首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This review, dedicated to the 100th anniversary of A.L. Kursanov's date of birth, considers the development of phloem transport studies since his book, Assimilate Transport in the Plant, was published in 1976. This book and several other fundamental publications on phloem structure and functions basically shaped this physiological issue; as a result, several international meetings by scientists working in the area were induced, and the proceedings of these meetings were published at regular intervals. Six conferences have been held to date, and six corresponding collections of papers have been published and are reviewed here along with other experimental communications and reviews. This review considers the following topics: (1) the phloem structure and the ultrastructure of specialized phloem cells, (2) the physiological functions of phloem and their regulation, (3) photosynthesis and phloem loading with assimilates, (4) phloem unloading and the related processes of plant growth and development, (5) the mechanisms of sugar and amino acid transport, (6) the levels of transport, (7) transport compartments; (8) xylem–phloem and symplast–apoplast communication; (9) phloem transport vs. the integral plant physiology, (10) transport of xenobiotics, and (11) the trophic transport networks in symbionts.  相似文献   

2.
Inorganic and organic salts, amino acids, sugars, and phosphate esters (concentrations usually 25 mM) were fed via the transpiration stream through the petiole into detached leaves of Lepidium sativum and Solanum tuberosum. While water was lost by transpiration, solutes did not accumulate in the apoplast. Uptake into leaf cells was indicated by stimulation of respiration and by changes of membrane potential and apoplastic pH. Apoplastic alkalinization (followed by transient acidification) and membrane depolarization (followed by repolarization) indicated energization of transport at the expense of the proton motive force (PMF) across the plasma membrane in all examined cases. Loss of ATP in the symplast during proton extrusion into the apoplast by the plasmalemma ATPase is thought to be responsible for stimulation of respiration. Even unphysiological solutes such as -morpholinoethane sulfonate (Mes), or potentially toxic salts such as CdCl2 or AlCl3, and metabolites involved in energy conservation such as AMP and NAD, were readily transported into leaf cells at the expense of metabolic energy. At the maximum stimulation of CO2 release by D-serine (which is unlikely to be metabolized) respiration exceeded basal respiration by an average of 33%. Occasionally, and with other solutes, basal respiration was almost doubled. The ratio of transported solute to released extra CO2 was 6.9 ± 1.1 (n = 11) in the case of D-serine. From this, maximum energized transport of D-serine was calculated to be close to 500 nmol/(m2 leaf area s). Solute/CO2 ratios similar to those observed with D-serine were also obtained for sucrose. Lower ones were observed with organic solutes such as L-glycine, pyruvate, malate or citrate where secondary metabolic conversions may contribute to CO2 release.  相似文献   

3.
The source-sink relations in grapevine (Vitis vinifera L., var. Rkatsiteli) plants were disturbed by defoliation at different stages of vegetative growth in order to investigate changes in photosynthetic activity and assimilate partitioning. Defoliation was shown to stimulate photosynthesis in the remaining source leaves, enhance the assimilate export, and diminish the midday suppression of photosynthesis. Defoliation created a powerful sink for assimilates, and stimulated their delivery to the affected zone. It is hypothesized that defoliation-induced stress is accompanied by a substantial enhancement of photosynthetic activity and by redistribution of assimilate flows, which enables a sustained supply of assimilates to the sink organs of grapevine plants.__________Translated from Fiziologiya Rastenii, Vol. 52, No. 4, 2005, pp. 507–512.Original Russian Text Copyright © 2005 by Chanishvili, Badridze, Barblishvili, Dolidze.  相似文献   

4.
The content of 14C in the products of photosynthesis of the source leaf and xylem sap was investigated in kidney bean (Phaseolus vulgaris L.) plants during the stage of mass tillering. 14C partition was measured a day after two-minute photoassimilation of 14CO2 by an individual mature leaf located in the middle part of the shoot. The source-sink relations were disturbed by the excision of all mature leaves (except the source leaf) or all growing axillary shoots. The leaves or growing axillary shoots were excised 15 min after leaf feeding with 14C2. A day later, in plants with excised growing axillary shoots, the content of 14C in the source leaf was by 18% higher and in those with removed leaves by 15% lower than in control plants. The next day after the excision of growing axillary shoots, radioactivity of the xylem sap increased; after defoliation, both the volume of the xylem sap and its specific radioactivity decreased. In the xylem sap of defoliated plants, the proportion of 14C in malate decreased more than six times, whereas the proportion of 14C in amino acids somewhat increased (1.5 times). In two days, the volume of the xylem sap exuded by treated plants became the same as in control plants and its radioactivity decreased almost by an order of magnitude but essentially did not differ in the both types of treatment. It is concluded that the processes occurring in the roots are governed by photosynthesis but its regulatory effect is limited by a photoperiod and largely depends on changes in the ratio between biosynthesis of amino acids in the roots and leaves.__________Translated from Fiziologiya Rastenii, Vol. 52, No. 4, 2005, pp. 518–521.Original Russian Text Copyright © 2005 by Chikov, Bakirova, Batasheva, Sergeeva.  相似文献   

5.
The concepts of photosynthesis role in the production process underwent evolution from the initial assumption of complete identity of these terms to the notion that photosynthesis is only a supplier of assimilates for sink organs. The following issues are discussed as individual stages of problem resolution: whether or not photosynthesis restricts productivity; what is the contribution of chlorophyll-containing non-leaf organs to the production process; what are the roles of photooxidation processes and source-sink relations between photosynthesizing organs and assimilate consumers; how the apoplast is involved in regulation of photosynthetic function of the whole plant; and what is the role of nitrate in control of photosynthesis and assimilate export from the leaf. Finally, the distribution of assimilates among the sink organs and the role of competition among the organs in regulation of photosynthesis and yield formation are considered.  相似文献   

6.
An analysis of the effect of metabolic inhibitors, sugars, and fusicoccin on the trans-plant electrical potential difference arising across one-week-old green or herbicide-treated Chenopodium rubrum L. plants was performed. The substances were applied either to the solution bathing the root or in the form of drops to the stem. The respiratory inhibitors (KCN and salicylhydroxamic acid), sulfhydryl agents (N-ethylmaleimide and p-chloromercuribenzene sulfonic acid) and proton ionophore (carbonyl cyanide m-chlorophenylhydrazone) affected the electrical potential, the kinetics of the induced changes varying with different inhibitors and site of application. None of the applied sugars (sucrose, glucose or sorbitol), ATPase stimulator fusicoccin or inhibitor vanadate exerted any appreciable effect on the electrical potential. An effect of sucrose could be observed in the case of its application immediately following de-rooting, especially in the case of herbicide-treated plants. These results we explain by non-participation of the sucrose transporter or the proton ATPase in the generation of the electrical potential difference across intact plants (apoplast-apoplast configuration).  相似文献   

7.
Phylogenetic and ontogenetic relationships between the plastids, cell endoplasmic reticulum, and plant transport communication have been reviewed. The initiating role of plastids (endosymbionts) in the origin of endoplasmic reticulum (buffer zone of endosymbiogenesis) has been shown, as well as a similar role of endoplasmic reticulum in the development of transport communication of xylem and phloem. Plastids, sugars and transport system for their distribution can be interpreted as leading sections in the mechanism of developmental control: gene expression of nuclear genome and genome of organelles, cell and tissue differentiation, and plant morphogenesis. The conflict between the bulk of plant genome and low percentage of its realization is explained as a result of limitation of the nuclear genome realization by plastid genome. The concept of development as applied to plant ontogenesis has been critically analyzed. The possibilities of the concept correction by with the help of symbiogenetic hypothesis are discussed.__________Translated from Ontogenez, Vol. 36, No. 3, 2005, pp. 165–181.Original Russian Text Copyright © 2005 by Gamalei.  相似文献   

8.
A 1 μM solution of ammoniates [ZnCu(NH3)n]2+(CO3)2− was inserted into a cut shoot of flax with the transpiration stream of water. Analysis of the 14C content after 14CO2 assimilation by the shoot showed that ammoniates increased radioactive label contents in the tissues (especially in the young leaves and stem). In the leaves the higher sucrose to hexoses ratio, an increased radioactivity of glycerate and malate and decreased incorporation of 14C into oligosaccharides and pigments were observed. These effects were more pronounced in the young leaves. Spraying of plants with 20 mM solution resulted in an increase of plant height and leaf number.  相似文献   

9.
Solutions of nitrates (0.5% KNO3, 0.2% NH4NO3) or urea (0.15%) were fed under the pressure of 104 Pa to 50–60-cm-long detached shoots of common flax (Linum usitatissimum L.). One hour after the start of supplying the solutions, an assimilation clip chamber was fastened to the middle part of the shoot (14C source area), and 14CO2 was blown through in the light for 2.5 min. The analysis of distribution of 14C among the labeled products of photosynthesis produced by source leaves showed that nitrates reduced the incorporation of the label into sucrose. At the same time, the ratio of labeled sucrose to labeled hexoses decreased, and the incorporation of the label into serine greatly increased. Urea did not produce such effects. The pattern of distribution of 14C within the plant 3 h after the assimilation of 14CO2 points to the suppression of assimilate efflux from the leaves of plants fed with nitrates. In plants supplied with water or urea, 17–20% of labeled carbon was found below the 14C source area of the shoot, in nitrate type of treatment, only 3–5% was found there. In plants supplied with nitrates, the cortex tissue below the source leaf contained more 14C in proteins and less in low-molecular substances. In the wood tissue, such a correlation was not observed. When the shoot was supplied with water or urea, the content of 14C in sucrose in the source leaves in 3 h declined from 55–60% to 38–42%. When the shoot was fed with nitrates, the share of label in sucrose increased from 50 to 62–73%. Autoradiography of the source leaves showed that, in plants supplied with water or urea, the label was predominantly accumulated in large vascular bundles, and in nitrate type of treatment, it was accumulated outside large bundles. Electron microscopy showed that, in nitrate plants, the companion cells of phloem endings were very much vacuolated.  相似文献   

10.
The Münch hypothesis of phloem transport has been significantly modified in the past 50 years and is now widely accepted. The short and therefore noncomprehensive survey remembers earlier data verifying the dependency of mass flow on metabolic control. Speed measurements and other strong arguments for the validity of the Münch hypothesis are examined, physicochemical obstacles still persist, but molecular detection and localization of sucrose transporters inside the sieve-tube system are in accordance with the mass flow mechanism. Taking into account source–sink control, the lateral sinks pose new problems, unless acceptance of a continuous control along the conduits improves the theory. A view into future research is advised: the gymnosperm sieve cell system seems to act as a super relay system consisting of a chain of micro-Münch-systems.  相似文献   

11.
Two-day-old seedlings of maize (Zea mays L.) were incubated on 3 mM and 35 M solutions of Sr(NO3)2, and the toxic effects of strontium were assessed by measuring, in the course of four days of incubation, the daily increments of the primary root length and also the root and shoot length by day 7 of incubation, and the length of the fully elongated cells. Sodium rhodizonate, a reagent developing the colored complex with Sr, was used to follow Sr distribution in maize tissues and organs following 2, 24, 48, and 168 h of incubation. Sr was found in all root tissues as soon as after 24 h of incubation; it accumulated mostly in the cell apoplast, whereas its content in the protoplasts was considerably lower. Strontium readily crossed the endodermal barrier via the symplast and was immobilized predominantly in the pericycle cell walls; therefore, it did not hamper root branching. Strontium did not affect the final cell length and hindered root growth (at the concentration of 3 mM) by inhibiting cell division. In the shoots, Sr was found in the xylem cell walls in the vascular bundles of coleoptile, mesocotyl, and leaves on the second day of incubation, an evidence for high Sr mobility. We conclude that the transport of Sr differs from the transport of such heavy metals, as Cd, Pb, and Ni, and is similar in many aspects to the distribution of calcium, another alkaline earth metal, probably due to similar physical and chemical properties of their ions.  相似文献   

12.
The evidence of light, electronic, and confocal microscopy collected within the 30-year period is reviewed to revise the concept of assimilate loading in phloem. It is the starting point located in mesophyll cells, which determines the route of assimilate export from mesophyll to phloem, rather than its final segment located in the terminal phloem. Plastids, photosynthesis, and the primary pool of photosynthates are localized in the vacuome of mesophyll cells. All chemicals applied to leaf surface are loaded to phloem via apoplast, even in the symplastic plants. It follows that photoassimilates are not loaded via apoplast because they cannot leave mesophyll and not due to the lack of pumps and transporters in the terminal phloem cells. Of two membranes separating vacuome and apoplast, the tonoplast confers the barrier function. The impossibility to overcome this barrier raises the hydrostatic pressure in the vacuome to the level that induces plasmodesma development between the cells. With the loss of tonoplast barrier function for assimilates, the latter leave for apoplast, this process is incompatible with building the vacuolar loading route. Two alternative mechanisms of phloem loading diverge initially because of different barrier functions of tonoplast. The radical change in these functions makes up the crucial advantage of the young group of apoplastic dicot plants (about 20 000 species), whose evolution is associated with expansion of meadow-steppe vegetation 5–7 million years ago. Such change would evolve due to the climate differentiation in the late myocene period, when heat and moisture were lacking at vast territories. A large group of temperate herbs evolved and expanded because of these changes in the assimilate compartmentalization.  相似文献   

13.
以盐敏感型山定子实生苗和耐盐型珠眉海棠组培苗为材料,采用灌注离心技术研究了叶片质外体和共质体中Na^+和Ca^2+浓度的变化。结果表明:随盐胁迫强度的加强,叶片水势下降;叶片Na^+含量、质外体和共质体中Na^+浓度升高,珠眉海棠明显低于山定子;叶片Ca^2+含量、共质体Ca^2+浓度随盐胁迫的增加而升高,但珠眉海棠高于山定子,50mmol/L NaCl胁迫对质外体Ca^2+没有明显影响,100mmol/LNaCl胁迫下增加,珠眉海棠低于山定子;叶片共质体与质外体中Na^+浓度的比值,珠眉海棠明显高于山定子,说明在盐胁迫下珠眉海棠具有较强的离子区域化能力,离子区域化是珠眉海棠的主要耐盐机制。  相似文献   

14.
测定了温州蜜柑(Citrus unshiu Marc. cv. Miyagawa wase)果实发育进程中干鲜重、果皮光合速率和叶绿素含量的变化,并用14CO2示踪技术研究了果皮和叶同化生成的光合产物在果实内的运输分配特性.结果表明:果皮光合速率与叶绿素含量有关,随着叶绿素含量的下降,果实光合速率也快速下降.在果实完熟之前,即使是当果皮积累的干重超过汁囊时,叶同化产物仍主要分配到汁囊中;而在完熟阶段,果皮光合速率接近零,果皮成了叶同化产物的主要库.果皮的同化产物,主要保留在果皮中,输入到汁囊的比率随果实发育而下降,但高峰时也有12%输入汁囊.与对照相比,果实遮光处理后降低了果皮与汁囊的干重和含糖量.上述结果表明果皮光合产物主要用于果皮自身的发育并能减少对叶光合产物的依赖,同时也能部分增加汁囊糖的积累.  相似文献   

15.
测定了温州蜜柑 (CitrusunshiuMarc .cv .Miyagawawase)果实发育进程中干鲜重、果皮光合速率和叶绿素含量的变化 ,并用14 CO2 示踪技术研究了果皮和叶同化生成的光合产物在果实内的运输分配特性。结果表明 :果皮光合速率与叶绿素含量有关 ,随着叶绿素含量的下降 ,果实光合速率也快速下降。在果实完熟之前 ,即使是当果皮积累的干重超过汁囊时 ,叶同化产物仍主要分配到汁囊中 ;而在完熟阶段 ,果皮光合速率接近零 ,果皮成了叶同化产物的主要库。果皮的同化产物 ,主要保留在果皮中 ,输入到汁囊的比率随果实发育而下降 ,但高峰时也有 12 %输入汁囊。与对照相比 ,果实遮光处理后降低了果皮与汁囊的干重和含糖量。上述结果表明果皮光合产物主要用于果皮自身的发育并能减少对叶光合产物的依赖 ,同时也能部分增加汁囊糖的积累  相似文献   

16.
质外体与植物细胞有着不可分割的联系,其内发生的干旱胁迫响应鲜见报道,因此本文采用MD HPLC联用技术对3种杨树嫩茎质外体内源激素在干旱胁迫胁迫下的变化进行研究。结果表明: 随着干旱胁迫程度的加剧和时间的延长,3种杨树质外体GA3、6-BA和3-IAA含量明显减少,而ABA含量极显著增加且GA3、6-BA、3-IAA和ABA含量的变化品种间差异显著。该研究为植物干旱胁迫生理响应机制研究提供新依据,为活体、动态地定量分析质外体内源激素提供了新方法。  相似文献   

17.
0.1mmol.L^-1水杨酸处理高温胁迫下的葡萄幼苗叶片,能提高其调运同化物的能力,其本身的光合能力也可提高。  相似文献   

18.
In experiments with the alga Chara corallina Klein ex Willd., the appearance of subcellular domains with different photosynthetic activities, as well as formation of alkaline and acid zones near the cell surface were monitored with pulse-amplitude modulated microfluorometry and pH microelectrodes. After transfer of a dark-adapted cell to actinic light, the effective yield of PSII photochemistry (F/F m) underwent different induction changes in cell regions where acid and alkaline zones were produced. The PSII effective yield decreased for 5–15 min of illumination in cell regions forming the alkaline bands but increased after the initial decline in the acid regions. The photoinduced decrease in F/F m in the alkaline regions occurred faster than or concurrently with the change in local pH near the cell surface (pH0). The light-induced change in pH0 was manifested as a steep transition after a latent period of variable lengths. The kinetics of F/F m and F m, specific for alkaline regions, were replaced by those typical of acid regions, when the illumination area was narrowed to 2 mm. The results show that the formation of subcellular domains with different photosynthetic activities is not strictly bound to particular cell regions but is a dynamic event determined by spatial coordination of photosynthesis in a long cylindrical cell.  相似文献   

19.
Abstract: The rates of photosynthesis and transpiration, as well as the concentrations of organic compounds (total soluble non-protein N compounds [TSNN], soluble carbohydrates), in the xylem sap were determined during two growth seasons in one-year-old Quercus robur saplings. From the data, the total C gain of the leaves, by both photosynthesis and the transpiration stream, was calculated. Large amounts of C were allocated to the leaves by the transpiration stream; depending on the time of day and the environmental conditions the portion of C originating from xylem transport amounted to 8 to 91% of total C delivery to the leaves. Particularly under conditions of reduced photosynthesis, e.g., during midday depression of photosynthesis, a high percentage of the total C delivery was provided to the leaves by the transpiration stream (83 to 91 %). Apparently, attack by phloem-feeding aphids lowered the assimilate transport from roots to shoots; as a consequence the portion of C available to the leaves from xylem transport amounted to only 12 to 16 %. The most abundant organic compounds transported in the xylem sap were sugars (sucrose, glucose, fructose) with concentrations of ca. 50 to 500 μmol C ml-1, whereas C from N compounds was of minor significance (3 to 20 μmol ml-1 C). The results indicate a significant cycling of C in the plants because the daily transport of C with the transpiration stream exceeded the daily photosynthetic CO2 fixation in several cases. This cycling pool of C may sustain delivery of photosynthate to heterotrophic tissues, independent of short time fluctuations in photosynthetic CO2 fixation.  相似文献   

20.
Using carboxyfluorescein, a fluorochrome transported along the phloem, we demonstrated that symplasmic phloem unloading in the watermelon root occurred in the basal zone of the meristem adjusting to the elongation zone. In the similar zones of maize and pumpkin roots, a high level of potassium was detected by X-ray microanalysis in the cell walls and intercellular spaces. Potassium concentration in these compartments comprised two-thirds of that in the cytoplasm. Such proportion between potassium concentrations in the cytoplasm and apoplast was characteristic of both the cortex and stele. Since potassium is a dominant osmotically active component in root tissues, such a proportion between its intracellular and apoplastic concentrations provides for a low turgor pressure in the cells of the sink region, in the phloem in particular. This might increase a turgor pressure gradient along the translocation route between source and sink tissues, which is a driving force for phloem assimilate transport.__________Translated from Fiziologiya Rastenii, Vol. 52, No. 4, 2005, pp. 591–599.Original Russian Text Copyright © 2005 by Krasavina, Burmistrova, Feshchenko, Nosov.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号