol esters on 125I-EGF binding previously observed only in intact cells. Thus, activation of the Ca++-dependent enzyme, C kinase, modulates EGF receptor affinity, possibly via altered receptor phosphorylation.  相似文献   

10.
We have found that certain naphthalenesulfonamides [e.g., N-6(-aminohexyl)-5-chloro-1-naphthalenesulfonamide (W-7)] and phenothiazines [e.g., trifluoperazine (TFP)] induce a loss of cell-surface receptors for alpha 2-macroglobulin, and epidermal growth factor (EGF) in fibroblasts. The loss of alpha 2-macroglobulin receptors is independent of receptor occupancy and is rapidly reversed upon removal of these agents from the culture medium. The extent of EGF receptor loss is less than for alpha 2-macroglobulin, and the EGF receptors do not reappear at the surface when W-7 is removed. Receptor loss was measured as a change in the capacity for binding iodinated ligands; no change in affinity of binding was observed. This receptor loss could reflect inactivation of receptors or internalization. W-7 did not induce a loss of cell surface beta 2-microglobulin, a membrane protein which is excluded from coated pits and which is not internalized, indicating that the effect of W-7 was specific for membrane receptors and not a result of bulk depletion of plasma membrane. The loss of alpha 2-macroglobulin and EGF receptors occurs at concentrations which do not cause an increase in the pH of endocytic vesicles or the cytoplasm, indicating that these agents act by a mechanism distinct from the effect of other weak bases. Since both TFP and W-7 are potent inhibitors of calmodulin, we investigated the possibility that inhibition of calmodulin was responsible for the loss of receptors. Three lines of evidence suggest that calmodulin inhibition is not responsible for the inhibition of binding and endocytosis: 1) Promethazine, a phenothiazine that is a poor inhibitor of calmodulin, is nearly as effective as TFP at inhibiting endocytosis; calmidazolium, a potent inhibitor of several calmodulin functions, did not cause a loss of binding; 2) the microinjection of calmodulin into cells did not reverse the effects of W-7; using pressure microinjection, we introduced up to a 100-fold excess of calmodulin over native levels into individual gerbil fibroma cells; using rhodamine-labeled alpha 2-macroglobulin, we saw that the W-7 induced inhibition of receptor-mediated endocytosis was the same in injected and uninjected cells; 3) we injected calcineurin, a calmodulin-binding protein, into cells (1-3 pg/cell) and observed no effect on the receptor-mediated endocytosis of rhodamine-labeled alpha 2-macroglobulin. These data indicated that cell surface receptor numbers can be regulated by a cellular component that is not cytoplasmic calmodulin but that shares some drug sensitivities with calmodulin.  相似文献   

11.
The electrogenic sodium bicarbonate cotransporter (NBCe1) is expressed in many epithelial cells and, in the brain, in glial cells. Little is known about the physiological significance of the NBCe1 for proton homeostasis and for other acid/base-coupled transporters in these cells. We have measured the voltage-dependent transport activity of an NBC from human kidney, type hkNBCe1, expressed in oocytes of the frog Xenopus laevis, by recording membrane current and the changes in intracellular pH and sodium at different membrane potentials between -20 and -100 mV. The apparent intracellular buffer capacity was increased and became dependent upon membrane voltage when the NBCe1 was expressed; the measured buffer capacity increased by up to 7 mm/10 mV of membrane depolarization. Lactate transport by the electroneutral monocarboxylate transporter became enhanced and dependent upon membrane potential, when the monocarboxylate transporter (isoform 1) was co-expressed with NBCe1 in oocytes. Our results indicate that the electrogenic NBCe1 renders the cell membrane potential an effective regulator of intracellular H(+) buffering and acid/base-coupled metabolite transport.  相似文献   

12.
Subpicomolar concentrations of human platelet-derived transforming growth factor beta (TGF-beta) inhibited growth factor-stimulated DNA synthesis in primary cultures of adult rat hepatocytes. This inhibition was not the result of changes in the size of intracellular pools of 3H-thymidine and was not dependent on the state of confluence of the cells. A 24-hr exposure to TGF-beta either before or after insulin/EGF stimulation was as inhibitory on DNA synthesis between 48 and 72 hr of culture as was TGF-beta present throughout 72 hr of culture. From 12 hr in culture to 24 hr, hepatocyte EGF binding sites dropped from about 230,000 to 85,000 per cell with no significant change in Kd, but with a loss in capacity for EGF-induced receptor down-regulation. Maximally inhibitory concentrations of TGF-beta did not compete with EGF for the EGF receptor, and a 4- to 24-hr exposure to TGF-beta did not alter subsequent EGF binding. Coincubation of hepatocytes with TGF-beta and EGF did not influence the 60% reduction in EGF binding sites produced by EGF alone. In addition, TGF-beta did not prevent EGF-induced autophosphorylation of the 170,000 dalton EGF receptor in membranes from whole liver. Our studies suggest that TGF-beta regulates hepatocyte growth independently of changes in EGF receptor number, ligand affinity, or postbinding autophosphorylation.  相似文献   

13.
The increase of uridine phosphorylation during the first hour after epidermal growth factor (EGF) stimulation (1.25 nM) of Swiss 3T3 cells is completely blocked by 100 microM dansylcadaverine (DC). Lack of the effect of DC on uridine transport, uridine kinase activity in cell homogenate, intracellular ATP concentration and plasma membrane permeability for phosphorylated uridine derivatives makes it possible to propose the inhibition by DC (100 microM) of the activated state of uridine kinase. The rapidity of the inhibition of EGF effect and the lack of influence of DC (in tested concentration) upon the clustering of EGF-receptor complexes, rate of their internalization (Sorkin, 1985; Nikol'ski? et al., 1987) and pH value of intracellular compartments (Sorkin et al., 1985; Teslenko et al., 1986) may suggest an association of DC inhibitory action with blocking of some steps of the receptor mediated endocytosis. Accumulation of DC in cell membranes, rather than in intracellular compartments with acidic pH, is a necessary factor for its blocking effect. Possibilities of DC action through the influence on calmodulin-dependent proteins or EGF-induced cell protein phosphorylation are discussed.  相似文献   

14.
Palytoxin is a marine toxin responsible for a fatal type of poisoning in humans named clupeotoxism, with symptoms such as neurologic disturbances. It is believed that it binds to the Na(+)/K(+)-ATPase from the extracellular side and modifies cytosolic ions; nevertheless, its effects on internal cell structures, such as the cytoskeleton, which might be affected by these initial events, have not been fully elucidated. Likewise, ostreocin-D, an analog of palytoxin, has been only recently found, and its action on excitable cells is therefore unknown. Therefore, our aim was to investigate the modifications of ion fluxes associated with palytoxin and ostreocin-D activities, and their effects on an essential cytoskeletal component, the actin system. We used human neuroblastoma cells and fluorescent dyes to detect changes in membrane potential, intracellular Ca(2+) concentration, cell detachment, and actin filaments. Fluorescence values were obtained with spectrofluorymetry, laser-scanning cytometry, and confocal microscopy; the last of these was also used for recording images. Palytoxin and ostreocin-D modified membrane permeability as a first step, triggering depolarization and increasing Ca(2+) influx. The substantial loss of filamentous actin, and the morphologic alterations elicited by both toxins, are possibly secondary to their action on ion channels. The decrease in polymerized actin seemed to be Ca(2+)-independent; however, this ion could be related to actin cytoskeletal organization. Palytoxin and ostreocin-D alter the ion fluxes, targeting pathways that involve the cytoskeletal dynamics of human excitable cells.  相似文献   

15.
Pyrithione is a general inhibitor of membrane transport in fungi and is widely used in antidandruff shampoos as an antifungal agent. An electrophysiological approach has been used to determine the mode of action of pyrithione on the plasma membrane of the model ascomycete, Neurospora crassa. At pH 5.8, pyrithione induces a dramatic dose-dependent electrical depolarization of the membrane which is complete within 4 min, amounts to 110 mV at saturating pyrithione concentrations, and is half maximal between 0.6 and 0.8 mM pyrithione. Zinc pyrithione induces a similar response but exerts a half-maximal effect at around 0.3 mM. The depolarization is strongly dependent on external pH, being almost absent at pH 8.2, at which the concentration of the uncharged form of pyrithione--which might be expected to permeate the membrane freely--is markedly lowered. However, quantitative considerations based on cytosolic buffer capacity, the pKa of pyrithione, and the submillimolar concentration at which it is active appear to preclude significant cytosolic acidification on dissociation of the thiol proton from the uncharged form of pyrithione. Current-voltage analysis demonstrates that the depolarization is accompanied by a decrease in membrane electrical conductance in a manner consistent with inhibition of the primary proton pump and inconsistent with a mode of action of pyrithione on plasma membrane ion channels. We conclude that pyrithione inhibits membrane transport via a direct or indirect effect on the primary proton pump which energizes transport and that the site of action of pyrithione is likely to be intra- rather than extracellular.  相似文献   

16.
Intracellular pH must be kept close to neutrality to be compatible with cellular functions, but the mechanisms of pH homeostasis and the responses to intracellular acidification are mostly unknown. In the plant Arabidopsis thaliana, we found that intracellular acid stress generated by weak organic acids at normal external pH induces expression of several chaperone genes, including ROF2, which encodes a peptidyl‐prolyl cis‐trans isomerase of the FK506‐binding protein class. Loss of function of ROF2, and especially double mutation of ROF2 and the closely related gene ROF1, results in acid sensitivity. Over‐expression of ROF2 confers tolerance to intracellular acidification by increasing proton extrusion from cells. The activation of the plasma membrane proton pump (H+‐ATPase) is indirect: over‐expression of ROF2 activates K+ uptake, causing depolarization of the plasma membrane, which activates the electrogenic H+ pump. The depolarization of ROF2 over‐expressing plants explains their tolerance to toxic cations such as lithium, norspermidine and hygromycin B, whose uptake is driven by the membrane potential. As ROF2 induction and intracellular acidification are common consequences of many stresses, this mechanism of pH homeostasis may be of general importance for stress tolerance.  相似文献   

17.
Palytoxin binds to Na/K pumps to generate nonselective cation channels whose pore likely comprises at least part of the pump's ion translocation pathway. We systematically analyzed palytoxin's interactions with native human Na/K pumps in outside-out patches from HEK293 cells over a broad range of ionic and nucleotide conditions, and with or without cardiotonic steroids. With 5 mM internal (pipette) [MgATP], palytoxin activated the conductance with an apparent affinity that was highest for Na(+)-containing (K(+)-free) external and internal solutions, lowest for K(+)-containing (Na(+)-free) external and internal solutions, and intermediate for the mixed external Na(+)/internal K(+), and external K(+)/internal Na(+) conditions; with Na(+) solutions and MgATP, the mean dwell time of palytoxin on the Na/K pump was about one day. With Na(+) solutions, the apparent affinity for palytoxin action was low after equilibration of patches with nucleotide-free pipette solution. That apparent affinity was increased in two phases as the equilibrating [MgATP] was raised over the submicromolar, and submillimolar, ranges, but was increased by pipette MgAMPPNP in a single phase, over the submillimolar range; the apparent affinity at saturating [MgAMPPNP] remained approximately 30-fold lower than at saturating [MgATP]. After palytoxin washout, the conductance decay that reflects palytoxin unbinding was accelerated by cardiotonic steroid. When Na/K pumps were preincubated with cardiotonic steroid, subsequent activation of palytoxin-induced conductance was greatly slowed, even after washout of the cardiotonic steroid, but activation could still be accelerated by increasing palytoxin concentration. These results indicate that palytoxin and a cardiotonic steroid can simultaneously occupy the same Na/K pump, each destabilizing the other. The palytoxin-induced channels were permeable to several large organic cations, including N-methyl-d-glucamine(+), suggesting that the narrowest section of the pore must be approximately 7.5 A wide. Enhanced understanding of palytoxin action now allows its use for examining the structures and mechanisms of the gates that occlude/deocclude transported ions during the normal Na/K pump cycle.  相似文献   

18.
In mammalian cells, the binding of epidermal growth factor (EGF) to its receptor (EGFR), a glycoprotein with intrinsic tyrosine kinase activity, leads to the pleiotropic responses to EGF. Among these, a negative feedback response by stimulation of receptor internalization and lysosomal degradation, this attenuating signal transduction. In this work, data are reported on the identification of specific EGFRs in isolated digestive gland cells from the marine mussel (Mytilus galloprovincialis Lam.) By immunoelectron microscopy. In control digestive cells, EGFR immunoreactivity was mainly associated with cytoplasmic membrane structures and, to a lesser extent, the cell membrane. The presence of EGFR-like receptors was confirmed by Western blotting of digestive gland cell extracts with two different monoclonal antibodies that recognize either intracellular or extracellular epitopes. The addition of mammalian EGF resulted in significant time and temperature-dependent changes in EGFR subcellular distribution in mussel cells. In cells exposed to EGF for 0-15 min at 4 degrees C, the distribution of EGFR was not significantly different from that of the control cells. On the other hand, at 18 degrees C, an increased labelling along the cell membrane was observed after 5-10 min after EGF addition, with a concomitant decrease in the cytoplasmic signal. Moreover, after 20 min of exposure to EGF, ligand binding apparently resulted in EGFR compartmentation within the lysosomes. These observations were confirmed by quantitative analysis of EGFR labelling at different times of EGF exposure. Similar results were obtained utilizing the two different monoclonal antibodies. The results indicate that, in mussel digestive cells, the binding of heterologous EGF to specific receptors induces a negative feedback response by stimulating the lysosomal degradation of EGFR, thus suggesting the presence of mechanisms responsible for receptor downregulation similar to those observed in mammalian cells.  相似文献   

19.
G protein-coupled receptors mobilize neuronal signaling cascades which until now have not been shown to depend on the state of membrane depolarization. Thus we have previously shown that the metabotropic glutamate receptor type 7 (mGlu7 receptor) blocks P/Q-type Ca(2+) channels via activation of a G(o) protein and PKC, in cerebellar granule cells. We show here that the transient depolarizations used to evoke the studied Ca(2+) current were indeed permissive to activate this pathway by a mGlu7 receptor agonist. Indeed, sustained depolarization to 0 mV was sufficient to inhibit P/Q-type Ca(2+) channels. This effect involved a conformational change in voltage-gated sodium channel independently of Na(+) flux, activation of a pertussis toxin-sensitive G-protein, inositol trisphosphate formation, intracellular Ca(2+) release, and PKC activity. Subliminal sustained membrane depolarization became efficient in inducing inositol trisphosphate formation, release of intracellular Ca(2+) and in blocking Ca(2+) channels, when applied concomitantly with the mGlu7a receptor agonist, d,l-aminophosphonobutyrate. This synergistic effect of membrane depolarization and mGlu7 receptor activation provides a mechanism by which neuronal excitation could control action of the mGlu7 receptor in neurons.  相似文献   

20.
Charybdotoxin, a blocker of K+ channels, and the imidazole drug SC38249, a blocker of both voltage- and second messenger-operated Ca2+ channels, were employed in mouse NIH-3T3 fibroblasts overexpressing the epidermal growth factor (EGF) receptor 1) to characterize the ionic events activated by EGF; and 2) to establish the role of those events in cell growth. The [Ca2+]i response by EGF was little changed by charybdotoxin while the parallel hyperpolarization was inhibited in a dose-dependent manner. At high toxin concentrations (greater than 3 x 10(-8) M), the effect of EGF on membrane potential was turned into a persistent depolarization sustained by both Na+ and Ca2+. Pretreatment with 10 microM SC38249 induced only minor changes of the intracellular Ca2+ release by EGF (the process responsible for the initial phase of the [Ca2+]i and membrane potential responses) and blocked the persistent, second phase [Ca2+]i and the hyperpolarization responses, both dependent on Ca2+ influx, as well as the depolarization in the charybdotoxin-pretreated cells. Long term (up to 2-day) treatment with either charybdotoxin or SC38249 failed to affect the viability and growth of unstimulated EGFR-T17 cells. Moreover, in these cells, the ionic responses to EGF were restored after a 30-min incubation in fresh medium. In contrast, growth stimulated by EGF was inhibited, moderately (-20%) by charybdotoxin and markedly (-60%) by SC38249. These results indicate for the first time that both hyperpolarization and, especially, the persistent increase of [Ca2+]i sustained by Ca2+ influx play a role in the activity of EGF, ultimately cooperating with other intracellular events in mitogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号