首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Rothenbach, Patricia, Richard H. Turnage, Jose Iglesias,Angela Riva, Lori Bartula, and Stuart I. Myers. Downstream effectsof splanchnic ischemia-reperfusion injury on renal function andeicosanoid release. J. Appl. Physiol.82(2): 530-536, 1997.This study examines the hypothesis thatintestinal ischemia-reperfusion (I/R) injury contributes to renaldysfunction by altered renal eicosanoid release. AnesthetizedSprague-Dawley rats underwent 60 min of sham or superior mesentericartery (SMA) occlusion with 60 min of reperfusion. The I/R groupsreceived either allopurinol, pentoxifylline, 1-benzylimidazole, orcarrier before SMA occlusion. In vivo renal artery blood flow wasmeasured by Transonic flow probes, the kidneys were then perfused invitro for 30 min, and the effluent was analyzed for eicosanoid releaseand renal function. Intestinal I/R caused a twofold increase in theratio of renal release of thromboxaneB2 to prostaglandinE2 and to 6-ketoprostaglandin F1 compared with the shamlevel, with a corresponding 25% decrease in renal sodium and inulinclearance and renal blood flow. Pentoxifylline or allopurinolpretreatment restored renal eicosanoid release and renal sodium andinulin clearance to the sham level but did not alter renal blood flow.Pretreatment with 1-benzylimidazole restored renal function, eicosanoidrelease, and renal blood flow to sham levels. These data suggest thatsevere intestinal I/R contributes to the downregulation of renalfunction. The decrease in renal function is due in part to toxic oxygen metabolites, which occur in the milieu of altered renal eicosanoid release, reflecting a decrease in vasodilator and an increase invasoconstrictor eicosanoids.

  相似文献   

2.
The effect of hypoxia on isolated perfused rat mesenteric basal venous prostanoid output was studied. Male rat splanchnic vasculature was removed without (SV) or with its end organ (SV + SI) and perfused with Krebs' buffer with a pO2 of 460 or 60 mm torr. Basal splanchnic venous effluent was assayed for 6-keto-PGF1 alpha, TxB2 and PGE by radioimmunoassay at 30, 60, 120 and 180 min of perfusion. Basal output of SV 6-keto-PGF1 alpha was five and ten fold higher than for PGE and TxB2 respectively and comprised 36% or greater of SV + SI 6-keto-PGF1 alpha output. SV PGE and TxB2 output comprised less than 19 and 12% respectively of SV + SI output. Hypoxia decreased SV + SI PG output, 6-keto-PGF1 alpha being most affected. Hypoxia did not alter SV 6-keto-PGF1 alpha output indicating the SI as the anatomic location most influenced by hypoxia. The relative amounts of distribution of PGE or TxB2 output were not altered by hypoxia. These data suggest that there are two distinct areas of splanchnic prostanoid output, the SV and the SI. Decreased 6-keto-PGF1 alpha output might alter splanchnic blood flow at two levels, the splanchnic vasculature, and/or within the bowel wall.  相似文献   

3.
To investigate the regional hemodynamic responses of abdominal arteries at the onset of exercise and to focus on their transient responses, eight female subjects (21-30 yr) performed ergometer cycling exercise at 40 W for 4 min in a semi-supine position. Mean blood velocities (MBVs) in the right renal (RA), superior mesenteric (SMA), and splenic (SA) arteries were measured by pulsed echo-Doppler ultrasonography, with beat-by-beat measurements of heart rate (HR) and mean arterial pressure (MAP). The vascular resistance index (RI) of each artery was calculated from MBV/MAP. MAP (76 +/- 9 to 83 +/- 8 mmHg at 4 min) and HR (60 +/- 7 to 101 +/- 9 beats/min at 4 min) increased during exercise (P < 0.05). The MBV of RA and SA rapidly decreased after the onset of exercise (30 s; -19 +/- 5% and -19 +/- 12%, respectively), reaching -27 +/- 7% and -27 +/- 15% at the end of exercise (P < 0.05). RI did not change during the initial 30 s of exercise, reflecting a reduction in MAP, and increased toward the end of the exercise (+55 +/- 21% and +59 +/- 39%, respectively). In contrast, both the MBV and RI in the SMA remained constant throughout the exercise. The results indicate that, whereas the responses of renal and splenic vessels changed similarly throughout the protocol, the vascular response of SMA that mainly supplies blood to the intestinal tract was unchanged during exercise. We, therefore, conclude that low-intensity cycling exercise resulted in differential blood flow responses in arteries supplying the abdominal organs.  相似文献   

4.
5.
We studied whether changes in lung function after burns (1- to 12-h period) were due to changes in lung water or airways resistance and the relationship of the changes to prostanoid and O2 radical activity (measured as lipid peroxidation). Twenty-five anesthetized mechanically ventilated adult sheep were given a 40% of body surface scald burn and resuscitated to restore and maintain base-line filling pressures. Dynamic lung compliance (Cdyn) decreased by 40% from 38 +/- 5 to 24 +/- 4 ml/cmH2O at 12 h. Venous thromboxane B2 transiently increased from 210 +/- 40 to 1,100 +/- 210 pg/ml, and the value in lung lymph increased from 180 +/- 80 to 520 +/- 80 pg/ml. Prostacyclin levels in lung lymph and plasma remained at base line. Protein-poor lung lymph flow increased two- to threefold, but postmortem lung analysis revealed no increase in lung water from the control of 3.5 +/- 0.3 g H2O/g dry wt. No increase in protein permeability was seen. However, the lipid peroxidation of lung tissue measured as malondialdehyde was significantly increased from the control value of 56 +/- 4 nmol/g lung to a value of 69 +/- 6. Ibuprofen pretreatment (12.5 mg/kg) markedly attenuated the decrease in Cdyn, with the value at 12 h being 90% of base line. Ibuprofen also decreased the amount of lung lipid peroxidation but did not decrease the lung lymph response. We conclude that the decrease in Cdyn seen early postburn is not due to increased lung water, but, rather, is due to a mediator-induced bronchoconstriction, attenuated by ibuprofen; the mediator being either thromboxane or a byproduct of O2 radicals as evidenced by increased lipid peroxide production in lung tissue.  相似文献   

6.
7.
Recent studies from our laboratory have shown that alcohol and burn injury impair intestinal barrier and immune functions. Although multiple factors can contribute to impaired intestinal barrier function, such an alteration could result from a decrease in intestinal blood flow (BF) and oxygen delivery (DO2). Therefore, in this study, we tested the hypothesis that alcohol ingestion before burn injury reduces splanchnic blood flow and oxygen delivery. Rats (250 g) were gavaged with alcohol to achieve a blood ethanol level in the range of 100 mg/dl before burn or sham injury (25% total body surface area). Day 1 after injury, animals were anesthetized with methoxyflurane. Blood pressure, cardiac output (CO), +/-dP/dt, organ BF (in ml.min(-1).100 g(-1)), and DO2 (in mg.ml(-1).100 g(-1)) were determined. CO and organ BF were determined using a radioactive microsphere technique. Our results indicate that blood pressure, CO, and +dP/dt were decreased in rats receiving a combined insult of alcohol and burn injury compared with rats receiving either burn injury or alcohol alone. This is accompanied by a decrease in BF and DO2 to the liver and intestine. No significant change in BF to the coronary arteries (heart), brain, lung, skin, and muscles was observed after alcohol and burn injury. In conclusion, the results presented here suggest that alcohol ingestion before burn injury reduces splanchnic BF and DO2. Such decreases in BF and DO2 may cause hypoxic insult to the intestine and liver. Although a hypoxic insult to the liver would result in a release of proinflammatory mediators, a similar insult to the intestine will likely perturb both intestinal immune cell and barrier functions, as observed in our previous study.  相似文献   

8.
Upright posture and lower body negative pressure (LBNP) both induce reductions in central blood volume. However, regional circulatory responses to postural changes and LBNP may differ. Therefore, we studied regional blood flow and blood volume changes in 10 healthy subjects undergoing graded lower-body negative pressure (-10 to -50 mmHg) and 8 subjects undergoing incremental head-up tilt (HUT; 20 degrees , 40 degrees , and 70 degrees ) on separate days. We continuously measured blood pressure (BP), heart rate, and regional blood volumes and blood flows in the thoracic, splanchnic, pelvic, and leg segments by impedance plethysmography and calculated regional arterial resistances. Neither LBNP nor HUT altered systolic BP, whereas pulse pressure decreased significantly. Blood flow decreased in all segments, whereas peripheral resistances uniformly and significantly increased with both HUT and LBNP. Thoracic volume decreased while pelvic and leg volumes increased with HUT and LBNP. However, splanchnic volume changes were directionally opposite with stepwise decreases in splanchnic volume with LBNP and stepwise increases in splanchnic volume during HUT. Splanchnic emptying in LBNP models regional vascular changes during hemorrhage. Splanchnic filling may limit the ability of the splanchnic bed to respond to thoracic hypovolemia during upright posture.  相似文献   

9.
10.
Regulation of splanchnic blood flow in man   总被引:2,自引:0,他引:2  
  相似文献   

11.
Redistribution of blood flow after thermal injury and hemorrhagic shock   总被引:2,自引:0,他引:2  
Diminished mucosal mass and a diminished rate of DNA synthesis by the intestinal mucosa have been identified in the rat after thermal injury. Because these changes may be associated with ischemia, the distribution of intestinal blood flow was studied after a thermal injury and compared with the blood flow distribution after hemorrhagic shock. For the thermal injury, anesthetized animals received a standardized 20% body surface area, full-thickness injury and were given intraperitoneal saline resuscitation. By the use of 46Sc- or 141Ce-labeled microspheres, no changes in intestinal and hepatic blood flow occurred after thermal injury. In contrast, a marked redistribution of blood flow was identified after hemorrhagic shock in which a decrease in arterial blood flow was identified to the stomach and to the small and large intestine. Although clinical shock was not present, the cardiac output decreased to a comparable degree in the hemorrhagic shock and the thermal injury. These studies indicate that although physiological changes in intestinal mucosa can be demonstrated after burn injury, these changes are not due to decreases in mesenteric arterial blood flow.  相似文献   

12.
Aging appears to attenuate leg blood flow during exercise; in contrast, such data are scant and do not support this contention in the arm. Therefore, to determine whether aging has differing effects on blood flow in the arm and leg, eight young (22 +/- 6 yr) and six old (71 +/- 15 yr) subjects separately performed dynamic knee extensor [0, 3, 6, 9 W; 20, 40, 60% maximal work rate (WRmax)] and handgrip exercise (3, 6, 9 kg at 0.5 Hz; 20, 40, 60% WRmax). Arterial diameter, blood velocity (Doppler ultrasound), and arterial blood pressure (radial tonometry) were measured simultaneously at each of the submaximal workloads. Quadriceps muscle mass was smaller in the old (1.6 +/- 0.1 kg) than the young (2.1 +/- 0.2 kg). When normalized for this difference in muscle mass, resting seated blood flow was similar in young and old subjects (young, 115 +/- 28; old, 114 +/- 39 ml x g(-1) x min(-1)). During exercise, blood flow and vascular conductance were attenuated in the old whether expressed in absolute terms for a given absolute workload or more appropriately expressed as blood flow per unit muscle mass at a given relative exercise intensity (young, 1,523 +/- 329; old, 1,340 +/- 157 ml x kg(-1) x min(-1) at 40% WRmax). In contrast, aging did not affect forearm muscle mass or attenuate rest or exercise blood flow or vascular conductance in the arm. In conclusion, aging induces limb-specific alterations in exercise blood flow regulation. These alterations result in reductions in leg blood flow during exercise but do not impact forearm blood flow.  相似文献   

13.
The radioactive microsphere technique is a simple method for measurement of RBF and intrarenal blood flow distribution in the rat that does not require surgical manipulation of the kidney or general anesthesia. The results are reproducible and compatible with other established techniques.  相似文献   

14.
Modest degrees of lower body negative pressure (less than 20 mmHg) cause a reflex constriction of forearm resistance vessels attributable to a decrease in activity of cardiopulmonary mechanoreceptors. In the present study, we sought to determine whether the calf vessels respond similarly. Left forearm and right calf blood flows were measured simultaneously by strain-gauge plethysmography in 10 healthy volunteers. Forearm flows decreased significantly from control during negative pressures of 10, 15, or 20 mmHg, whereas calf flows did not decrease significantly until 20 mmHg; at 10, 15, and 20 mmHg, decreases in forearm flow were significantly greater than those of the calf. Similar results were obtained in a second series of experiments in which venous pooling in the right leg during lower body negative pressure was prevented by enclosing it in a boot. At 40 mmHg, or after a Valsalva maneuver, both forearm and calf vessels constricted markedly and to the same degree. It appears that the reflex reduction in blood flow to the skeletal muscles of the limbs resulting from deactivation of the low-pressure intrathoracic mechanoreceptors is directed primarily to the arm.  相似文献   

15.
It has been shown that monoclonal anti-P-selectin antibody administration protects renal function in an ischemic model of acute renal failure. This study was designed to evaluate the effect of administration of fucoidan, P-selectin inhibitor, on reduction in renal blood flow induced by ischemia/reperfusion injury in the rat. Experiments were performed on male Wistar rats weighting 35-400 g. The systemic blood pressure (mm Hg) (BP) and renal blood flow (RBF) were monitored continuously and renal vascular resistance (RVR) was calculated. After 20 min period of stabilization animals (6 rats in each group) received one of the following agents administered by continuous i.v. infusion during 165 min: 1 mg/kg of body weight of fucoidan (F1), 10 mg/kg of fucoidan (F10), 100 mg/kg of fucoidan (F100), 10 mg/kg of heparin (H), or 0.9% NaCl solution (control). After 15 min of drug administration the renal vessels of the both kidney were occluded with vascular clamps for 60 min. There were no significant changes in the initial values of RBF, RVR and BP between groups. None procedure affected significantly BP during all experiments. In F10 RBF returned to the initial values in 70th min of reperfusion and did not change up to 90th min. This value was significantly higher than respective value in the control group. In F1 group RBF in 90th min was also higher than in the control group, but it was not statistically significant. The dose of heparine and fucoidan used in the H and F100 groups failed to preserve RBF during reperfusion. In the present study we found that administration of fucoidan--P-selectin inhibitor, increases significantly postischemic renal blood flow and may have renoprotective activity.  相似文献   

16.
17.
Postprandial hypotension is an important problem, particularly in the elderly. The fall in blood pressure is dependent on small intestinal glucose delivery and, possibly, changes in splanchnic blood flow, the release of glucagon-like peptide-1 (GLP-1), and sympathetic nerve activity. We aimed to determine in healthy older subjects, the effects of variations in small intestinal glucose load on blood pressure, superior mesenteric artery flow, GLP-1, and noradrenaline. Twelve subjects (6 male, 6 female; ages 65-76 yr) were studied on four separate occasions, in double-blind, randomized order. On each day, subjects were intubated via an anesthetized nostril, with a nasoduodenal catheter, and received an intraduodenal infusion of either saline (0.9%) or glucose at a rate of 1, 2, or 3 kcal/min (G1, G2, G3, respectively), for 60 min (t = 0-60 min). Between t = 0 and 60 min, there were falls in systolic and diastolic blood pressure following G2 and G3 (P = 0.003 and P < 0.001, respectively), but no change during saline or G1. Superior mesenteric artery flow increased slightly during G1 (P = 0.01) and substantially during G2 (P < 0.001) and G3 (P < 0.001), but not during saline. The GLP-1 response to G3 was much greater (P < 0.001) than to G2 and G1. Noradrenaline increased (P < 0.05) only during G3. In conclusion, in healthy older subjects the duodenal glucose load needs to be > 1 kcal/min to elicit a significant fall in blood pressure, while the response may be maximal when the rate is 2 kcal/min. These observations have implications for the therapeutic strategies to manage postprandial hypotension by modulating gastric emptying.  相似文献   

18.
The effects of alpha-rat calcitonin gene-related peptide (alpha-rCGRP) on systemic and renal hemodynamics and on renal electrolyte excretion were examined in normal anesthetized rats. In one group of rats (n = 7), infusions of alpha-rCGRP at doses of 10, 50, 100, and 500 ng/kg/min for 15 min each produced dose-related and significant decreases in mean arterial pressure from a control of 130 +/- 3 mm Hg to a maximal depressor response of 91 +/- 2 mm Hg. During the first three doses of alpha-rCGRP, renal blood flow progressively and significantly increased from a control of 5.0 +/- 0.3 ml/min to a peak level of 6.3 +/- 0.3 ml/min achieved during the 100 ng/kg/min infusion. With the highest infusion rate of 500 ng/kg/min, renal blood flow fell below the control level to 4.5 +/- 0.2 ml/min (P less than 0.05). The responses in renal blood flow and mean arterial pressure were associated with reductions in renal vascular resistance. After cessation of alpha-rCGRP infusions, arterial pressure, renal blood flow, and renal vascular resistance gradually returned toward the baseline values. In another group of rats (n = 9), infusion of alpha-rCGRP for 30 min at 100 ng/kg/min produced a significant reduction in urinary sodium excretion from 0.28 +/- 0.06 to 0.14 +/- 0.5 muEq/min (P less than 0.05). Urine flow and urinary potassium excretion also appeared to decrease, but the changes were not significantly different (P greater than 0.05) from their respective baselines. These results demonstrate that alpha-rCGRP is a potent and reversible hypotensive and renal vasodilatory agent in the anesthetized rat. The data also suggest that alpha-rCGRP may have significant effects on the excretory function of the kidney.  相似文献   

19.
Intrarenal blood flow distribution was studied with the simultaneous use of the 99Tc labelled frog erythrocyte (microsphere) and the radioactive 86Rb fractionation method in the rat. The amount of blood entering the outer cortex (99Tc labelled erythrocytes method) proved to be higher than one perfusing the outer cortex (86Rb method), whereas the amount of blood entering the inner cortex (99Tc method) was less than the amount perfusing the inner cortex and medulla (86Rb method). Hence a group of the preglomerular arterioles in the outer cortex contributes to the blood supply of the inner cortex, on the other hand a group of preglomerular arteries in the inner cortex participates in the postglomerular blood supply of the medulla. Changes in the renal circulation are, however, associated with altered distribution of postglomerular vascular segments supplied by some groups of preglomerular arterioles. From this it is concluded that the postglomerular vessels of the deeper cortical layers constitute a system which is not parallelly coupled but comprises both series- and parallel-coupled sections. The contribution of these sections appears to vary depending on the actual haemodynamic conditions.  相似文献   

20.
Handa RK 《Regulatory peptides》2006,136(1-3):23-29
Our aim was to investigate the changes in renal blood flow during brief exposure of the renal vasculature to angiotensin IV (Ang IV). Total renal blood flow was measured by electromagnetic flowmetry in pentobarbital-anesthetized male Sprague Dawley rats. Intrarenal injection of Ang I, Ang II and Ang III produced a dose-dependent vasoconstriction. In contrast, Ang IV and Ang-(3-10) produced a dose-dependent rapid vasoconstriction (lasting seconds) followed by a transient vasodilatation (lasting minutes). The biphasic response to Ang IV was unchanged in rats pre-treated with captopril, whereas the Ang-(3-10) response was abolished implying that its vasoactive activity was due to the generation of Ang IV. The vasodilatory component of Ang IV was unaffected by indomethacin. The biphasic vasoactive response of Ang IV was unaffected by divalinal-Ang IV (AT(4) receptor antagonist) or PD 123319 (AT(2) receptor antagonist), but greatly reduced by losartan or L-158,809 (AT(1) receptor antagonists). These results suggest that Ang IV is distinct from other angiotensins in that it possesses non-prostaglandin mediated renal vasodilatory activity that is apparently linked to the renal vascular AT(1) receptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号