首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Atom depth as a descriptor of the protein interior   总被引:3,自引:0,他引:3       下载免费PDF全文
  相似文献   

2.
Samanta U  Pal D  Chakrabarti P 《Proteins》2000,38(3):288-300
Although relatively rare, the tryptophan residue (Trp), with its large hydrophobic surface, has a unique role in the folded structure and the binding site of many proteins, and its fluorescence properties make it very useful in studying the structures and dynamics of protein molecules in solution. An analysis has been made of its environment and the geometry of its interaction with neighbors using 719 Trp residues in 180 different protein structures. The distribution of the number of partners interacting with the Trp aromatic ring shows a peak at 6 (considering protein residues only) and 8 (including water and substrate molecules also). The means of the solvent-accessible surface areas of the ring show an exponential decrease with the increase in the number of partners; this relationship can be used to assess the efficiency of packing of residues around Trp. Various residues exhibit different propensities of binding the Trp side chain. The aromatic residues, Met and Pro have high values, whereas the smaller and polar-chain residues have weaker propensities. Most of the interactions are with residues far away in sequence, indicating the importance of Trp in stabilizing the tertiary structure. Of all the ring atoms NE1 shows the highest number of interactions, both along the edge (hydrogen bonding) as well as along the face. Various weak but specific interactions, engendering stability to the protein structure, have been identified.  相似文献   

3.
4.
A comprehensive statistical analysis of residue-residue contacts and residue environment in protein 3-D structures is presented. In the present work the range of interresidue interactions (effective radius of influence) in tertiary structures of proteins is examined and found to be 10 Å. This result is obtained by correlating the average number of residues within a spherical volume of different radii (contact numbers) with hydrophobicity. Best correlations are obtained with a radius of 10 Å. The same result is obtained when (i) only long-range interactions are considered and (ii) representative side chain atoms are used to indicate the tertiary structure instead of the usual representation of Cα atoms. Residue environment has been investigated using similar methods. Environmental hydrophobicity varies within only a small range of all residue types. Other physicochemical properties also exhibit similar trends of variation, and only five hydrophobic residues (Leu, Val, Met, Phe and Ile) produce a decrement of around 10% from the expected mean of the physicochemical distance between a residue type and its average environment. An information theory approach is proposed to compare domains, which takes into account the effective radius of influence of residues and sequence similarity.  相似文献   

5.
The location of tryptophan residues in the actin macromolecule was studied on the basis of the known 3D structure. For every tryptophan residue the polarity and packing density of their microenvironments were evaluated. To estimate the accessibility of the tryptophan residues to the solvent molecules it was proposed to analyze the radial dependence of the packing density of atoms in the macromolecule about the geometric center of the indole rings of the tryptophan residues. The proposed analysis revealed that the microenvironment of tryptophan residues Trp-340 and Trp-356 has a very high density. So these residues can be regarded as internal and inaccessible to solvent molecules. Their microenvironment is mainly formed by non-polar groups of protein. Though the packing density of the Trp-86 microenvironment is lower, this tryptophan residue is apparently also inaccessible to solvent molecules, as it is located in the inner region of macromolecule. Tryptophan residue Trp-79 is external and accessible to the solvent. All residues that can affect tryptophan fluorescence were revealed. It was found that in the close vicinity of tryptophan residues Trp-79 and Trp-86 there are a number of sulfur atoms of cysteine and methionine residues that are known to be effective quenchers of tryptophan fluorescence. The most essential is the location of SG atom of Cys-10 near the NE1 atom of the indole ring of tryptophan residue Trp-86. On the basis of microenvironment analysis of these tryptophan residues and the evaluation of energy transfer between them it was concluded that the contribution of tryptophan residues Trp-79 and Trp-86 must be low. Intrinsic fluorescence of actin must be mainly determined by two other tryptophan residues--Trp-340 and Trp-356. It is possible that the unstrained conformation of tryptophan residue Trp-340 and the existence of aromatic rings of tyrosine and phenylalanine and proline residues in the microenvironments of tryptophan residues Trp-340 and Trp-356 are also essential to their blue fluorescence spectrum.  相似文献   

6.
Zhou H  Zhou Y 《Proteins》2004,54(2):315-322
The average contribution of individual residue to folding stability and its dependence on buried accessible surface area (ASA) are obtained by two different approaches. One is based on experimental mutation data, and the other uses a new knowledge-based atom-atom potential of mean force. We show that the contribution of a residue has a significant correlation with buried ASA and the regression slopes of 20 amino acid residues (called the buriability) are all positive (pro-burial). The buriability parameter provides a quantitative measure of the driving force for the burial of a residue. The large buriability gap observed between hydrophobic and hydrophilic residues is responsible for the burial of hydrophobic residues in soluble proteins. Possible factors that contribute to the buriability gap are discussed.  相似文献   

7.
The three-dimensional structure of a protein can be modeled by a set of polyhedra drawn around its atoms or residues. The tessellation invented by Voronoi in 1908, and other tessellations of space derived from it, provide versatile representations of three-dimensional structures. In recent years, they have been used to investigate a series of issues relating to proteins: atom and residue volumes, packing, folding, interactions and binding.  相似文献   

8.
Non-bonded energy of 16 proteins was calculated using the atomic co-ordinates obtained by X-ray crystallography. The curve of total energy against the number of atoms in proteins is approximately linear with a slight concaved shape. According to a linear equation to fit the curve, the extrapolated length of a polypeptide chain of a globular shape is expected to be 18 residues, which corresponds conceivably to an approximate size of nucleus for a folding of the polypeptide chain. Contributions from short-range and medium-range energies are always much greater than those from long-range energy for all the proteins and there seems to exist a change of each contribution in a range from 1200 to 1700 atoms. The energies with a lag less than four residues are a major part of the total energy and the contribution of energy from main-chain atoms is considerably higher than that from side-chain atoms. Side-chain atoms of a residue have a tendency to interact more strongly with main-chain atoms of N-terminal, than with those of C-terminal side of the residue, indicating asymmetry of the interaction in a protein. Amino acid residues in proteins may be divided into three groups by the order of strength of average energy. The first group exhibiting strong interaction consists mainly of hydrophobic amino acids and the third group consists of hydrophilic ones corresponding to the location in a protein molecule. Cys, val, leu and met are important for medium-range and long-range energies; gly and ala for medium-range energy; ile, trp, phe, tyr and arg for long-range energy. One simple application of the average energy of amino acid residues is illustrated to estimate local energy of a segment of nine residues given by a protein sequence. There is a good correlation between the curve computed by the average energy and the experimental curve for myoglobin.  相似文献   

9.
We describe a novel method to calculate the packing interactions in protein structural models. The method calculates the interatomic occluded surface areas for each atom in the protein model. The identification of, and degree of interaction with, neighboring atoms is accomplished by extending surface normal from a dot surface of each atom to the point of intersection with neighboring atoms. The combined occluded and non-occluded surface areas may be normalized for the amino acid composition of the protein providing a single parameter, the normalized protein surface ratio, which is diagnostic for native-like Structures. Individual residues in the model which are in infrequent occluded surface environments may be identified. The method provides a means to explicitly describe packing densities and packing environments of individual atoms in a protein model. Finally, the method allows estimation of the complementarity between any interacting molecules, for example a ligand binding to a receptor.  相似文献   

10.
Ahmad S  Gromiha MM  Sarai A 《Proteins》2003,50(4):629-635
The solvent accessibility of amino acid residues has been predicted in the past by classifying them into exposure states with varying thresholds. This classification provides a wide range of values for the accessible surface area (ASA) within which a residue may fall. Thus far, no attempt has been made to predict real values of ASA from the sequence information without a priori classification into exposure states. Here, we present a new method with which to predict real value ASAs for residues, based on neighborhood information. Our real value prediction neural network could estimate the ASA for four different nonhomologous, nonredundant data sets of varying size, with 18.0-19.5% mean absolute error, defined as per residue absolute difference between the predicted and experimental values of relative ASA. Correlation between the predicted and experimental values ranged from 0.47 to 0.50. It was observed that the ASA of a residue could be predicted within a 23.7% mean absolute error, even when no information about its neighbors is included. Prediction of real values answers the issue of arbitrary choice of ASA state thresholds, and carries more information than category prediction. Prediction error for each residue type strongly correlates with the variability in its experimental ASA values.  相似文献   

11.
The solvent accessible surface area (ASA) of the polysaccharides, namely (i) carrageenan (1CAR); (ii) agarose (1AGA); (iii) guaran (GUR); (iv) capsular polysaccharide (1CAP); and (v) hyaluronan (1HUA), have been computed using the solvent accessibility technique of Lee and Richards. The results show that the average variation of ASA for the various atoms in the molecules lie in the range 1-30 A(2). Irrespective of position of sulfation, either at two or four in the sugar residues in 1CAR, the charged groups interact almost equally with the solvent. The ASA values for the chains A and B in 1AGA and 1CAR indicate that there are not much interchain interactions and the chains in both the molecules interact equally with the solvent. Residue-wise analysis indicates that the ASAs of residues vary alternately, high-low-high value pattern that is similar to that of the hydrophobic behaviour of beta-strands in proteins. The results also suggest that in these polysaccharides D-configuration residues have higher ASA than L-configuration residues.  相似文献   

12.
Helix-helix packing plays a critical role in maintaining the tertiary structures of helical membrane proteins. By examining the overall distribution of voids and pockets in the transmembrane (TM) regions of helical membrane proteins, we found that bacteriorhodopsin and halorhodopsin are the most tightly packed, whereas mechanosensitive channel is the least tightly packed. Large residues F, W, and H have the highest propensity to be in a TM void or a pocket, whereas small residues such as S, G, A, and T are least likely to be found in a void or a pocket. The coordination number for non-bonded interactions for each of the residue types is found to correlate with the size of the residue. To assess specific interhelical interactions between residues, we have developed a new computational method to characterize nearest neighboring atoms that are in physical contact. Using an atom-based probabilistic model, we estimate the membrane helical interfacial pairwise (MHIP) propensity. We found that there are many residue pairs that have high propensity for interhelical interactions, but disulfide bonds are rarely found in the TM regions. The high propensity pairs include residue pairs between an aromatic residue and a basic residue (W-R, W-H, and Y-K). In addition, many residue pairs have high propensity to form interhelical polar-polar atomic contacts, for example, residue pairs between two ionizable residues, between one ionizable residue and one N or Q. Soluble proteins do not share this pattern of diverse polar-polar interhelical interaction. Exploratory analysis by clustering of the MHIP values suggests that residues similar in side-chain branchness, cyclic structures, and size tend to have correlated behavior in participating interhelical interactions. A chi-square test rejects the null hypothesis that membrane protein and soluble protein have the same distribution of interhelical pairwise propensity. This observation may help us to understand the folding mechanism of membrane proteins.  相似文献   

13.
We investigated the possible role of residues at the Ccap position in an alpha-helix on protein stability. A set of 431 protein alpha-helices containing a C'-Gly from the Protein Data Bank (PDB) was analyzed, and the normalized frequencies for finding particular residues at the Ccap position, the average fraction of buried surface area, and the hydrogen bonding patterns of the Ccap residue side-chain were calculated. We found that on average the Ccap position is 70% buried and noted a significant correlation (R=0.8) between the relative burial of this residue and its hydrophobicity as defined by the Gibbs energy of transfer from octanol or cyclohexane to water. Ccap residues with polar side-chains are commonly involved in hydrogen bonding. The hydrogen bonding pattern is such that, the longer side-chains of Glu, Gln, Arg, Lys, His form hydrogen bonds with residues distal (>+/-4) in sequence, while the shorter side-chains of Asp, Asn, Ser, Thr exhibit hydrogen bonds with residues close in sequence (<+/-4), mainly involving backbone atoms. Experimentally we determined the thermodynamic propensities of residues at the Ccap position using the protein ubiquitin as a model system. We observed a large variation in the stability of the ubiquitin variants depending on the nature of the Ccap residue. Furthermore, the measured changes in stability of the ubiquitin variants correlate with the hydrophobicity of the Ccap residue. The experimental results, together with the statistical analysis of protein structures from the PDB, indicate that the key hydrophobic capping interactions between a helical residue (C3 or C4) and a residue outside the helix (C", C3' or C4') are frequently enhanced by the hydrophobic interactions with Ccap residues.  相似文献   

14.

Background  

Protein tertiary structure can be partly characterized via each amino acid's contact number measuring how residues are spatially arranged. The contact number of a residue in a folded protein is a measure of its exposure to the local environment, and is defined as the number of C β atoms in other residues within a sphere around the C β atom of the residue of interest. Contact number is partly conserved between protein folds and thus is useful for protein fold and structure prediction. In turn, each residue's contact number can be partially predicted from primary amino acid sequence, assisting tertiary fold analysis from sequence data. In this study, we provide a more accurate contact number prediction method from protein primary sequence.  相似文献   

15.
An alpha-helix and a beta-strand are said to be interactively packed if at least one residue in each of the secondary structural elements loses 10% of its solvent accessible contact area on association with the other secondary structural element. An analysis of all such 5,975 nonidentical alpha/beta units in protein structures, defined at < or = 2.5 A resolution, shows that the interaxial distance between the alpha-helix and the beta-strand is linearly correlated with the residue-dependent function, log[(V/nda)/n-int], where V is the volume of amino acid residues in the packing interface, nda is the normalized difference in solvent accessible contact area of the residues in packed and unpacked secondary structural elements, and n-int is the number of residues in the packing interface. The beta-sheet unit (beta u), defined as a pair of adjacent parallel or antiparallel hydrogen-bonded beta-strands, packing with an alpha-helix shows a better correlation between the interaxial distance and log(V/nda) for the residues in the packing interface. This packing relationship is shown to be useful in the prediction of interaxial distances in alpha/beta units using the interacting residue information of equivalent alpha/beta units of homologous proteins. It is, therefore, of value in comparative modeling of protein structures.  相似文献   

16.
In order to study structural aspects of sequence conservation in families of homologous proteins, we have analyzed structurally aligned sequences of 585 proteins grouped into 128 homologous families. The conservation of a residue in a family is defined as the average residue similarity in a given position of aligned sequences. The residue similarities were expressed in the form of log-odd substitution tables that take into account the environments of amino acids in three-dimensional structures. The protein core is defined as those residues that have less then 7% solvent accessibility. The density of a protein core is described in terms of atom packing, which is investigated as a criterion for residue substitution and conservation. Although there is no significant correlation between sequence conservation and average atom packing around nonpolar residues such as leucine, valine and isoleucine, a significant correlation is observed for polar residues in the protein core. This may be explained by the hydrogen bonds in which polar residues are involved; the better their protection from water access the more stable should be the structure in that position. Proteins 33:358–366, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

17.
What are the structural determinants of protein sequence evolution? A number of site‐specific structural characteristics have been proposed, most of which are broadly related to either the density of contacts or the solvent accessibility of individual residues. Most importantly, there has been disagreement in the literature over the relative importance of solvent accessibility and local packing density for explaining site‐specific sequence variability in proteins. We show that this discussion has been confounded by the definition of local packing density. The most commonly used measures of local packing, such as contact number and the weighted contact number, represent the combined effects of local packing density and longer‐range effects. As an alternative, we propose a truly local measure of packing density around a single residue, based on the Voronoi cell volume. We show that the Voronoi cell volume, when calculated relative to the geometric center of amino‐acid side chains, behaves nearly identically to the relative solvent accessibility, and each individually can explain, on average, approximately 34% of the site‐specific variation in evolutionary rate in a data set of 209 enzymes. An additional 10% of variation can be explained by nonlocal effects that are captured in the weighted contact number. Consequently, evolutionary variation at a site is determined by the combined effects of the immediate amino‐acid neighbors of that site and effects mediated by more distant amino acids. We conclude that instead of contrasting solvent accessibility and local packing density, future research should emphasize on the relative importance of immediate contacts and longer‐range effects on evolutionary variation. Proteins 2016; 84:841–854. © 2016 Wiley Periodicals, Inc.  相似文献   

18.
BACKGROUND: Accessible surface area is a parameter that is widely used in analyses of protein structure and stability. Accessible surface area does not, however, distinguish between atoms just below the protein surface and those in the core of the protein. In order to differentiate between such buried residues we describe a computational procedure for calculating the depth of a residue from the protein surface. RESULTS: Residue depth correlates significantly better than accessibility with effects of mutations on protein stability and on protein-protein interactions. The deepest residues in the native state invariably undergo hydrogen exchange by global unfolding of the protein and are often significantly protected in the corresponding molten-globule states. CONCLUSIONS: Depth is often a more useful gage of residue burial than accessibility. This is probably related to the fact that the protein interior and surrounding solvent differ significantly in polarity and packing density. Hence, the strengths of van der Waals and electrostatic interactions between residues in a protein might be expected to depend on the distance of the residue(s) from the protein surface.  相似文献   

19.
Chung SY  Subbiah S 《Proteins》1999,35(2):184-194
The precision and accuracy of protein structures determined by nuclear magnetic resonance (NMR) spectroscopy depend on the completeness of input experimental data set. Typically, rather than a single structure, an ensemble of up to 20 equally representative conformers is generated and routinely deposited in the Protein Database. There are substantially more experimentally derived restraints available to define the main-chain coordinates than those of the side chains. Consequently, the side-chain conformations among the conformers are more variable and less well defined than those of the backbone. Even when a side chain is determined with high precision and is found to adopt very similar orientations among all the conformers in the ensemble, it is possible that its orientation might still be incorrect. Thus, it would be helpful if there were a method to assess independently the side-chain orientations determined by NMR. Recently, homology modeling by side-chain packing algorithms has been shown to be successful in predicting the side-chain conformations of the buried residues for a protein when the main-chain coordinates and sequence information are given. Since the main-chain coordinates determined by NMR are consistently more reliable than those of the side-chains, we have applied the side-chain packing algorithms to predict side-chain conformations that are compatible with the NMR-derived backbone. Using four test cases where the NMR solution structures and the X-ray crystal structure of the same protein are available, we demonstrate that the side-chain packing method can provide independent validation for the side-chain conformations of NMR structures. Comparison of the side-chain conformations derived by side-chain packing prediction and by NMR spectroscopy demonstrates that when there is agreement between the NMR model and the predicted model, on average 78% of the time the X-ray structure also concurs. While the side-chain packing method can confirm the reliable residue conformations in NMR models, more importantly, it can also identify the questionable residue conformations with an accuracy of 60%. This validation method can serve to increase the confidence level for potential users of structural models determined by NMR.  相似文献   

20.
Baysal C  Atilgan AR 《Proteins》2001,45(1):62-70
We demonstrate that the stabilization of the binding region is accomplished at the expense of a loss in the stability of the rest of the protein. A novel molecular mechanics (MM) approach is introduced to distinguish residue stabilities of proteins in a given conformation. As an example, the relative stabilities of folded chymotrypsin inhibitor 2 (CI2) in unbound form, and CI2 in complex with subtilisin novo is investigated. The conformation of the molecule in the two states is almost identical, with an approximately 0.6-A root-mean-square deviation (RMSD) of the Calpha atoms. On binding, the packing density changes only at the binding loop. However, residue fluctuations in the rest of the protein are greatly altered solely due to those contacts, indicating the effective propagation of perturbation and the presence of remotely controlling residues. To quantify the interplay between packing density, packing order, residue fluctuations, and residue stability, we adopt an MM approach whereby small displacements are inserted at selected residues, followed by energy minimization; the displacement of each residue in response to such perturbations are organized in a perturbation-response matrix L. We define residue stability lambda(i) = summation operator((j)L(ij))/ summation operator((j) L(ji)) as the ratio of the amount of change to which the residue is amenable, to the ability of a given residue to induce change. We then define the free energy associated with residue stability, DeltaG(lambda) = -RT ln lambda. DeltaG(lambda) intrinsically selects the residues that are in the folding core. Upon complexation, the binding loop becomes more resistant to perturbation, in contrast to the alpha-helix that favors change. Although the two forms of CI2 are structurally similar, residue fluctuations differ vastly, and the stability of many residues is altered upon binding. The decrease in entropy introduced by binding is thus compensated by these changes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号