首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
To develop an efficient gene tagging system in rice, a plasmid was constructed carrying a non-autonomous maize Ds element in the untranslated leader sequence of a hygromycin B resistance gene fused with the 35S promoter of cauliflower mosaic virus. This plasmid was cotransfected by electroporation into rice protoplasts together with a plasmid containing the maize Ac transposase gene transcribed from the 35S promoter. Five lines of evidence obtained from the analyses of hygromycin B-resistant calli, regenerated plants and their progeny showed that the introduced Ds was trans-activated by the Ac transposase gene in rice. (1) Cotransfection of the two plasmids is necessary for generation of hygromycin B resistant transformants. (2) Ds excision sites are detected by Southern blot hybridization. (3) Characteristic sequence alterations are found at Ds excision sites. (4) Newly integrated Ds is detected in the rice genome. (5) Generation of 8 by target duplications is observed at the Ds integration sites on the rice chromosomes. Our results also show that Ds can be trans-activated by the transiently expressed Ac transposase at early stages of protoplast culture and integrated stably into the rice genome, while the cotransfected Ac transposase gene is not integrated. Segregation data from such a transgenic rice plant carrying no Ac transposase gene showed that four Ds copies were stably integrated into three different chromosomes, one of which also contained the functional hph gene restored by Ds excision. The results indicate that a dispersed distribution of Ds throughout genomes not bearing the active Ac transposase gene can be achieved by simultaneous transfection with Ds and the Ac transposase gene.  相似文献   

3.
A two-element transposon system based on the maize elements Ac and Ds is currently being used for insertional mutagenesis in Arabidopsis. With the aim of making this system as efficient as possible we have continued to analyse several parameters which affect Ds activity in Arabidopsis. The influence of genomic position on Ds excision has been analysed in five lines carrying Ds integrated in different genomic locations. Differences in both somatic and germinal excision were observed between the different lines. The relationship between somatic and germinal excision, the timing of excision events and environmental influences on transposition frequency have been investigated. The effect of varying dosage of the different elements was also analysed. A strong positive dosage effect was observed for the transposase source, but not for the Ds element. Analysis of germinal excision events showed that the majority of them occurred very late in the development of the plant, resulting in the majority of Ds transpositions being independent events.  相似文献   

4.
Two kinds of T-DNA constructs, I-RS/dAc-I-RS and Hm(R)Ds, carrying a non-autonomous transposable element of Ac of maize were introduced into rice plants by Agrobacterium-mediated gene transfer. Six transgenic rice plants identified as containing a single copy of the element were crossed with two transgenic rice plants carrying a gene for Ac transposase under the control of the cauliflower mosaic virus 35S promoter. In F2 progenies, excision of the element was detected by PCR analysis and re-integration of the element was investigated by Southern blot analysis. The frequency of the excision of the element was found to vary from 0 to 70% depending on the crossing combination. The frequency of the number of individual transposition events out of the total number of F2 plants with germinal excision was 44% in one crossing combination and 38% in the other. In the most efficient case, 10 plants with independent transposition were obtained out of the 49 F2 plants tested. Linkage analysis of the empty donor site and the transposed Ds-insertion site in F3 plants demonstrated that one of five Ds-insertion sites was not linked to the empty donor site. The transgenic rice obtained in this study can be used for functional genomics of rice.  相似文献   

5.
6.
Isolation of the transposable maize controlling elements Ac and Ds   总被引:50,自引:0,他引:50  
N Fedoroff  S Wessler  M Shure 《Cell》1983,35(1):235-242
  相似文献   

7.
8.
In Antirrhinum majus only autonomous Tam3 transposons have been characterized. We investigated whether an artificial dTam3 element, with a deletion in the presumptive transposase coding region, can be trans-activated in tobacco by an activator Tam3 element, which was immobilized by the deletion of one inverted repeat. A phenotypic assay based on restored hygromycin resistance demonstrates that a dTam3 element harbouring a bacterial plasmid can be trans-activated with a low frequency. Molecular analysis confirms that the dTam3 element has been excised from the HPTII marker gene. Reintegration of the dTam3 element into the tobacco genome is detected only in one out of six hygromycin-resistant plants analysed. PCR analysis of empty donor sites shows that excision of the dTam3 element in tobacco results in rearrangements (deletions and additions), that have been shown to be characteristic of Tam3 excision in the original host Antirrhinum majus. This trans-activation assay allowed us to establish that, in contrast to what has been detected in Antirrhinum majus, a periodical temperature shift down to 15°C does not enhance dTam3 transposition in regenerating tobacco calli.  相似文献   

9.
To assess the potential advantages of a transposon-tagging system based on gametophyte-specific transposition a fusion between the anther-specific Arabidopsis thaliana apg promoter and the maize Ac transposase gene was constructed and introduced into tobacco. The ability of this transposase source to activate Ds transposition in a developmentally controlled manner was monitored by crossing to plants harbouring the cell autonomous excision marker gene construct, Ds —SPT. A number of fully green, streptomycin-resistant seedlings resulting from germinal transposition events were observed in the progeny of apg -TPase x Ds —SPT F1 plants. Streptomycin-resistant sectors were not observed in either F1 seedlings or F2 progeny, indicating a complete lack of somatic excision. Further crosses of apg —TPase sources to plants containing Ds—bar herbicide selection excision marker constructs gave reproducible gametophytic excision frequencies of up to 0.3%. Sequencing of Ds excision sites from F2 seedlings derived from single F1 plants revealed various sequence alterations in the original Ds insertion 'footprint' indicative of independent Ds excision events. Independent re-insertion was confirmed by Southern analysis of F2 siblings. It is concluded that apg -controlled Ac transposase expression activates male gametophyte-specific Ds transposition.  相似文献   

10.
Nucleotide sequence of the maize transposable element Mul   总被引:34,自引:5,他引:34       下载免费PDF全文
A cloned DNA fragment from the maize allele Adhl-S3034 contains all of Mul, an insertion element involved in Robertson's Mutator activity. The element is 1367 base pairs (bp) long and is flanked by nine bp direct repeats of insertion site DNA. It has inverted terminal repeats of 215 and 213 bp showing 95% homology. Within the element are two direct repeats of 104 bp showing 96% homology. Four open reading frames (ORFs) were found, two in each DNA strand. Mul can be divided into two halves, each containing one terminal inverted repeat, an internal direct repeat, and two overlapping ORFs. The GC content of each half is high (70%), while that of a central 60 base portion of the element is low (26%). The central region contains the only sequence resembling the TAATA Goldberg and Hogness eukaryotic promoter signal. Multiple copies of DNA sequences related to Mul found in Mutator maize plants are generally similar in organization to the cloned element. A larger version containing a discrete 300 to 400 base pair insertion was found in some Mutator lines.  相似文献   

11.
Summary Hybridization experiments indicated that the maize genome contains a family of sequences closely related to the Ds1 element originally characterized from theAdh1-Fm335 allele of maize. Examples of these Ds1-related segments were cloned and sequenced. They also had the structural properties of mobile genetic elements, i.e., similar length and internal sequence homology with Ds1, 10- or 11-bp terminal inverted repeats, and characteristic duplications of flanking genomic DNA. All sequences with 11-bp terminal inverted repeats were flanked by 8-bp duplications, but the duplication flanking one sequence with 10-bp inverted repeats was only 6 bp. Similar Ds1-related sequences were cloned fromTripsacum dactyloides. They showed no more divergence from the maize sequences than the individual maize sequences showed when compared with each other. No consensus sequence was evident for the sites at which these sequences had inserted in genomic DNA.  相似文献   

12.
R-stippled maize as a transposable element system   总被引:1,自引:1,他引:0       下载免费PDF全文
The I-R element at the R locus destabilizes kernel pigmentation giving the variegated pattern known as stippled ( R-st). In trans linkage phase with R-st the element was shown to act as a modifier of stippled, intensifying seed spotting in parallel with effects of the dominant linked modifier M-st. Presence of I-R in the genome was, therefore, shown to be detectable as a modifier of R-st. When this test was used, new modifiers resembling M-st were often detected following mutations of R-st to the stable allele R-sc. Such mutations evidently occurred by transposition of I-R away from the R locus to a site where it was identifiable as a modifier. M-st may be such a transposed I-R. Analysis of mutations to R-sc during the second (sperm-forming) mitosis in pollen grains showed that some of the transposed I-R elements were linked with R, whereas others assorted independently. Their strengths varied from barely discernible to a level equal to M-st. Overreplication frequently accompanied transposition at the sperm-forming mitosis, leading to transposed I-R elements in both the mutant and nonmutant sperm.  相似文献   

13.
The frequency and fidelity of Ac transposition, and that of its non-autonomous derivative Ds, were investigated in flax callus. Flax (Linum usitatissimum var. Antares) hypocotyls were transformed with Agrobacterium Ti plasmid vectors containing the Ac or Ds element inserted within the untranslated leader sequence of a chimaeric neomycin phosphotransferase II gene. Kanamycin resistant tissues were produced as a result of excision of Ac in around 35% of the total number of Ac-containing transformants. In contrast, no excision was observed from transformants containing the Ds element. Whilst Ac appears to have excised completely from T-DNAs, little evidence was found to infer reintegration of the Ac element into the genome.Abbreviations NPT-II/npt-II Neomycin phosphotransferase II - kb Kilobasepairs - bp basepairs - MSO Murashige and Skoog medium - NAA naphthalene acetic acid - BAP 6-benzylaminopurine  相似文献   

14.
Behaviour of the maize transposable element Ac in Arabidopsis thaliana   总被引:1,自引:1,他引:0  
The somatic and germinal activity of the maize transposable element, Ac, has been analysed in progeny of 43 transformants of A. thaliana using a streptomycin resistance assay to monitor Ac excision. The ability to assay somatic activity enabled, for the first time, a detailed analysis of Ac activity in individual A. thaliana seedlings to be made. The effects of T-DNA copy number, generation, dosage at each locus, flanking sequences and orientation of the element were compared. The most striking observation was the variability in Ac activity in genotypically identical individuals and the poor penetrance of the variegated phenotype. In general, increasing Ac dosage increased both somatic and germinal excision frequencies. The majority of families from individuals selected as inheriting an excision event carried transposed Ac elements re-integrated in different positions in the genome.  相似文献   

15.
16.
17.
18.
19.
The mobile DNAs of the Mutator system of maize (Zea mays) are exceptional both in structure and diversity. So far, six subfamilies of Mu elements have been discovered; all Mu elements share highly conserved terminal inverted repeats (TIRs), but each sub-family is defined by internal sequences that are apparently unrelated to the internal sequences of any other Mu subfamily. The Mu1/Mu2 subfamily of elements was created by the acquisition of a portion of a standard maize gene (termed MRS-A) within two Mu TIRs. Beside the unusually long (185–359 bp) and diverse TIRs found on all of these elements, other direct and inverted repeats are often found either within the central portion of a Mu element or within a TIR.Our computer analyses have shown that sequence duplications (mostly short direct repeats interrupted by a few base pairs) are common in non-autonomous members of the Mutator, Ac/Ds, and Spm(En) systems. These duplications are often tightly associated with the element-internal end of the TIRs. Comparisons of Mu element sequences have indicated that they share more terminal components than previously reported; all subfamilies have at least the most terminal 215 bp, at one end or the other, of the 359-bp Mu5 TIR. These data suggest that many Mu element subfamilies were generated from a parental element that had termini like those of Mu5. With the Mu5 TIRs as a standard, it was possible to determine that elements like Mu4 could have had their unusual TIRs created through a three-step process involving (1) addition of sequences to interrupt one TIR, (2) formation of a stem-loop structure by one strand of the element, and (3) a subsequent DNA repair/gene conversion event that duplicated the insertion(s) within the other TIR. A similar repair/conversion extending from a TIR stem into loop DNA could explain the additional inverted repeat sequences added to the internal ends of the Mu4 and Mu7 TIRs. This same basic mechanism was found to be capable of generating new Mu element subfamilies. After endonucleolytic attack of the loop within the stem-loop structure, repair/conversion of the gap could occur as an intermolecular event to generate novel internal sequences and, therefore, a new Mu element subfamily. Evidence supporting and expanding this model of new Mu element subfamily creation was identified in the sequence of MRS-A.  相似文献   

20.
Transposition depends on DNA sequences located at or near the termini of the transposon. In the maize transposable element Ds, these sequences were studied by site-directed mutagenesis followed by a transient excision assay in Petunia protoplasts. The transposase-binding AAACGG motifs found in large numbers in the element are important, but none of them is in itself indispensable, for excision. However, mutation of an isolated motif at the 3′ end considerably reduced excisability. The inverted termini were confirmed to be indispensable. Point mutations in regions outside the inverted termini of Ds and not located in the transposase-binding motifs had, in some cases, a pronounced effect on excision frequency. The implications of these findings are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号