首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We previously demonstrated that endoplasmic reticulum (ER) stress was triggered in human hepatocarcinoma 7721 cells transfected with antisense cDNA of N-acetylglucosaminyltransferase V (GnT-V-AS/7721) which were more susceptible to apoptosis induced by all-trans retinoic acid (ATRA). In the present study, we report that ATRA-induced apoptosis in GnT-V-AS/7721 cells is mediated through ER stress. We show here that ER stress is enhanced in GnT-V-AS/7721 cells with 80 microM ATRA treatment for 24 h, which is evidenced by the increase of GRP78/Bip, C/EBP-homologous protein-10 (CHOP, also known as GADD153) and spliced XBP1. Additionally, activation of caspase-12, caspase-9, and -3 was detected, and apoptosis morphology was observed in GnT-V-AS/7721 cells with ATRA treatment. These results suggest that ATRA enhances the ER stress triggered in GnT-V-AS/7721 cells, which represents a novel mechanism of ATRA to induce apoptosis. We further observed that GnT-V was significantly repressed and the structure of N-glycans was changed in GnT-V-AS/7721 cells with 80 microM ATRA treatment for 24 h, suggesting that repression of GnT-V by ATRA causes the enhanced ER stress and ER stress-mediated apoptosis in GnT-V-AS/7721 cells.  相似文献   

2.
Following endoplasmic reticulum (ER) stress, which occurs via inhibition of the glycosylation of newly synthesized proteins, caspase family proteins are activated to promote ER stress-mediated apoptosis. Here we report that nerve growth factor (NGF) suppressed the ER stress-mediated apoptosis in tunicamycin-treated PC12 cells through an extensive decrease of the caspase-3/-9/-12 activity. Detailed analysis of the mechanism underlying the NGF-mediated cell survival revealed that the activities of all seriate caspases were reduced through the phosphatidylinositol 3-kinase (PI3-K) signaling pathway induced by NGF. Moreover, we found that the activity of c-Jun N-terminal kinase (JNK) was not essential for the tunicamycin-induced apoptosis of PC12 cells. These results demonstrate that the inactivation of caspase-12 via the NGF-mediated PI3-K signaling pathway leads to inactivation of the caspase cascade including caspase-3 and -9.  相似文献   

3.
R Hu  P Zhou  YB Peng  X Xu  J Ma  Q Liu  L Zhang  XD Wen  LW Qi  N Gao  P Li 《PloS one》2012,7(6):e39664
6-Shogaol is an active compound isolated from Ginger (Zingiber officinale Rosc). In this work, we demonstrated that 6-shogaol induces apoptosis in human hepatocellular carcinoma cells in relation to caspase activation and endoplasmic reticulum (ER) stress signaling. Proteomic analysis revealed that ER stress was accompanied by 6-shogaol-induced apoptosis in hepatocellular carcinoma cells. 6-shogaol affected the ER stress signaling by regulating unfolded protein response (UPR) sensor PERK and its downstream target eIF2α. However, the effect on the other two UPR sensors IRE1 and ATF6 was not obvious. In prolonged ER stress, 6-shogaol inhibited the phosphorylation of eIF2α and triggered apoptosis in SMMC-7721 cells. Salubrinal, an activator of the PERK/eIF2α pathway, strikingly enhanced the phosphorylation of eIF2α in SMMC-7721 cells with no toxicity. However, combined treatment with 6-shogaol and salubrinal resulted in significantly increase of apoptosis and dephosphorylation of eIF2α. Overexpression of eIF2α prevented 6-shogaol-mediated apoptosis in SMMC-7721 cells, whereas inhibition of eIF2α by small interfering RNA markedly enhanced 6-shogaol-mediated cell death. Furthermore, 6-shogaol-mediated inhibition of tumor growth of mouse SMMC-7721 xenograft was associated with induction of apoptosis, activation of caspase-3, and inactivation of eIF2α. Altogether our results indicate that the PERK/eIF2α pathway plays an important role in 6-shogaol-mediated ER stress and apoptosis in SMMC-7721 cells in vitro and in vivo.  相似文献   

4.
Lou LX  Geng B  Yu F  Zhang J  Pan CS  Chen L  Qi YF  Ke Y  Wang X  Tang CS 《Life sciences》2006,79(19):1856-1864
Stress gastric ulcer is a serious complication, but the mechanism involved is not fully clarified. It is well known that mucosal cell apoptosis plays a crucial role in the pathogenesis of gastric ulceration. Recent studies have shown that endoplasmic reticulum (ER) stress is an important pathway leading to cellular apoptosis. To investigate the role of ER stress in the pathogenesis of stress gastric ulcer, we studied the alteration in the expression of ER stress markers GRP78 (glucose-regulated protein 78) and caspase-12 (an ER stress-specific proapoptotic molecule) and their relations with gastric mucosal apoptosis during development of stress gastric lesions in the water-immersion and restraint stress (WRS) model in rats. Rats developed severe gastric lesions after 6 h of WRS. Typical apoptosis was observed at the edge cells of WRS induced gastric lesions. Western blot analysis showed that GRP78 and activated caspase-12 were over-expressed in the gastric tissues of WRS rats. Immunohistochemical analysis demonstrated that increased GRP78 and caspase-12 were distributed only under the lesions. In addition, dithiothreitol and tunicamycin (ER stress inducers), which increased the expression of GRP78 and activated caspase-12, caused gastric mucosal injury and mucosal cell apoptosis in vitro. These findings suggest that ER stress might be involved in the development of stress gastric ulcer through an apoptotic mechanism.  相似文献   

5.
6.
Respiratory syncytial virus (RSV) infection induced programmed cell death or apoptosis in the cultured lung epithelial cell line, A549. The apoptotic cells underwent multiple changes, including fragmentation and degradation of genomic DNA, consistent with the activation of the DNA fragmentation factor or caspase-activated DNase (DFF or CAD). The infection led to activation of FasL; however, a transdominant mutant of FAS-downstream death domain protein, FADD, did not inhibit apoptosis. Similarly, modest activation of cytoplasmic apoptotic caspases, caspase-3 and -8, were observed; however, only a specific inhibitor of caspases-3 inhibited apoptosis, while an inhibitor of caspase-8 had little effect. No activation of caspase-9 and -10, indicators of the mitochondrial apoptotic pathway, was observed. In contrast, RSV infection strongly activated caspase-12, an endoplasmic reticulum (ER) stress response caspase. Activation of the ER stress response was further evidenced by upregulation of ER chaperones BiP and calnexin. Antisense-mediated inhibition of caspase-12 inhibited apoptosis. Inhibitors of NF-kappa B had no effect on apoptosis. Thus, RSV-induced apoptosis appears to occur through an ER stress response that activates caspase-12, and is uncoupled from NF-kappa B activation.  相似文献   

7.
Accumulation of misfolded proteins and alterations in Ca2+ homeostasis in the endoplasmic reticulum (ER) causes ER stress and leads to cell death. However, the signal-transducing events that connect ER stress to cell death pathways are incompletely understood. To discern the pathway by which ER stress-induced cell death proceeds, we performed studies on Apaf-1(-/-) (null) fibroblasts that are known to be relatively resistant to apoptotic insults that induce the intrinsic apoptotic pathway. While these cells were resistant to cell death initiated by proapoptotic stimuli such as tamoxifen, they were susceptible to apoptosis induced by thapsigargin and brefeldin-A, both of which induce ER stress. This pathway was inhibited by catalytic mutants of caspase-12 and caspase-9 and by a peptide inhibitor of caspase-9 but not by caspase-8 inhibitors. Cleavage of caspases and poly(ADP-ribose) polymerase was observed in cell-free extracts lacking cytochrome c that were isolated from thapsigargin or brefeldin-treated cells. To define the molecular requirements for this Apaf-1 and cytochrome c-independent apoptosis pathway further, we developed a cell-free system of ER stress-induced apoptosis; the addition of microsomes prepared from ER stress-induced cells to a normal cell extract lacking mitochondria or cytochrome c resulted in processing of caspases. Immunodepletion experiments suggested that caspase-12 was one of the microsomal components required to activate downstream caspases. Thus, ER stress-induced programmed cell death defines a novel, mitochondrial and Apaf-1-independent, intrinsic apoptotic pathway.  相似文献   

8.
Although apoptosis occurs during myogenesis, its mechanism of initiation remains unknown. In a culture model, we demonstrate activation of caspase-12, the initiator of the endoplasmic reticulum (ER) stress-specific caspase cascade, during apoptosis associated with myoblast differentiation. Induction of ER stress-responsive proteins (BiP and CHOP) was also observed in both apoptotic and differentiating cells. ATF6, but not other ER stress sensors, was specifically activated during apoptosis in myoblasts, suggesting that partial but selective activation of ER stress signaling was sufficient for induction of apoptosis. Activation of caspase-12 was also detected in developing muscle of mouse embryos and gradually disappeared later. CHOP was also transiently induced. These results suggest that specific ER stress signaling transmitted by ATF6 leads to naturally occurring apoptosis during muscle development.  相似文献   

9.
Li J  Xia X  Ke Y  Nie H  Smith MA  Zhu X 《Biochimica et biophysica acta》2007,1770(8):1169-1180
Trichosanthin (TCS), a traditional Chinese medicine, exerts antitumor activities by inducing apoptosis in many different tumor cell lines. However, the mechanisms remain obscure. The present study focused on various caspase pathways that may be involved in TCS-induced apoptosis in leukemia HL-60 cells. Key caspases in both intrinsic and extrinsic pathways including caspase-8, -9 and -3 were activated upon TCS treatment. Additionally, TCS treatment induced upregulation of BiP and CHOP and also activated caspase-4, which for the first time strongly supported the involvement of endoplasmic reticulum stress pathway in TCS-induced apoptosis. Interestingly, although caspase-8 was activated, Fas/Fas ligand pathway was not involved as evidenced by a lack of induction of Fas or Fas ligand and a lack of inhibitory effect of anti-Fas blocking antibody on TCS-induced apoptosis. Instead, caspase-8 was activated in a caspase-9 and -4 dependent manner. The involvement of mitochondria was demonstrated by the reduction of mitochondrial membrane potential and release of cytochrome c and Smac besides the activation of caspase-9. Further investigation confirmed that caspase-3 was the major executioner caspase downstream to caspase-9, -4 and -8. Taken together, our results suggested that TCS-induced apoptosis in HL-60 cells was mainly mediated by mitochondrial and ER stress signaling pathways via caspase-3.  相似文献   

10.
Although it is conventionally regarded as an inflammatory caspase, recent studies have shown that caspase-4 plays a role in induction of apoptosis by endoplasmic reticulum (ER) stress. We report here that activation of caspase-4 is also involved in induction of apoptosis by TNF-related apoptosis-inducing ligand (TRAIL) in human melanoma cells. Treatment with TRAIL resulted in activation of caspase-4. This appeared to be mediated by caspase-3, in that caspase-4 was activated later than caspase-8, -9, and -3, and that inhibition of caspase-3 blocked TRAIL-induced caspase-4 activation. Notably, TRAIL triggered ER stress in melanoma cells as shown by up-regulation of the GRP78 protein and the spliced form of XBP-1 mRNA. This seemed to be necessary for activation of caspase-4, as activation of caspase-3 by agents that did not trigger ER stress did not cause activation of caspase-4. Importantly, inhibition of caspase-4 also partially blocked caspase-3 activation, suggesting that activation of caspase-4 may be positive feed-back mechanism to further enhance caspase-3 activation. Collectively, these results show that activation of caspase-4 contributes to TRAIL-induced apoptosis and is associated with induction of ER stress by TRAIL in melanoma cells, and may have important implications for improving therapeutic efficacies of TRAIL in melanoma.  相似文献   

11.
12.
Apoptosis can result from activation of three major pathways: the extrinsic, the intrinsic, and the most recently identified endoplasmic reticulum (ER) stress-mediated pathway. While the two former pathways are known to be operational in human polymorphonuclear neutrophils (PMNs), the existence of the ER stress-mediated pathway, generally involving caspase-4, has never been reported in these cells. Recently, we have documented that arsenic trioxide (ATO) induced apoptosis in human PMNs by a mechanism that needs to be further investigated. In this study, using immunofluorescence and electron microscopy, we present evidence of ER alterations in PMNs activated by the ER stress inducer arsenic trioxide (ATO). Several key players of the unfolded protein response, including GRP78, GADD153, ATF6, XBP1 and eIF2α are expressed and activated in PMNs treated with ATO or other ER stress inducers. Although caspase-4 is expressed and activated in neutrophils, treatment with a caspase-4 inhibitor did not attenuate the pro-apoptotic effect of ATO at a concentration that reverses caspase-4 processing and activation. Our results demonstrate for the first time that the ER stress-mediated apoptotic pathway operates in human neutrophils.  相似文献   

13.
14.
Lipid accumulation in non-adipose tissues leads to cell dysfunction and apoptosis, a phenomenon known as lipotoxicity. Recent evidence suggests that lipotoxicity in hepatocytes involves endoplasmic reticulum (ER) stress and c-Jun NH2-terminal kinase-mediated apoptosis. The present study examined (1) the dose–response and time course characteristics of fatty acid-mediated ER stress and apoptosis in H4IIE liver cells; (2) whether saturated fatty acid-induced apoptosis involved the ER-associated caspase-12; and (3) whether trans-10, cis-12-conjugated linoleic acid, an inhibitor of stearoyl-CoA desaturase, influenced fatty acid-mediated ER stress and apoptosis. Saturated fatty acids induced ER stress in a dose-dependent manner with a time course that was delayed relative to chemical-induction of ER stress. Saturated fatty acids increased caspase-9 and caspase-3 activity, however increased caspase-12 activity was not observed. Inhibition of stearoyl-CoA desaturase, using conjugated linoleic acid (trans-10, cis-12), augmented saturated fatty acid-induced ER stress and apoptosis. These data suggest that saturated fatty acids induce ER stress and apoptosis at physiologic concentrations and with a relatively rapid time course. It would appear that saturated fatty acid-mediated apoptosis occurs independently of caspase-12 activation. Since conjugated linoleic acid inhibited stearoyl-CoA desaturase activity, it is hypothesized that saturation, per se, plays a role in lipotoxicity in liver cells.  相似文献   

15.
Stress-induced apoptosis is mediated primarily through the intrinsic pathway that involves caspase-9. We previously reported that in caspase-9-deficient cells, a protein complex containing ATG5 and Fas-associated death domain (FADD) facilitated caspase-8 activation and cell death in response to endoplasmic reticulum (ER) stress. Here, we investigated whether this complex could be activated by other forms of cell stress. We show that diverse stress stimuli, including etoposide, brefeldin A and paclitaxel, as well as heat stress and gamma-irradiation, caused formation of a complex containing ATG5-ATG12, FADD and caspase-8 leading to activation of downstream caspases in caspase-9-deficient cells. We termed this complex the ‘stressosome’. However, in these cells, only ER stress and heat shock led to stressosome-dependent cell death. Using in silico molecular modelling, we propose the structure of the stressosome complex, with FADD acting as an adaptor protein, interacting with pro-caspase-8 through their respective death effector domains (DEDs) and interacting with ATG5-ATG12 through its death domain (DD). This suggests that the complex could be regulated by cellular FADD-like interleukin-1β-converting enzyme–inhibitory protein (cFLIPL), which was confirmed experimentally. This study provides strong evidence for an alternative mechanism of caspase-8 activation involving the stressosome complex.  相似文献   

16.
Beta-lapachone, an o-naphthoquinone, induces various carcinoma cells to undergo apoptosis, but the mechanism is poorly understood. In the present study, we found that the beta-lapachone-induced apoptosis of DU145 human prostate carcinoma cells was associated with endoplasmic reticulum (ER) stress, as shown by increased intracellular calcium levels and induction of GRP-78 and GADD-153 proteins, suggesting that the endoplasmic reticulum is a target of beta-lapachone. Beta-Lapachone-induced DU145 cell apoptosis was dose-dependent and accompanied by cleavage of procaspase-12 and phosphorylation of p38, ERK, and JNK, followed by activation of the executioner caspases, caspase-7 and calpain. However, pretreatment with the general caspase inhibitor, z-VAD-FMK, or calpain inhibitors, including ALLM or ALLN, failed to prevent beta-lapachone-induced apoptotic cell death. Blocking the enzyme activity of NQO1 with dicoumarol, a known NQO1 inhibitor, or preventing an increase in intracellular calcium levels using BAPTA-AM, an intracellular calcium chelator, substantially inhibited MAPK phosphorylation, abolished the activation of calpain, caspase-12 and caspase-7, and provided significant protection of beta-lapachone-treated cells. These findings show that beta-lapachone-induced ER stress and MAP kinase phosphorylation is a novel signaling pathway underlying the molecular mechanism of the anticancer effect of beta-lapachone.  相似文献   

17.
18.
The search for novel and more efficient chemo-agents against malignant osteoblastoma is important. In this study, we examined the potential anti-osteoblastoma function of bufotalin, and studied the underlying mechanisms. Our results showed that bufotalin induced osteoblastoma cell death and apoptosis in dose- and time-dependent manners. Further, bufotalin induced endoplasmic reticulum (ER) stress activation in osteoblastoma cells, the latter was detected by the induction of C/EBP homologous protein (CHOP), phosphorylation of inositol-requiring enzyme 1 (IRE1) and PKR-like endoplasmic reticulum kinase (PERK), as well as caspase-12 activation. Conversely, the ER stress inhibitor salubrinal, the caspase-12 inhibitor z-ATAD-fmk as well as CHOP depletion by shRNA significantly inhibited bufotalin-induced osteoblastoma cell death and apoptosis. Finally, by using a mice xenograft model, we demonstrated that bufotalin inhibited U2OS osteoblastoma cell growth in vivo. In summary, our results suggest that ER stress contributes to bufotalin-induced apoptosis in osteoblastoma cells. Bufotalin might be investigated as a novel anti-osteoblastoma agent.  相似文献   

19.
Alterations in cellular homeostasis that affect protein folding in the endoplasmic reticulum (ER) trigger a signaling pathway known as the unfolded protein response (UPR). The initially cytoprotective UPR will trigger an apoptotic cascade if the cellular insult is not corrected; however, the proteins required to initiate this cell death pathway are poorly understood. In this study, we show that UPR gene expression is induced in cells treated with ER stress agents in the presence or absence of murine caspase-12 or human caspase-4 expression and in cells that overexpress Bcl-x(L) or a dominant negative caspase-9. We further demonstrate that ER stress-induced apoptosis is a caspase-dependent process that does not require the expression of caspase-12 or caspase-4 but can be inhibited by overexpression of Bcl-x(L) or a dominant negative caspase-9. Additionally, treatment of human and murine cells with ER stress agents led to the cleavage of the caspase-4 fluorogenic substrate, LEVD-7-amino-4-trifluoromethylcoumarin, in the presence or absence of caspase-12 or caspase-4 expression, whereas Bcl-x(L) or a dominant negative caspase-9 overexpression inhibited LEVD-7-amino-4-trifluoromethylcoumarin cleavage. These data suggest that caspase-12 and caspase-4 are not required for the induction of ER stress-induced apoptosis and that caspase-4-like activity is not always associated with an initiating event.  相似文献   

20.
Activation of caspase-12 from procaspase-12 is specifically induced by insult to the endoplasmic reticulum (ER) (Nakagawa, T., Zhu, H., Morishima, N., Li, E., Xu, J., Yankner, B. A., and Yuan, J. (2000) Nature 403, 98-103), yet the functional consequences of caspase-12 activation have been unclear. We have shown that recombinant caspase-12 specifically cleaves and activates procaspase-9 in cytosolic extracts. The activated caspase-9 catalyzes cleavage of procaspase-3, which is inhibitable by a caspase-9-specific inhibitor. Although cytochrome c released from mitochondria has been believed to be required for caspase-9 activation during apoptosis (Zou, H., Henzel, W. J., Liu, X., Lutschg, A., and Wang, X. (1997) Cell 90, 405-413, Li, P., Nijhawan, D., Budihardjo, I., Srinivasula, S. M., Ahmad, M., Alnemri, E. S., and Wang, X. (1997) Cell 91, 479-489), caspase-9 as well as caspase-12 and -3 are activated in cytochrome c-free cytosols in murine myoblast cells under ER stress. These results suggest that caspase-12 can activate caspase-9 without involvement of cytochrome c. To examine the role of caspase-12 in the activation of downstream caspases, we used a caspase-12-binding protein, which we identified in a yeast two-hybrid screen, for regulation of caspase-12 activation. The binding protein protects procaspase-12 from processing in vitro. Stable expression of the binding protein renders procaspase-12 insensitive to ER stress, thereby suppressing apoptosis and the activation of caspase-9 and -3. These data suggest that procaspase-9 is a substrate of caspase-12 and that ER stress triggers a specific cascade involving caspase-12, -9, and -3 in a cytochrome c-independent manner.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号