首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Assessing the phytotoxicity of mononuclear hydroxy-aluminum   总被引:6,自引:0,他引:6  
Abstract Al3+ is an important rhizotoxic ion in acid soils around the world. Al3+ is in equilibrium with mononuclear hydroxy-Al species, such as AlOH2+ and AL(OH)2+, but the toxicity of these species has not been determined. Polynuclear Al may also coexist with Al3+, and one of these species, AlO4Al12(OH)24(H2O)1274, is very toxic. In order to determine the toxicity of mononuclear hydroxy-Al we have reanalysed the results of previously published, solution-culture experiments and have performed new experiments. Several problems are inherent in these studies. At pH values less than 5.0, the activities of the mononuclear hydroxy-Al species are low relative to Al3+, but attempts to change the ratio by raising the pH generally initiate the formation of polynuclear Al. (We discovered that mononuclear solutions are stable for many days when {Al3+}/{H+}3≤ 108.8, where braces denote activities.) We avoided, or accounted for, polynuclear Al in our studies. In addition, we used up-to-date equilibrium constants to compute Al species, very simple culture media (generally containing CaCl2, AlCl3 and HCl as the only inputs), short-term (2d) growth, and an Al-sensitive wheat variety (Triticum aestivum L. cv. Tyler) that permitted low Al levels and, consequently, higher pH values without Al polymerization. Experiments were designed in which the solutions were constant in {Al3+} and variable in mononuclear hydroxy-Al or were orthonal (factorial) in {Al3+} and {AlOH2+}. Linear and nonlinear, simple and multiple, regression analyses of these and previous experiments failed to reveal any toxicity for mononuclear hydroxy-Al to Tyler wheat.  相似文献   

2.

Background and Aims

Measuring the Al3+ uptake rate across the plasma membrane of intact root cells is crucial for understanding the mechanisms and time-course of Al toxicity in plants. However, a reliable method with the sufficient spatial and temporal resolution to estimate Al3+ uptake in intact root cells does not exist.

Methods

In the current study, fluorescent lifetime imaging (FLIM) analysis was used to quantify Al3+ uptake in the root-cell cytoplasm in vivo. This was performed via the estimation of the fluorescence lifetime of Al–lumogallion {5-chloro-3[(2,4-dihydroxyphenyl)azo]-2-hydroxybenzenesulfonic acid} complexes and measurements of intracellular pH while exposing arabidopsis seedlings to acidic and Al3+ stresses.

Key Results

The lifetime of Al–lumogallion complexes fluorescence is pH-dependent. The primary sites for Al3+ entry are the meristem and distal elongation zones, while Al3+ uptake via the cortex and epidermis of the mature root zone is limited. The maximum rates of Al uptake into the cytoplasm (2–3 µmol m−3 min−1 for the meristematic root zone and 3–7 µmol m−3 min−1 for the mature zone) were observed after a 30-min exposure to 100 µm AlCl3 (pH 4·2). Intracellular Al concentration increased to 0·4 µm Al within the first 3 h of exposure to 100 µm AlCl3.

Conclusions

FLIM analysis of the fluorescence of Al–lumogallion complexes can be used to reliably quantify Al uptake in the cytoplasm of intact root cells at the initial stages of Al3+ stress.Key words: Acid stress, Al3+, aluminium toxicity, Arabidopsis thaliana, low pH, fluorescent lifetime imaging (FLIM), lumogallion  相似文献   

3.
We report daytime drift behavior of lotic macroinvertebrates following short term (12 h) additions of HCl or HCl plus AlCl3 to a circumneutral softwater (alkalinity ca. 100 µeq 1-1) mountain stream in British Columbia, Canada. Addition of HCl (pH reduced from 7.0 to 5.9) resulted in an overall tripling of invertebrate drift density with rapid (< 1 h) increases in chironomid Diptera and Trichoptera. Small Ephemeroptera also entered the drift at high densities, but were delayed about 6 h. Addition of AlCl3 (0.71 to 0.95 mg 1-1 total Al3+) in HCl (stream pH reduced to 5.9) resulted in an overall 6-fold increase in invertebrate drift, with rapid increases by Ephemeroptera and delayed responses by chironomids and Trichoptera. These results suggest that the behavior of several macroinvertebrates from low alkalinity, unacidified streams can be altered by simulations of short-term, mild acidic deposition events. Further, the magnitude and timing of entry into the drift varies among taxonomic groups with the presence or absence of low concentrations of aluminum ions.  相似文献   

4.
Community dynamics of epiphytic diatoms were studied for 3 years in a chronically and an episodically acidified tributary of Buck Creek, Adirondacks. Both streams experienced pulses of acidity during hydrologic events but these pulses were more pronounced in the episodically acidified stream, where pH decreased over two units (between 4.53 and 6.62) and the acid‐neutralizing capacity (ANC) became negative. In the chronically acidified stream, pH was below 4.9 and the ANC was negative 94% of the time. In this stream, high inorganic acidity following SO42? enrichment from snowmelt or rainstorms alternated with high organic acidity derived from a headwaters wetland during base flow. The fluctuating water chemistry generated shifts in diatom community composition: from exclusive dominance of Eunotia bilunaris (Ehrenberg) Mills during periods of high inorganic acidity to proliferation of several subdominant species during periods of high organic acidity. In the episodically acidified stream, the pulses of acidity were associated with high NO3? concentrations and the corresponding high ratios of inorganic monomeric Al (Alim) to organic monomeric Al (Alom). Diatom communities there were dominated exclusively by E. exigua (Brébisson) Rabenhorst year round; however, this species peaked during periods of low acidity. Periods of high acidity and Alim:Alom ratios were marked by a decline in E. exigua and a concomitant increase in the subdominant species. Variance partitioning into terms of environmental and temporal variance, and their covariance, suggested that diatom communities in the chronically acidic stream were governed primarily by environmental factors while in the episodically acidic stream environmental and temporal factors had equal contributions.  相似文献   

5.
In the present study we examine the effects of Al on the uptake of Ca2+ and H2PO-4 in beech (Fagus sylvatica L.) grown in inorganic nutrient solutions and nutrient solutions supplied with natural fulvic acids (FA). All the solutions used were chemically well characterized. The uptake of Al by roots of intact plants exposed to solutions containing 0, 0.15 or 0.3 mM AlCl3 for 24 h, was significantly less if FA (300 mg l−1) were also present in the solutions. The Ca2+(45Ca2+) uptake was less affected by Al in solutions supplied with FA than in solutions without FA. There was a strong negative correlation between the Al and Ca2+ uptake (r2=0.98). When the Al and Ca2+ (45Ca2+) uptake were plotted as a function of the Al3+ activity (or concentration of inorganic mononuclear Al), almost the same response curves were obtained for the -FA and +FA treatments. We conclude that FA-complexed Al was not available for root uptake and therefore could not affect the Ca2+ uptake. The competitive effect of Al on the Ca2+ uptake was also shown in a 5-week cultivation experiment, where the Ca concentration in shoots decreased at an AlCl3 concentration of 0.3 mM. The effect of Al on H2PO4 uptake was more complex. The P content in roots and shoots was not significantly affected, compared with the control, by cultivation for 5 weeks in a solution supplied with 0.3 mM AlCl3, despite a reduction of the H2PO4 concentration in the nutrient solution to about one-tenth. At this concentration Al obviously had a positive effect on H2PO4 uptake. The presence of FA decreased 32P-phosphate uptake by more than 60% during 24 h, and the addition of 0.15 or 0.3 mM AlCl3 to these solutions did not alter the uptake of 32P-phosphate.  相似文献   

6.
Ma JF  Hiradate S 《Planta》2000,211(3):355-360
 The forms of Al for uptake by the roots and translocation from the root to the shoot were investigated in a buckwheat (Fagopyrum esculentum Moench, cv. Jianxi) that accumulates Al in its leaves. The Al concentration in the xylem sap was 15-fold higher in the plants exposed to AlCl3 than in those exposed to an Al-oxalate (1:3) complex, suggesting that the roots take up Al in the ionic form. The Al concentration in the xylem sap was 4-fold higher than that in the external solution after a 1-h exposure to AlCl3 solution and 10-fold higher after a 2-h exposure. The Al concentration in the xylem sap increased with increasing Al concentration in the external solution. The Al uptake was not affected by a respiratory inhibitor, hydroxylamine, but significantly inhibited by the addition of La. These results suggest that Al uptake by the root is a passive process, and La3+ competes for the binding sites for Al3+ on the plasma membrane. The form of Al in the xylem sap was identified by 27Al-nuclear magnetic resonance analysis. The chemical shift of 27Al in the xylem sap was around 10.9 ppm, which is consistent with that of the Al-citrate complex. Furthermore, the dominant organic acid in the xylem sap was citric acid, indicating that Al was translocated in the form of Al-citrate complex. Because Al is present as Al-oxalate (1:3) in the root, the present data show that ligand exchange from oxalate to citrate occurs before Al is released to xylem. Received: 10 December 1999 / Accepted: 3 February 2000  相似文献   

7.
The effect of aluminium (Al) on the electrical transmembrane potential of epidermal and outer cortical root cells of intact seedlings of sugar beet (Beta vulgaris L. cv. Monohill) was studied. The potential difference to the surrounding medium was recorded with microelectrodes inserted into the vacuoles (PDv) and cytoplasm (PDc) of intact roots. Both long-term effects of AlCl3 (100, μM present during cultivation) and immediate effects of AlCl3 (10, 50, or 100 μM present in the assay medium), were measured. The effect of Al was measured at pH 4.0, 5.0 and 6.5 in order to obtain information on the toxicity of different Al forms existing at different pH values. Low pH and/or the presence of AlCl3 during cultivation caused large depolarizations of the PDv. Since the immediate effect of 2,4-dinitrophenol (DNP) on the resting potential of cells from Al-cultivated plants was negligible, it is likely that Al affects the metabolic component of the transmembrane potential. Aluminium also had an immediate effect on the PD in root cells of plants cultivated without Al. Addition of 10 or 50 μM Al to the assay medium caused hyperpolarization of PDv in the presence of 0.5 mM Ca2+ at all pH values studied, depolarization of PDc at pH 6.5, and hyperpolarization of PDc at lower pH. At 1 mM Ca2+, or in the presence of K+ (≥ 2 mM), however, the same Al concentrations had little effect on PDc. The strongest depolarizing effects of 10 or 50 μM Al in short-term treatments were obtained at pH 6.5, and were probably due to the soluble species Al(OH)3, which is more frequent at pH 6.5 than at a lower pH. Addition of 50 μM Al caused alkalinization of the root medium at pH 6.5, but not at pH 4.0. Therefore, it is possible that Al at pH 6.5 is bound to, or translocated across, the membrane without the accompanying hydroxide ions. It is likely that most of the Al is bound to the root cells, since removal of Al from the buffer surrounding the roots did not cause the changed PD values to return to the original values. Aluminium also interacts with effects of Ca2+ and K+ on the membrane potential, since changes in PD, induced by changes in concentrations of Ca2+ and K+ are different in the absence and presence of Al.  相似文献   

8.
Aluminum geochemistry in peatland waters   总被引:4,自引:4,他引:0  
The chemical speciation of aluminum was examined in surface water samples from Sphagnum peatlands in north-central Minnesota, from peatlands along the Canadian east coast, and from bogs in the Pennine Mountain area of England. In highly organic ([DOC] 50 mg L–1 ), low pH waters, 80–90% of total dissolved Al was complexed with organic matter (OM), while in waters with low DOC ([DOC] 5 mg L–1) 54–86% of total dissolved Al existed as Al+3 or other inorganic Al species. Batch titrations of OM with Al revealed a high Al binding capacity, 1.4–2.8 mol (mg DOC)–1, that generally was unsaturated with Al. Titrations of OM with Al in conjunction with a continuous distribution model were used to determine Al-OM conditional stability constants. Binding capacity (mol Al (mg DOC)–1) and strength (formation constant) increased from pH 3 to 5 but decreased above pH 5 due to formation of AI-hydroxy species including A1(OH)3 (s). The high binding capacity of OM in bog waters facilitates metal mobility, especially in low pH (< 5) wetlands where metal solubility is high and OM concentrations are highest. Results showed that the relative degree of organic matter saturation with metal ions was important in modeling AI speciation in bog waters.  相似文献   

9.
Aluminum (Al3+) has been recognized as a main toxic factor in crop production in acid lands. Phosphatidic acid (PA) is emerging as an important lipid signaling molecule and has been implicated in various stress-signaling pathways in plants. In this paper, we focus on how PA generation is affected by Al3+ using Coffea arabica suspension cells. We pre-labeled cells with [32P]orthophosphate (32Pi) and assayed for 32P-PA formation in response to Al3+. Treating cells for 15 min with either AlCl3 or Al(NO3)3 inhibited the formation of PA. In order to test how Al3+ affected PA signaling, we used the peptide mastoparan-7 (mas-7), which is known as a very potent stimulator of PA formation. The Al3+ inhibited mas-7 induction of PA response, both before and after Al3+ incubation. The PA involved in signaling is generated by two distinct phospholipid signaling pathways, via phospholipase D (PLD; EC: 3.1.4.4) or via Phospholipase C (PLC; EC: 3.1.4.3), and diacylglycerol kinase (DGK; EC 2.7.1.107). By labeling with 32Pi for short periods of time, we found that PA formation was inhibited almost 30% when the cells were incubated with AlCl3 suggesting the involvement of the PLC/DGK pathway. Incubation of cells with PLC inhibitor, U73122, affected PA formation, like AlCl3 did. PLD in vivo activation by mas-7 was reduced by Al3+. These results suggest that PA formation was prevented through the inhibition of the PLC activity, and it provides the first evidence for the role of Al toxicity on PA production.  相似文献   

10.
The role of phosphorus (P) status in root-zone CO2 utilisation for organic acid synthesis during Al3+ toxicity was assessed. Root-zone CO2 can be incorporated into organic acids via Phosphoenolpyruvate carboxylase (PEPC, EC 4.1.1.31). P-deficiency and Al3+ toxicity can induce organic acid synthesis, but it is unknown how P status affects the utilisation of PEPC-derived organic acids during Al3+ toxicity. Two-week-old Solanum lycopersicum seedlings were transferred to hydroponic culture for 3 weeks. The hydroponic culture consisted of a standard Long Ashton nutrient solution containing either 0.1 μM or 1 mM P. Short-term Al3+ toxicity was induced by a 60-min exposure to a pH-buffered solution (pH 4.5) containing 2 mM CaSO4 and 50 μM AlCl3. Al3+ toxicity induced a decline in root respiration, adenylate concentrations and an increase in root-zone CO2 utilisation for both P sufficient and P-deficient plants. However during Al3+ toxicity, P deficiency enhanced the incorporation and metabolism of root-zone CO2 via PEPC. Moreover, P deficiency led to a greater proportion of the PEPC-derived organic acids to be exuded during Al3+ toxicity. These results indicate that P-status can influence the response to Al3+ by inducing a greater utilisation of PEPC-derived organic acids for Al3+ detoxification.  相似文献   

11.
Due to an ever‐increasing demand for electronic devices, rechargeable batteries are attractive for energy storage systems. A novel rechargeable aluminum‐ion battery based on Al3+ intercalation and deintercalation is fabricated with Ni3S2/graphene microflakes composite as cathode material and high‐purity Al foil as anode. This kind of aluminum‐ion battery comprises of an electrolyte containing AlCl3 in an ionic liquid of 1‐ethyl‐3‐methylimidazolium chloride ([EMIm]Cl). Galvanostatic charge/discharge measurements have been performed in a voltage range of 0.1–2.0 V versus Al/AlCl4 ?. An initial discharge specific capacity of 350 mA h g?1 at a current density of 100 mA g?1 is achieved, and the discharge capacity remains over 60 mA h g?1 and coulombic efficiency of 99% after 100 cycles. Typically, for the current density at 200 mA g?1, the initial charge and discharge capacities are 300 and 235 mA h g?1, respectively. More importantly, it should be emphasized that the battery has a high discharge voltage plateau (≈1.0 V vs Al/AlCl4 ?). These meaningful results represent a significant step forward in the development of aluminum‐ion batteries.  相似文献   

12.
In acidic soils, an excess of Al3+ is toxic to most plants. The Melastomataceae family includes Al‐accumulator genera that tolerate high Al3+ by accumulating it in their tissues. Conostegia xalapensis is a common shrub in Mexico and Central America colonizing mainly disturbed areas. Here, we determined whether C. xalapensis is an Al accumulator, and whether it has internal tolerance mechanisms to Al. Soil samples collected from two pastures in the state of Veracruz, Mexico, had low pH and high Al3+ concentrations along with low Ca2+ levels. Leaves of C. xalapensis from pastures showed up to 19 000 mg Al kg?1 DW (dry weight). In laboratory experiments, 8‐month‐old seedlings treated with 0.5 and 1.0 mM AlCl3 for 24 days showed higher number of lateral roots and biomass. Pyrocatechol violet and hematoxylin staining evidenced that Al localized in epidermis and mesophyll cells in leaves and in epidermis and vascular pith in roots. Scanning electron microscope‐energy dispersive X‐ray microanalysis of Al‐treated leaves corroborated that Al is in abaxial and adaxial epidermis and in mesophyll cells (31.2%) in 1.0 mM Al‐treatment. Roots of Al‐treated plants had glutathione reductase (EC 1.6.4.2) and superoxide dismutase (EC 1.15.1.1) activity higher, and low levels of O and H 2O2. C. xalapensis is an Al‐accumulator plant that can grow in acidic soils with higher Al3+ concentrations, and can be considered as an indicator species for soils with potential Al toxicity.  相似文献   

13.
Inward currents in root cap protoplasts of the aluminum-tolerant cultivar, Dade, of Phaseolus vulgaris L. were investigated using the whole-cell patch-clamp technique. The properties of these currents were similar to those seen in inward rectifying K+ channels in other plant tissues. Replacing bath K+ with Na+ nearly abolished the observed currents. Higher bath K+ concentrations increased inward currents. AlCl3 in pH 4.7 bath solutions caused inward K+ currents to activate more rapidly and at more positive voltages when compared with AlCl3 free solutions. In 10 μM AlCl3 the activated inward K+ currents were significantly larger than in the AlCl3-free solution at all voltages except at the most negative voltage of −174 mV and the least negative of −74 mV. In contrast, in 80 μM Al3+, when hyperpolarizing voltages were most negative, the inward K+ currents were inhibited relative to the currents in 10 μM AlCl3. Enhancement of inward K+ currents by AlCl3 is consistent with Al3+ binding to the external surface of the root cap protoplast, decreasing the surface charge, thus causing the channels to sense a more negative membrane potential. Inhibition of inward K+ currents with higher AlCl3 concentrations and more negative voltages is consistent with Al3+ block of K+ channels.This revised version was published online in August 2005 with a corrected cover date.  相似文献   

14.
Response of soil chemistry to forest dieback after bark beetle infestation   总被引:1,自引:0,他引:1  
We evaluated changes in the chemistry of the uppermost soil horizons in an unmanaged spruce forest (National Park Bohemian Forest, Czech Republic) for 3 years after dieback caused by a bark beetle infestation, and compared these changes with a similar undisturbed forest area. The soils below the disturbed forest received 2–6 times more elements via litter fall compared to the unaffected plot. The subsequent decomposition of litter and reduced nutrient uptake by trees resulted in a steep increase in soil concentrations of soluble N (NH4-N, organic-bound N) and P forms in the disturbed plot. The average concentrations of NH4-N and soluble reactive P increased from 0.8 to 4.4 mmol kg?1 and from 0.04 to 0.9 mmol kg?1, respectively, in the uppermost soil horizon. Decomposition of litter at the disturbed plot elevated soil concentrations of Ca2+, Mg2+ and K+, which replaced Al3+ and H+ ions from the soil sorption complex. Consequently, soil concentrations of exchangeable base cations increased from 120 to 200 meq kg?1, while exchangeable Al3+ and H+ decreased 66 and 50 %, respectively, and soil base saturation increased from 40 to 70 %. The Al3+ liberation did not elevate concentrations of ionic Al in the soil solution, because most of the liberated Al3+ was rapidly complexed by dissolved organic carbon (DOC) and transformed to DOC–Al complexes. The chemical parameters investigated at the unaffected plot remained stable during the study.  相似文献   

15.
The Jizera Mountains area is affected by natural and anthropogenic acidification processes. The effect of acidification is reflected by presence of elevated amount of different Al forms in soil horizons. Changes of water extractable forms of Al (total $ {\text{Al}}_{{{\text{H}}_{2} {\text{O}}}} $ , species: Al(X)1+, Al(Y)2+ and Al3+) and other soil characteristics (e.g. DOC, pH) were investigated in forest soils from April to October 2008. Seasonal changes of Al forms were identified in organic F and H soil horizons. No significant effect of the soil type on Al forms was documented. Nevertheless, influence of vegetation cover (beech and spruce forest, clear-cut area) on Al(X)1+, Al(Y)2+ forms was proved. The results show that binding and mobility of Al forms are controlled mostly by pH and dissolved organic carbon (DOC).  相似文献   

16.
Calcite treatment of chronically acidic lakes has improved fish habitat, but the effects on downstream water quality have not previously been examined. In this study, the spatial and temporal effects of watershed CaCO3 treatment on the chemistry of a lake outlet stream in the Adirondack Mountains of New York were examined. Before CaCO3 treatment, the stream was chronically acidic. During spring snowmelt before treatment, pH and acid-neutralizing capacity (ANC) in the outlet stream declined, and NO 3 and inorganic monomeric aluminum (AlIM) concentrations increased sharply. During that summer, SO 4 and NO 3 concentrations decreased downstream, and dissolved organic carbon (DOC) concentrations and ANC increased, in association with the seasonal increase in decomposition of organic matter and the attendant SO 4 -reduction process. A charge-balance ANC calculation closely matched measured downstream changes in ANC in the summer and indicated that SO 4 reduction was the major process contributing to summer increases in ANC. Increases in Ca2+ concentration and ANC began immediately after CaCO3 application, and within 3 months, exceeded their pretreatment values by more than 130 eq/L. Within 2 months after treatment, downstream decreases in Ca2+ concentration, ANC, and pH, were noted. Stream mass balances between the lake and the sampling site 1.5 km downstream revealed that the transport of all chemical constituents was dominated by conservative mixing with tributaries and ground water; however, non-conservative processes resulted in significant Ca2+ losses during the 13-month period after CaCO3 treatment. Comparison of substrate samples from the buffered outlet stream with those from its untreated tributaries showed that the percentage of cation-exchange sites occupied by Ca2+ as well as non-exchangeable Ca, were higher in the outlet-stream substrate than in tributary-stream substrate. Mass-balance data for Ca2+ H+, AlIM, and DOC revealed net downstream losses of these constituents and indicated that a reasonable set of hypothesized reactions involving AlIM, HCO 3 , Ca2+, SO 4 NO 3 , and DOC could have caused the measured changes in stream acid/base chemistry. In the summer, the sharp decrease in ANC continued despite significant downstream decreases in SO4 2– concentrations. After CaCO3 treatment, reduction of SO 4 was only a minor contributor to ANC changes relative to those caused by Ca2+ dilution from acidic tributaries and acidic ground water, and Ca2+ interactions with stream substrate.  相似文献   

17.
Using the whole plant and model systems, we demonstrate that the aluminum ions (Al3+) stimulate phenolic-dependent lipid peroxidation. Lipid peroxidation in barley (Hordeum vulgare L. cv. Donor) roots was 30 % higher under AlCl3 treatment than without Al. Major decomposition product of lipid peroxidation was 4-hydroxynonenal (4-HNE) but not thiobarbituric acid reactive substances (TBARS), a widely used markers for lipid peroxidation. Similarly, AlCl3 stimulated lipid peroxidation of soybean liposomes in the presence of chlorogenic acid (CGA) and H2O2/horseradish peroxidase system which can oxidize phenolics. Al3+ was found to enhance lipid peroxidation induced by oxidized CGA. Intermediates of lignin biosynthesis in plants, including p-coumaric acid, ferulic acid, sinapic acid and coniferyl alcohol, also showed similar effects. These results suggest that Al3+ has a potential to induce oxidative stress in plants by stimulating the prooxidant nature of endogenous phenolic compounds.  相似文献   

18.
The 24 ha Dry Creek watershed in the Catskill Mountains of southeastern New York State USA was clearcut during the winter of 1996–1997. The interactions among acidity, nitrate (NO3), aluminum (Al), and calcium (Ca2+) in streamwater, soil water, and groundwater were evaluated to determine how they affected the speciation, solubility, and concentrations of Al after the harvest. Watershed soils were characterized by low base saturation, high exchangeable Al concentrations, and low exchangeable base cation concentrations prior to the harvest. Mean streamwater NO3 concentration was about 20 μmol l−1 for the 3 years before the harvest, increased sharply after the harvest, and peaked at 1,309 μmol l−1 about 5 months after the harvest. Nitrate and inorganic monomeric aluminum (Alim) export increased by 4−fold during the first year after the harvest. Alim mobilization is of concern because it is toxic to some fish species and can inhibit the uptake of Ca2+ by tree roots. Organic complexation appeared to control Al solubility in the O horizon while ion exchange and possibly equilibrium with imogolite appeared to control Al solubility in the B horizon. Alim and NO3 concentrations were strongly correlated in B-horizon soil water after the clearcut (r 2 = 0.96), especially at NO3 concentrations greater than 100 μmol l−1. Groundwater entering the stream from perennial springs contained high concentrations of base cations and low concentrations of NO3 which mixed with acidic, high Alim soil water and decreased the concentration of Alim in streamwater after the harvest. Five years after the harvest soil water NO3 concentrations had dropped below preharvest levels as the demand for nitrogen by regenerating vegetation increased, but groundwater NO3 concentrations remained elevated because groundwater has a longer residence time. As a result streamwater NO3 concentrations had not fallen below preharvest levels, even during the growing season, 5 years after the harvest because of the contribution of groundwater to the stream. Streamwater NO3 and Alim concentrations increased more than reported in previous forest harvesting studies and the recovery was slower likely because the watershed has experienced several decades of acid deposition that has depleted initially base-poor soils of exchangeable base cations and caused long-term acidification of the soil.  相似文献   

19.
Synchronously growing cultures of the unicellular green alga Scenedesmus obtusiusculus were cultivated for 24 and 72 h in the presence or absence of phosphorus. Aluminium chloride (37, 74, 111, 148, 185, or 222 μmol) was added daily to 1 l cell suspension at the end of the cell division phase. As AlCl3 decreases the pH of the growth medium, controls were run in media with low pH in the absence of AlCl3. Samples for analysis of the internal (net uptake) and external (bound to cell surface) levels of Al, Mg, P, Ca, and Fe were taken every second hour during a 24 h period or once after 72 h. The investigation shows that the intracellular aluminium in Scenedesmus affects the nutrient status of the cells. A high intracellular level of Al is in consort with an enhancement of the intracellular fractions of Mg, P, Ca and Fe. The increase in net uptake of the minerals measured in the presence of Al is not due to an Al-induced lowering of the pH, caused by Al. The concentrations of Al, Mg, P, Ca and Fe in the cells are generally lower during the dark period of the cell cycle, when the cells are dividing, than during the light period. A peak in mineral concentration of the cells could be monitored in the middle of the 24 h life cycle of the cells. The intracellular Al level is higher when the growth medium is low in P than in phosphorus-rich medium, due to precipitation of aluminium-phosphate both in medium and at cell surfaces. The extracellular Al and P fractions are thus higher in the presence than in the absence of P. The highest Al content monitored in the cells is about 100 nmol Al (106 cells)?1. A large fraction of Al initially taken up after addition to the medium is subsequently released from the cells during the 24 h cell cycle. The results are interpreted as Al effects on the plasma membrane, thus indirectly affecting various mechanisms for ion transport across the membrane. There are also indications that a surface covered with aluminium-phosphate, formed at high P level in the medium, may prevent ion uptake.  相似文献   

20.
Using Electron Paramagnetic Resonance Spectroscopy, Al3+ was shown to produce a dramatic decrease of membrane lipid fluidity on the microorganism Thermoplasmaacidophilum at a pH > 2. The ability of Al3+ to alter lipid fluidity was enhanced with increasing pH (from 3 to 5). At pH 4, 10?2 M Al3+ increased the lower lipid phase transition by 39°C, and a detectable change was observed with AlCl3 concentrations as low as 10?5 M. The ability of Al3+ to increase the lower lipid phase transition temperature of T.acidophilum is the largest of any cation/lipid interaction yet reported.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号