首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Measurement of acetaminophen glucuronide (AG) 2H enrichment from deuterated water (2H2O) by 2H nuclear magnetic resonance (NMR) analysis of its monoacetone glucose (MAG) derivative provides estimation of gluconeogenic and glycogenolytic contributions to endogenous glucose production (EGP). However, AG derivatization to MAG is laborious and unsuitable for high-throughput studies. An alternative derivative, 5-O-acetyl monoacetone glucuronolactone (MAGLA), was tested. Eleven healthy subjects ingested 2H2O to 0.5% body water enrichment and 500 mg of acetaminophen. Plasma glucose and urinary glucuronide positional 2H enrichments were measured by 2H NMR spectroscopy of MAG and MAGLA, respectively. A Bland–Altman analysis indicated agreement at the 95% confidence level between glucose and glucuronide estimates.  相似文献   

2.
Tumor metabolism, an emerging hallmark of cancer, is characterized by aberrant expression of enzymes from various metabolic pathways including glycolysis and PPP (pentose phosphate pathway). Glucose 6 phosphate dehydrogenase (G6PD) and 6-phosphogluconate dehydrogenase (6PGD), oxidative carboxylases of PPP, have been reported to accomplish different biosynthetic and energy requirements of cancer cells. G6PD and 6PGD have been proposed as potential therapeutic targets for cancer therapy during recent years due to their overexpression in various cancers. Here, we have employed enzymatic assay based screening using in-house G6PD and 6PGD assay protocols for the identification of mushroom extracts which could inhibit G6PD or 6PGD enzymatic activity for implications in cancer therapy. For the fulfillment of the objectives of present study, nine edible mushrooms were subjected to green extraction for preparation of ethanolic extracts. 6xhis-G6PD and pET-28a-h6PGD plasmids were expressed in BL21-DE3 E. coli cells for the expression and purification of protein of interests. Using purified proteins, in house enzymatic assay protocols were established. The preliminary screening identified two extracts (Macrolepiota procera and Terfezia boudieri) as potent and selective G6PD inhibitors, while no extract was found highly active against 6PGD. Further, evaluation of anticancer potential of mushroom extracts against lung cancer cells revealed Macrolepiota procera as potential inhibitor of cancer cell proliferation with IC50 value of 6.18 μg/ml. Finally, screening of M. procera-derived compounds against G6PD via molecular docking has identified paraben, quercetin and syringic acid as virtual hit compounds possessing good binding affinity with G6PD. The result of present study provides novel findings for possible mechanism of action of M. procera extract against A549 via G6PD inhibition suggesting that M. procera might be of therapeutic interest for lung cancer treatment.  相似文献   

3.
Newborn rats were injected immediately after delivery with glucose or glucose plus mannoheptulose, and the time-courses of liver glycogen, plasma glucose, insulin and glucagon concentration were studied. The administration of glucose prevented both liver glycogenolysis and the increase in plasma glucagon concentration which normally occurs immediately after delivery. In addition, the administration of glucose prevented the decrease of plasma glucose and insulin concentration which normally occurs during the first hour of extrauterine life. Supplementation of glucose with mannoheptulose prevented the increase of plasma insulin concentrations caused by the administration of glucose; liver glycogenolysis, however, was not stimulated in these circumstances. The increase in the rate of glycogenolysis caused by the administration of glucagon was prevented in newborn rats previously treated with glucose. These results suggest that glucose exerts an inhibitory effect on the stimulation of neonatal liver glycogenolysis by glucagon.  相似文献   

4.
Glucose 6-phosphate dehydrogenase (d -glucose 6-phosphate: NADP + oxidoreductase, EC 1.1.1.49; G6PD) was purified from sheep erythrocytes, using a simple and rapid method. The purification consisted of three steps; preparation of haemolysate, ammonium sulphate fractionation and 2′, 5′-ADP Sepharose 4B affinity chromatography. The enzyme was obtained with a yield of 37.1% and had a specific activity of 4.64 U/mg proteins. Optimal pH, stable pH, molecular weight, and K M and V max values for NADP + and glucose 6-phosphate (G6-P) substrates were also determined for the enzyme. The overall purification was about 1,189-fold. A temperature of +4°C was maintained during the purification process. In order to control the purification of the enzyme SDS polyacrylamide gel electrophoresis (SDS-PAGE) was done in 4% and 10% acrylamide concentration for stacking and running gel, respectively. SDS-PAGE showed a single band for enzyme. Enzymatic activity was spectrophotometrically measured according to Beutler's method at 340 nm. In addition, in vitro effects of gentamicin sulphate, penicillin G potassium, amicasin on sheep red blood cell G6PD enzyme activity were investigated. These antibiotics showed inhibitory effects on enzyme activity. I 50 values were determined from Activity %-[Drug] graphs and K i values and the type of inhibition (noncompetitive) were determined by means of Lineweaver-Burk graphs.  相似文献   

5.
6.
Historically, it has been theorized that the oxidant sensitivity of glucose-6-phosphate dehydrogenase (G6PD)-deficient erythrocytes arises as a direct consequence of an inability to maintain cellular gluthione (GSH) levels. This study alternatively hypothesizes that decreased NADPH concentration leads to impaired to catalase activity which, in turn, underlies the observed oxidant susceptibility. To investigate this hypothesis, normal and G6PD-deficient erythrocytes and hemolysates were challenged with a H2O2-generating agent. The results of this study demonstrated that catalase activity was severely impaired upon H2O2 challenge in the G6PD-deficient cell whiel only decrease was observed in normal cells. Supplmentation of either normal or G6PD-deficient hemolysates with purified NADPH was found to significantly (P < 0.001) inhibit catalase inactivation upon oxidant challenge while addition of NADP+ had no effect. Analysis of these results demonstrated direct correlation between NADPH concentration and catalase activity (r = 0.881) and an inverse correlation between catalase activity and erythrocyte oxidant sensitivity (r = 0.906). In contrast, no correlation was found to exist between glutathione concentration (r = 0.170) and oxidant sensitivity. Analysis of NADPH/NADPt ration in acatalasemic mouse erythrocytes demonstrated that NADPH maintenance alone was not sufficient to explain oxidant resistance, and that catalase activity was required. This study supports the hypothesis that impaired catalase activity underlies the enhanced oxidant sensitivity of G6PD-deficient erythrocytes and elucidates the importance of NADPH in the maintenance of normal catalase activity.  相似文献   

7.
A triple-tracer method was developed to provide absolute fluxes contributing to endogenous glucose production and hepatic tricarboxylic acid (TCA) cycle fluxes in 24-h-fasted rats by (2)H and (13)C nuclear magnetic resonance (NMR) analysis of a single glucose derivative. A primed, intravenous [3,4-(13)C(2)]glucose infusion was used to measure endogenous glucose production; intraperitoneal (2)H(2)O (to enrich total body water) was used to quantify sources of glucose (TCA cycle, glycerol, and glycogen), and intraperitoneal [U-(13)C(3)] propionate was used to quantify hepatic anaplerosis, pyruvate cycling, and TCA cycle flux. Plasma glucose was converted to monoacetone glucose (MAG), and a single (2)H and (13)C NMR spectrum of MAG provided the following metabolic data (all in units of micromol/kg/min; n = 6): endogenous glucose production (40.4+/-2.9), gluconeogenesis from glycerol (11.5+/-3.5), gluconeogenesis from the TCA cycle (67.3+/-5.6), glycogenolysis (1.0+/-0.8), pyruvate cycling (154.4+/-43.4), PEPCK flux (221.7+/-47.6), and TCA cycle flux (49.1+/-16.8). In a separate group of rats, glucose production was not different in the absence of (2)H(2)O and [U-(13)C]propionate, demonstrating that these tracers do not alter the measurement of glucose turnover.  相似文献   

8.
In the perfused rat liver, administration of glucagon causes a hyperpolarization of the liver cell membrane and increases gluconeogenesis. Insulin, a hormone which is known to antagonize the effect of glucagon on gluconeogenesis also blocks the hyperpolarizing effect of glucagon. Because of this inhibitory effect of insulin of the glucagon-evoked hyperpolarization, a systematic study of possible correlation between changes in membrane potential and gluconeogenesis was undertaken. The membrane potential was changed by valinomycin, tetracaine, or by varying the ionic composition of the perfusate. A highly significant correlation between changes in membrane potential and the rate of gluconeogenesis was noticed. The possibility was raised that changes in membrane potential might exert an influence on metabolic process by a yet unknown mechanism.  相似文献   

9.
The apicomplexan parasite Toxoplasma gondii displays some unusual localisations of carbohydrate converting enzymes, which is due to the presence of a vestigial, non-photosynthetic plastid, referred to as the apicoplast. It was recently demonstrated that the single pyruvate dehydrogenase complex (PDH) in T. gondii is exclusively localised inside the apicoplast but absent in the mitochondrion. This raises the question about expression, localisation and function of enzymes for the tricarboxylic acid (TCA)-cycle, which normally depends on PDH generated acetyl-CoA. Based on the expression and localisation of epitope-tagged fusion proteins, we show that all analysed TCA cycle enzymes are localised in the mitochondrion, including both isoforms of malate dehydrogenase. The absence of a cytosolic malate dehydrogenase suggests that a typical malate-aspartate shuttle for transfer of reduction equivalents is missing in T. gondii. We also localised various enzymes which catalyse the irreversible steps in gluconeogenesis to a cellular compartment and examined mRNA expression levels for gluconeogenesis and TCA cycle genes between tachyzoites and in vitro bradyzoites. In order to get functional information on the TCA cycle for the parasite energy metabolism, we created a conditional knock-out mutant for the succinyl-CoA synthetase. Disruption of the sixth step in the TCA cycle should leave the biosynthetic parts of the cycle intact, but prevent FADH2 production. The succinyl-CoA synthetase depletion mutant displayed a 30% reduction in growth rate, which could be restored by supplementation with 2 microM succinate in the tissue culture medium. The mitochondrial membrane potential in these parasites was found to be unaltered. The lack of a more severe phenotype suggests that a functional TCA cycle is not essential for T. gondii replication and for maintenance of the mitochondrial membrane potential.  相似文献   

10.
In media containing glucose, lactate stimulates the metabolism of gonococci at concentrations that simulate conditions in vivo. Nuclear magnetic resonance (NMR) spectroscopy of (13)C-labelled lipids obtained from gonococci grown in a synthetic medium with (13)C-labelled lactate and unlabelled glucose (culture A), (13)C-labelled glucose alone (culture B) or (13)C-labelled glucose and unlabelled lactate (culture C) showed lactate carbon was not present in glycerol/ethanolamine residues of lipids from culture A. This indicated that, in the presence of glucose, lactate gluconeogenesis is shut down. Hence, the stimulation of metabolism could result from the production of extra energy because lactate is used solely for conversion to acetyl-CoA, the precursor of fatty acid synthesis and the components of the tricarboxylic acid cycle. In this paper, additional evidence for lack of gluconeogenesis has been sought using a different approach. The carbohydrate moieties of lipopolysaccharide (LPS) have been examined for lactate carbon after gonococci were grown with lactate and glucose. Two methods were used: NMR spectroscopy of (13)C-labelled lipopolysaccharide purified from the three cultures described above showed that, in the presence of glucose, lactate carbon, in contrast to glucose carbon, was not in the carbohydrate moiety. Also, (14)C-labelled lactate was added to a culture containing unlabelled glucose and lactate (culture A) and [(14)C]glucose to cultures containing unlabelled glucose without unlabelled lactate (culture B) and with unlabelled lactate (culture C). When LPS samples purified from these cultures were subjected to hydrazinolysis, the ratio of the radioactivity of water-soluble products (carbohydrate moieties) to those of chloroform-soluble products (fatty acids) was much lower when [(14)C]lactate was used in culture A, than when [(14)C]glucose was used in cultures B and C. Thus, in the presence of glucose, lactate carbon, unlike glucose carbon, is incorporated predominantly into fatty acids of LPS, not into its carbohydrate moieties. There is no doubt, therefore, that gluconeogenesis is shut off when lactate is present with glucose and there is a consequent stimulation of metabolism. This probably occurs in vivo on mucous surfaces, where gonococci are surrounded by a mixture of glucose and lactate in the secretions.  相似文献   

11.
12.
It has been hypothesized that aquaporin-9 (AQP9) is part of the unknown route of hepatocyte glycerol uptake. In a previous study, leptin receptor-deficient wild-type mice became diabetic and suffered from fasting hyperglycemia whereas isogenic AQP9(-/-) knock-out mice remained normoglycemic. The reason for this improvement in AQP9(-/-) mice was not established before. Here, we show increased glucose output (by 123% ± 36% S.E.) in primary hepatocyte culture when 0.5 mM extracellular glycerol was added. This increase depended on AQP9 because it was absent in AQP9(-/-) cells. Likewise, the increase was abolished by 25 μM HTS13286 (IC(50) ~ 2 μM), a novel AQP9 inhibitor, which we identified in a small molecule library screen. Similarly, AQP9 deletion or chemical inhibition eliminated glycerol-enhanced glucose output in perfused liver preparations. The following control experiments suggested inhibitor specificity to AQP9: (i) HTS13286 affected solute permeability in cell lines expressing AQP9, but not in cell lines expressing AQPs 3, 7, or 8. (ii) HTS13286 did not influence lactate- and pyruvate-dependent hepatocyte glucose output. (iii) HTS13286 did not affect glycerol kinase activity. Our experiments establish AQP9 as the primary route of hepatocyte glycerol uptake for gluconeogenesis and thereby explain the previously observed, alleviated diabetes in leptin receptor-deficient AQP9(-/-) mice.  相似文献   

13.
14.
Resting cells and to a greater extent permeabilized cells of Streptomyces griseus can oxidize dihydrostreptomycin to streptomycin. The dihydrostreptomycin oxidoreductase activity was localized in the 100 000 × g particulate fraction. Sucrose density gradient centrifugation of the particulate suspension gave a band at a density of 1.09 which consisted mainly of membrane vesicles. This fraction had high dihydrostreptomycin oxidoreductase activity. S. griseus protoplasts also contain high oxidoreductase activity. These data are consistent with localization of the enzyme in the cell membrane. Dihydrostreptomycin and dihydrostreptomycin 6-phosphate can both serve as substrates for the oxidoreductase, but the phosphate was the better substrate in the cell free system. Addition of cofactors was not required for the bound dihydrostreptomycin oxidoreductase. The electron acceptor for the oxidation is unknown. Oxidation of dihydrostreptomycin 6-phosphate to streptomycin 6-phosphate very probably represents the penultimate step in the biosynthesis of streptomycin.  相似文献   

15.
In chicken thymocytes isolated from 15–40 day-old chickens, after a 2 h incubation at 37°C, insulin stimulated amino isobutyric acid uptake (maximal response: 40–50% of increase at 1 μg insulin/ml and half maximal response at 60 ng/ml) by specifically stimulating the influx without altering the efflux. Insulin also stimulated glucose oxidation (maximal response: 11% of increase at 1 μg insulin/ml). Binding of 125I-labelled chicken insulin to thymocytes was rapid and higher at 15°C than at 37°C. At steady state, (90 min at 15°C), chicken, porcine and goose insulins were equipotent in inhibiting the binding of 125I-labelled chicken insulin. Maximal binding capacity was estimated at 1250 pg insulin/108 cells, i.e., 1250 binding sites/cell with an apparent dissociation constant of 200 ng insulin/ml at 15°C. Degradation of 125I-labelled chicken insulin in the incubation medium was negligible at 15°C but very noticeable at 37°C. Therefore, the low level of insulin binding at 15°C reflects a true scarcity of insulin receptors in chicken thymocytes as compared to rat thymocytes.  相似文献   

16.
Tomato leaves or cotyledons expressing the Cf-2 or Cf-9 Cladosporium fulvum resistance genes induce salicylic acid (SA) synthesis following infiltration with intercellular washing fluid (IF) containing the fungal peptide elicitors Avr2 and Avr9. We investigated whether SA was required for Cf gene-dependent resistance. Tomato plants expressing the bacterial gene nahG, encoding salicylate hydroxylase, did not accumulate SA in response to IF infiltration but remained fully resistant to C. fulvum. NahG Cf0 plants were as susceptible to C. fulvum as wild-type Cf0. Neither free nor conjugated salicylic acid accumulated in IF-infiltrated Cf2 and Cf9 NahG leaves and cotyledons but conjugated catechol did accumulate. The Cf-9-dependent necrotic response to IF was prevented in NahG plants and replaced by a chlorotic Cf-2-like response. SA also potentiated Cf-9-mediated necrosis in IF-infiltrated wild-type leaves. In contrast, the Cf-2-dependent IF response was retained in NahG leaves and chlorosis was more pronounced than in the wild-type. The distribution of cell death between different cell types was altered in both Cf2 and Cf9 NahG leaves after IF injection. IF-induced accumulation of three SA-inducible defence-related genes was delayed and reduced but not abolished in NahG Cf2 and Cf9 leaves and cotyledons. NahG Tm-22 tomato showed increased hypersensitive response (HR) lesion size upon TMV infection, as observed in TMV-inoculated N gene-containing NahG tobacco plants.  相似文献   

17.
The aim of this work was to determine in what form carbon destined for starch synthesis crosses the membranes of plastids in developing pea (Pisum sativum L.) embryos. Plastids were isolated mechanically and incubated in the presence of ATP with the following 14C-labelled substrates: glucose, fructose, glucose 6-phosphate, glucose 1-phosphate, fructose 6-phosphate, fructose 1,6-bisphosphate, dihydroxyacetone phosphate. Glucose 6-phosphate was the only substrate that supported physiologically relevant rates of starch synthesis. Incorporation of label from glucose 6-phosphate into starch was dependent upon the integrity of the plastids and the presence of ATP. The rate of incorporation approached saturation at a glucose 6-phosphate concentration of less than 1 mM. It is argued that glucose 6-phosphate is likely to enter the plastid as the source of carbon for starch synthesis in vivo.Abbreviations ADPG PPase ADP-glucose pyrophosphorylase - DHAP dihydroxyacetone phosphate  相似文献   

18.
Abstract Extracts from the obligate methylotroph Methylobacillus flagellatum KT and its temperature-sensitive (ts) glucose 6-phosphate dehydrogenase (GPD) mutants were analysed by electrophoresis, isoelectrofocusing and chromatography methods. GPD is present in two forms differing in the isoelectric point (IEP) values, but identical in other properties. Both forms are specific to NAD and NADP, have similar affinity to substrates, exhibit equal levels of inhibition by NAD(P)H and ATP and have the same dependence of activity on temperature. The synthesis of both forms is controlled by one gene. 6-phosphogluconate dehydrogenase (GND) is represented by two proteins with different IEP values. One is specific both to NAD and NADP, is stable and inhibited by NADH and NADPH to a similar extent. The second is specific to NAD only, unstable and inhibited by NADH to a greater extent than by NADPH.  相似文献   

19.
20.
通过构建红色亚栖热菌(Meiothermus ruberCBS-01)的基因组DNA文库,克隆得到该嗜热菌海藻糖合成途径中的磷酸海藻糖合成酶(TPS)和磷酸海藻糖磷酸酯酶(TPP)基因。以pET21a为表达载体,将磷酸海藻糖合成酶和磷酸海藻糖磷酸酯酶在大肠杆菌中进行表达并纯化,利用薄层层析的方法验证了这两个酶的活性。同时,本研究检测了红色亚栖热菌在各种环境压力下细胞内含物成分的变化情况,发现在高渗环境压力的诱导下,该菌会在胞内积累大量的6-磷酸海藻糖,而并非海藻糖,这为进一步研究TPS/TPP和TreS途径在细胞体内的作用奠定了基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号