首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The isolation and partial characterization of two cloned segments of Drosophila melanogaster DNA containing "heat shock" gene sequences is described. We have inserted sheared embryonic D. melanogaster DNA by the poly(dA-dt) connector method (Lobban and Kaiser, 1973) into the R1 restriction site of the ampicillin-resistant plasmid pSF2124 (So, Gill and Falkow, 1975). A collection of independent hybrid plasmids was screened by colony hybridization (Grunstein and Hogness, 1975) for sequences complementary to in vitro labeled polysomal poly(A)+ heat shock RNA. Two clones were identified which contain sequences complementary to a heat shock mRNA species that directs the in vitro synthesis of the 70,000 dalton heat-induced polypeptide. Both cloned segments hybridize in situ to the heat-induced puff sites located at 87A and 87C of the salivary gland polytene chromosomes.  相似文献   

2.
The organization of the ribosomal DNA repeating unit from Saccharomyces cerevisiae has been analyzed. A cloned ribosomal DNA repeating unit has been mapped with the restriction enzymes Xma 1, Kpn 1, HindIII, Xba 1, Bgl I + II, and EcoRI. The locations of the sequences which code for 5 S, 5.8 S, 18 S, and 25 S ribosomal RNAs have been determined by hybridization of the purified RNA species with restriction endonuclease generated fragments of the repeating unit. The position of the 5.8 S ribosomal DNA sequences within the repeat was also established by sequencing the DNA which codes for 83 nucleotides at the 5' end of 5.8 S ribosomal RNA. The polarity of the 35 S ribosomal RNA precursor has been established by a combination of hybridization analysis and DNA sequence determination and is 5'-18 S, 5.8 S, 25 S-3'.  相似文献   

3.
4.
5.
P J Wejksnora 《Gene》1985,33(3):285-292
We have examined the ribosomal RNA (rRNA) genes of the Chinese hamster ovary (CHO) cell line. A partial EcoRI library of genomic CHO DNA was prepared using lambda Charon-4A. We isolated two recombinants containing the region transcribed as 45S pre-rRNA and 13 kb of external spacer flanking 5' and 3' to the transcribed region. These sequences show restriction site homology with the vast majority of the genomic sequences complementary to rRNA. In addition to this form of rDNA, Southern blot analysis of EcoRI-cut CHO genomic DNA reveals numerous minor fragments ranging from 2 to 19 kb which are complementary to 18S rRNA. We isolated one clone which contains the 18S rRNA gene and sequences 5' which appear to contain length heterogeneity within the non-transcribed spacer region. We have nine additional cloned EcoRI fragments in which the homology with 18S rRNA is limited to a 0.9-kb EcoRI-HindIII fragment. This EcoRI-HindIII fragment is present in each of the cloned EcoRI fragments, and is flanked on both sides by apparently nonribosomal sequences which bear little restriction site homology with each other or the major cloned rDNA repeat.  相似文献   

6.
7.
Genome localization of simian virus 40 RNA species.   总被引:16,自引:9,他引:7       下载免费PDF全文
  相似文献   

8.
9.
We have characterized the rRNA gene repeat in Schizosaccharomyces pombe. This repeat, which does not contain the 5S RNA gene, is found in a 10.4 kb HindIII DNA fragment. We have determined the nucleotide sequences of the S. pombe 5.8S RNA gene and intergenic spacers from two different 10.4 kb DNA fragments. Analysis of isolated total cellular 5.8S RNA revealed the presence of eight species of 5.8S RNA, differing in the number of nucleotides at the 5'-end. The eight 4.8S RNA species vary in length from 158 to 165 nucleotides. Apart from the heterogeneity observed at the 5'-end, the sequence of the eight 5.8S RNA species appears to be identical and is the same sequence as coded for by the 5.8S genes. The gene sequence shows great homology to the 5.8S RNA genes or S. cerevisiae and N. crassa. Most of the base differences are confined to the highly variable stem though to be involved in co-axial helix stacking with the 25S RNA, where base pairing is nearly identical despite the sequence differences. Secondary structure models are examined in light of 5.8S RNA oligonucleotide conservation across species from yeasts to higher eukaryotes.  相似文献   

10.
The results of a comparative study of cloned DNA fragments of Drosophila simulans, D. mauritiana, D. teissieri, and D. erecta are presented. The fragments were amplified in PCR with primers specified to the region of D. melanogaster interband 61C7/C8. The uniqueness of all cloned fragments in the genomes of these species was confirmed. A comparative analysis of nucleotide sequences revealed that the rate of evolution of DNA from D. melanogaster interband 61C7/C8 is close to the rate of neutral evolution in the genus Drosophila.  相似文献   

11.
The lambdagt clones containing fragments of the Drosophila melanogaster genome were prepared and characterized by hybridization of their DNA with (I) lambdagt-cRNA; (2) lambdaC-cRNA; (3) Dm-cRNA; (4) the mRNA of D.melanogaster culture cells and (5) the stable cytoplasmic poly (A) RNA from the same source. The technique for a simple selection of hybrid clones is described. The hybridization with mRNA allows one to select the clones containing structural genes of D.melanogaster. It was found that in all cases when the clone contains the structural gene it also contains the reiterated base sequences of the D.melanogaster genome. Several clones containing D. melanogaster DNA fragments with a size of (2-4)x1O6 daltons hybridizing with a relatively large portion of mRNA were selected for further analysis.  相似文献   

12.
T Barnett  P M Rae 《Cell》1979,16(4):763-775
A large proportion of the 28S ribosomal RNA genes in Drosophila virilis are interrupted by a DNA sequence 9.6 kilobase pairs long. As regards both its presence and its position in the 28S gene (about two thirds of the way in), the D. virilis rDNA intervening sequence is similar to that found in D. melanogaster rDNA, but lengths differ markedly between the two species. Degrees of nucleotide sequence homology have been detected bewteen rDNA interruptions of the two species. This homology extends to putative rDNA intervening sequences in diverse higher diptera (other Drosophila species, the house fly and the flesh fly), but hybridization of cloned D. melanogaster and D. virilis rDNA interruption segments to DNA of several lower diptera has been negative. As is the case with melanogaster rDNA interruptions, segments of the virilis rDNA intervening sequence hybridize with non-rDNA components of the virilis genome, and interspecific homology may involve these non-rDNA sequences as well as rDNA interruptions. There is, however, evidence from buoyant density fractionation of DNA that the distributions of interruption-related sequences are distinct in D. melanogaster and D. virilis genomes. Moreover, thermal denaturation studies have indicated differing extents of homology between hybridizable sequences in D. virilis DNA and different segments of the D. melanogaster rDNA intervening sequence. We infer from our studies that rDNA intervening sequences are prevalent among higher diptera; that in the course of the evolution of these organisms, elements of the intervening sequences have been moderately to highly conserved; and that this conservation extends in at least two distantly related species of Drosophila to similar sequences found elsewhere in the genomes.  相似文献   

13.
Cloning of fragments of ribosomal genes containing insertions in the 28S RNA gene has been reported earlier. Subcloning of DNA fragments corresponding to insertion sequences and their hybridization with DNA, RNA and polytene chromosomes from different flies is described. Type 1 insertions (containing BamI sites) are highly heterogeneous in length and sequence even in homozygotes. Type 2 insertions (with EcoRI sites) are rather homogeneous. Two types of insertions are represented in the D. melanogaster genome by 50 and 30 copies, respectively. Restriction fragments with insertions significantly differ in DNA from embryos and larvae. D. simulans and D. virilis also contain the sequences of both types of insertions, though in fewer number of copies. Type 1 insertions seem to be poorly transcribed, and type 2 insertions are not transcribed at all. Among 2000 recombinant clones screened a number of DI plasmids hybridizing to isolated insertions were obtained. Six of them were mapped with restriction endonucleases and hybridized with insertion fragments. rRNA and polytene chromosomes. All of these DI plasmids hybridize with the nucleoli, one with the chromocenter and one with the 79F 3L site. In LI9, not coding for rRNA, the sequences, corresponding to two types on insertions are located only a few kilobases apart. D17a does not encode for rRNA, but hybridizes in situ only with the nucleoli.  相似文献   

14.
Expression of ribosomal DNA insertions in Drosophila melanogaster.   总被引:35,自引:0,他引:35  
E O Long  I B Dawid 《Cell》1979,18(4):1185-1196
  相似文献   

15.
16.
17.
Topography of polyoma virus messenger RNA molecules.   总被引:32,自引:0,他引:32  
R Kamen  H Shure 《Cell》1976,7(3):361-371
  相似文献   

18.
A large proportion (0.5-1%) of total mouse DNA is cleaved by Bam HI into fragments whose size is about 500 base pairs. A cloned member of this repetitive family of DNA sequences (BAM5 family) was sequenced by the dideoxy chain termination procedure and shown to contain 507 base pairs. The sequence exhibited no unusual or remarkable features. Repetitive sequences complementary to the cloned BAM5 fragment were found in rat DNA, but not in feline or human DNA. Restriction mapping suggested that many BAM5 sequences were components of much larger repetitive DNAs which were scattered throughout the mouse genome. The BAM5 sequences within the larger repetitive DNAs did not appear to be arranged tandemly or as members of scrambled tandem repeats. RNA homologous to the cloned BAM5 sequence was detected in cultured mouse cells, but not in cultured rat cells.  相似文献   

19.
Labelled RNA preparations (total newly synthesized RNA, as well as stable cytoplasmic RNA) isolated from a cell culture of D. melanogaster were hybridized in situ with polytene chromosomes. Apart from the nucleolus, in all cases the regions adjacent to the chromocentre in the polytene chromosomes and the intercalary heterochromatin regions in the X chromosome and the autosomes are the most intensively labelled. In the case of asynapsis of polytene chromosomes in heterozygotes the label is detected in a number of intercalary heterochromatin sites in one homologue only ("the asymmetrical label"). The same kind of radioactivity distribution in intercalary heterochromatin regions was observed after a hybridization of polytene chromosomes with cloned DNA fragments (Ananiev et al., 1978, 1979) coding for the abundant classes of messenger RNA (Ilyin et al., 1978) in a cultured D. melanogaster cells. In some regions of intercalary heterochromatin which do not contain these fragments the "'asymmetrical" type of label distribution is observed after hybridization with cell RNA. - These results lead one to regard the intercalary heterochromatin regions as "nests" comprising different types of actively transcribable genes, the composition of each nest varying in different stocks of D. melanogaster.  相似文献   

20.
We have studied the presence of a cloned fragment of DNA from Drosophila melanogaster in other organisms by means of nucleic acid hybridization analysis. The isolated region is localized in polytene chromosomes at the 63F subdivision. This region includes a puff that responds within minutes to ecdysone stimulation. We have found that 63F DNA from D. melanogaster hybridizes 'in situ' to both DNA and RNA from D. simulans, D. teissieri, and D. hydei. In all these species the isolated DNA remains associated with one early-ecdysone stimulated puff. The isolated Drosophila recombinant DNA is also complementary to polyadenylated RNA from foetal and adult rat liver but fails to hybridize to the nonpolyadenylated RNA classes from both sources and to polyadenylated RNA from rat mammary glands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号