首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
More than 600 bacterial species have been identified in the oral cavity, but only a limited number of species show a strong association with periodontitis. The purpose of the present study was to provide a comprehensive outline of the microbiota in dental plaque related to periodontal status. Dental plaque from 90 subjects was sampled, and the subjects were clustered based on bacterial composition using the terminal restriction fragment length polymorphism of 16S rRNA genes. Here, we evaluated (1) periodontal clinical parameters between clusters; (2) the correlation of subgingival bacterial composition with supragingival bacterial composition; and (3) the association between bacterial interspecies in dental plaque using a graphical Gaussian model. Cluster 1 (C1) having high prevalence of pathogenic bacteria in subgingival plaque showed increasing values of the parameters. The values of the parameters in Cluster 2a (C2a) having high prevalence of non-pathogenic bacteria were markedly lower than those in C1. A cluster having low prevalence of non-pathogenic bacteria in supragingival plaque showed increasing values of the parameters. The bacterial patterns between subgingival plaque and supragingival plaque were significantly correlated. Chief pathogens, such as Porphyromonas gingivalis, formed a network with other pathogenic species in C1, whereas a network of non-pathogenic species, such as Rothia sp. and Lautropia sp., tended to compete with a network of pathogenic species in C2a. Periodontal status relates to non-pathogenic species as well as to pathogenic species, suggesting that the bacterial interspecies connection affects dental plaque virulence.  相似文献   

2.
The primary habitats of oral veillonellae are the tongue, dental plaque, and the buccal mucosa. Isolates were obtained from each habitat and tested for coaggregation with a battery of other oral bacterial strains. All 59 tongue isolates tested for coaggregation were Veillonella atypica or Veillonella dispar. All but one of them coaggregated with strains of Streptococcus salivarius, a predominant inhabitant of the tongue surface but not subgingival dental plaque. These tongue isolates were unable to coaggregate with most normal members of the subgingival flora such as Actinomyces viscosus, Actinomyces naeslundii, Actinomyces israelii, and Streptococcus sanguis. In contrast, 24 of 29 Veillonella isolates, of which 20 were Veillonella parvula from subgingival dental plaque samples, coaggregated strongly with the three species of Actinomyces, S. sanguis, and other bacteria usually present in subgingival plaque, but they did not coaggregate with S. salivarius. The majority of isolates from the buccal mucosa (42 of 55) has coaggregation properties like those from the tongue. These results indicate that the three human oral Veillonella species are distributed on oral surfaces that are also occupied by their coaggregation partners and thus provide strong evidence that coaggregation plays a critical role in the bacterial ecology of the oral cavity.  相似文献   

3.
The primary habitats of oral veillonellae are the tongue, dental plaque, and the buccal mucosa. Isolates were obtained from each habitat and tested for coaggregation with a battery of other oral bacterial strains. All 59 tongue isolates tested for coaggregation were Veillonella atypica or Veillonella dispar. All but one of them coaggregated with strains of Streptococcus salivarius, a predominant inhabitant of the tongue surface but not subgingival dental plaque. These tongue isolates were unable to coaggregate with most normal members of the subgingival flora such as Actinomyces viscosus, Actinomyces naeslundii, Actinomyces israelii, and Streptococcus sanguis. In contrast, 24 of 29 Veillonella isolates, of which 20 were Veillonella parvula from subgingival dental plaque samples, coaggregated strongly with the three species of Actinomyces, S. sanguis, and other bacteria usually present in subgingival plaque, but they did not coaggregate with S. salivarius. The majority of isolates from the buccal mucosa (42 of 55) has coaggregation properties like those from the tongue. These results indicate that the three human oral Veillonella species are distributed on oral surfaces that are also occupied by their coaggregation partners and thus provide strong evidence that coaggregation plays a critical role in the bacterial ecology of the oral cavity.  相似文献   

4.
目的观察复方茶多酚含漱液对正畸儿童牙面菌斑中细菌总数和变形链球菌数的影响,以及牙菌斑内原位pH的改变。方法选择42例戴用固定矫治器的正畸儿童,随机分为2组,试验组用复方茶多酚含漱液漱口,对照组用蒸馏水漱口。分别于戴用矫治器前,戴入后1月采集上下颌牙唇颊面菌斑,测定菌斑中细菌总数及变形链球菌数,同时测定牙菌斑原位pH。结果对照组戴用后1月,细菌总数及变形链球菌数较戴用前明显增加(P0.01),牙菌斑原位pH较戴用前降低(P0.01)。试验组与对照组戴用后1个月相比,试验组细菌总数及变形链球菌数明显少于对照组(P0.01),牙菌斑原位pH高于对照组(P0.01)。结论戴用固定矫治器后,牙面菌斑内细菌总数及变形链球菌数较戴用前增加,牙菌斑原位pH较戴用前降低,应用茶多酚含漱液可明显抑制正畸儿童口腔内变形链球菌数,减少龋坏发生。  相似文献   

5.
Polymerase Chain reaction (PCR) assay is considered superior to other methods for detection of Helicobacter pylori (H. pylori) in oral cavity; however, it also has limitations when sample under study is microbial rich dental plaque. The type of gene targeted and number of primers used for bacterial detection in dental plaque samples can have a significant effect on the results obtained as there are a number of closely related bacterial species residing in plaque biofilm. Also due to high recombination rate of H. pylori some of the genes might be down regulated or absent. The present study was conducted to determine the frequency of H. pylori colonization of dental plaque by simultaneously amplifying two genes of the bacterium. One hundred dental plaque specimens were collected from dyspeptic patients before their upper gastrointestinal endoscopy and presence of H. pylori was determined through PCR assay using primers targeting two different genes of the bacterium. Eighty-nine of the 100 samples were included in final analysis. With simultaneous amplification of two bacterial genes 51.6% of the dental plaque samples were positive for H. pylori while this prevalence increased to 73% when only one gene amplification was used for bacterial identification. Detection of H. pylori in dental plaque samples is more reliable when two genes of the bacterium are simultaneously amplified as compared to one gene amplification only.  相似文献   

6.
The oral cavity of humans is inhabited by hundreds of bacterial species and some of them have a key role in the development of oral diseases, mainly dental caries and periodontitis. We describe for the first time the metagenome of the human oral cavity under health and diseased conditions, with a focus on supragingival dental plaque and cavities. Direct pyrosequencing of eight samples with different oral-health status produced 1 Gbp of sequence without the biases imposed by PCR or cloning. These data show that cavities are not dominated by Streptococcus mutans (the species originally identified as the ethiological agent of dental caries) but are in fact a complex community formed by tens of bacterial species, in agreement with the view that caries is a polymicrobial disease. The analysis of the reads indicated that the oral cavity is functionally a different environment from the gut, with many functional categories enriched in one of the two environments and depleted in the other. Individuals who had never suffered from dental caries showed an over-representation of several functional categories, like genes for antimicrobial peptides and quorum sensing. In addition, they did not have mutans streptococci but displayed high recruitment of other species. Several isolates belonging to these dominant bacteria in healthy individuals were cultured and shown to inhibit the growth of cariogenic bacteria, suggesting the use of these commensal bacterial strains as probiotics to promote oral health and prevent dental caries.  相似文献   

7.
Dental plaque as a biofilm   总被引:6,自引:0,他引:6  
Dental plaque is the diverse microbial community found on the tooth surface embedded in a matrix of polymers of bacterial and salivary origin. Once a tooth surface is cleaned, a conditioning film of proteins and glycoproteins is adsorbed rapidly to the tooth surface. Plaque formation involves the interaction between early bacterial colonisers and this film (the acquired enamel pellicle). To facilitate colonisation of the tooth surface, some receptors on salivary molecules are only exposed to bacteria once the molecule is adsorbed to a surface. Subsequently, secondary colonisers adhere to the already attached early colonisers (co-aggregation) through specific molecular interactions. These can involve protein-protein or carbohydrate-protein (lectin) interactions, and this process contributes to determining the pattern of bacterial succession. As the biofilm develops, gradients in biologically significant factors develop, and these permit the co-existence of species that would be incompatible with each other in a homogeneous environment. Dental plaque develops naturally, but it is also associated with two of the most prevalent diseases affecting industrialised societies (caries and periodontal diseases). Future strategies to control dental plaque will be targeted to interfering with the formation, structure and pattern of development of this biofilm.  相似文献   

8.
Investigations of interbacterial adhesion in dental plaque development are currently limited by the lack of a convenient assay to screen the multitude of species present in oral biofilms. To overcome this limitation, we developed a solid-phase fluorescence-based screening method to detect and identify coadhesive partner organisms in mixed-species biofilms. The applicability of this method was demonstrated using coaggregating strains of type 2 fimbrial adhesin-bearing actinomyces and receptor polysaccharide (RPS)-bearing streptococci. Specific adhesin/receptor-mediated coadhesion was detected by overlaying bacterial strains immobilized to a nitrocellulose membrane with a suspended, fluorescein-labeled bacterial partner strain. Coadhesion was comparable regardless of which cell type was labeled and which was immobilized. Formaldehyde treatment of bacteria, either in suspension or immobilized on nitrocellulose, abolished actinomyces type 2 fimbrial adhesin but not streptococcal RPS function, thereby providing a simple method for assigning complementary adhesins and glycan receptors to members of a coadhering pair. The method''s broader applicability was shown by overlaying colony lifts of dental plaque biofilm cultures with fluorescein-labeled strains of type 2 fimbriated Actinomyces naeslundii or RPS-bearing Streptococcus oralis. Prominent coadhesion partners included not only streptococci and actinomyces, as expected, but also other bacteria not identified in previous coaggregation studies, such as adhesin- or receptor-bearing strains of Neisseria pharyngitis, Rothia dentocariosa, and Kingella oralis. The ability to comprehensively screen complex microbial communities for coadhesion partners of specific microorganisms opens a new approach in studies of dental plaque and other mixed-species biofilms.  相似文献   

9.
A rapid method based on previously described DNA extraction procedures was developed for the isolation of DNA from dental plaque samples. The isolated DNA is suitable for use in the PCR. Freeze-thawing, cell wall-degrading enzymes, and guanidine isothiocyanate were used to lyse cells and release DNA. The released DNA was adsorbed onto diatomaceous earth and purified by washing with guanidine isothiocyanate, ethanol, and acetone. The purified DNA was released from the diatomaceous earth into an aqueous buffer and analyzed by PCR with 16S rDNA primers (rDNA is DNA coding for rRNA). As judged from studies with pure cultures of a number of bacterial species, gram-negative and gram-positive organisms were lysed equally well by this procedure. The amount of PCR product was proportional to the number of cells analyzed over the range tested, 500 to 50,000 cells. On the basis of studies with plaque samples that were spiked with known quantities of the oral bacterium Treponema denticola, the DNA prepared from plaque was free of substances inhibitory to PCR. This method should have utility in molecular genetic studies of bacterial populations not only in uncultured plaque samples but also in other complex bacterial assemblages.  相似文献   

10.
Quantitative light‐induced fluorescence (QLF) technology can detect some dental plaque as red fluorescence. This in vivo study aimed to identify the microbial characteristics of red fluorescent (RF) dental plaque using 16S rRNA gene sequencing and evaluate the correlations between RF plaque and the clinical symptoms of dental diseases. Paired supragingival plaque samples collected from each 10 subjects and consisted of RF and non‐RF dental plaques as observed by QLF technology using a 405 nm blue light source for excitation. The characteristics of the bacterial communities in the RF and non‐RF plaque samples were compared by sequencing analysis. An increase in microbial diversity was observed in RF plaque compared with the non‐RF plaque. There were significant differences in the community compositions between the 2 types of dental plaque. Periodontopathic bacteria were significantly more abundant in the RF plaque than non‐RF plaque. The fluorescence intensity of RF plaque was significantly related to the proportion of the periodontopathic bacterial community and the presence of gingival inflammation. In conclusion, the plaque red fluorescence is associated with changes in the microbial composition and enrichment of periodontopathic pathogens, which suggests that RF plaque detected by QLF technology could be used as a risk indicator for gingival inflammation.   相似文献   

11.
Fusobacterium nucleatum is considered for its role in colonization of initial and late microorganisms in dental plaque and for its coaggregation with other bacterial species. It is known that action of different antimicrobial substances may interfere with either virulence factors or with host-bacteria interaction. The goal of this study was to examine the influence of subinhibitory concentrations of chlorhexidine, triclosan, penicillin G and metronidazole on hemolytic activity and bacteriocin-like substance production of oral F. nucleatum. A high resistance to penicillin G was observed and 63% of the isolates were beta-lactamase positive. All the tested isolates were susceptible to metronidazole. F. nucleatum isolates grown with or without antimicrobials were alpha-hemolytics. Bacteriocin-like substance production was increased in isolates grown with penicillin G. Impaired production of hemolytic or antagonic substances can suggest a role in the regulation of oral microbiota.  相似文献   

12.
Apparatus which enables the simultaneous continuous monitoring of pH and Eh of bacterial dental plaque as it develops on a tooth surface in an artificial mouth is described. Details of the electrodes used, monitoring equipment, and culture conditions are given. Preliminary results are given showing the Eh and pH values of plaque produced in vitro to be in close agreement with readings reported for plaque in vivo. The effect of the incorporation of 1 per cent sucrose in the medium on these parameters is reported and a distinct inverse relationship between pH and Eh recorded.  相似文献   

13.
α-Amylase-binding streptococci (ABS) are a heterogeneous group of commensal oral bacterial species that comprise a significant proportion of dental plaque microfloras. Salivary α-amylase, one of the most abundant proteins in human saliva, binds to the surface of these bacteria via specific surface-exposed α-amylase-binding proteins. The functional significance of α-amylase-binding proteins in oral colonization by streptococci is important for understanding how salivary components influence oral biofilm formation by these important dental plaque species. This review summarizes the results of an extensive series of studies that have sought to define the molecular basis for α-amylase binding to the surface of the bacterium as well as the biological significance of this phenomenon in dental plaque biofilm formation.  相似文献   

14.
Bacterial pathogenesis presents an astounding arsenal of virulence factors that allow them to conquer many different niches throughout the course of infection. Principally fascinating is the fact that some bacterial species are able to induce different diseases by expression of different combinations of virulence factors. Nevertheless, studies aiming at screening for the presence of bacteriophages in humans have been limited. Such screening procedures would eventually lead to identification of phage-encoded properties that impart increased bacterial fitness and/or virulence in a particular niche, and hence, would potentially be used to reverse the course of bacterial infections. As the human oral cavity represents a rich and dynamic ecosystem for several upper respiratory tract pathogens. However, little is known about virus diversity in human dental plaque which is an important reservoir. We applied the culture-independent approach to characterize virus diversity in human dental plaque making a library from a virus DNA fraction amplified using a multiple displacement method and sequenced 80 clones. The resulting sequence showed 44% significant identities to GenBank databases by TBLASTX analysis. TBLAST homology comparisons showed that 66% was viral; 18% eukarya; 10% bacterial; 6% mobile elements. These sequences were sorted into 6 contigs and 45 single sequences in which 4 contigs and a single sequence showed significant identity to a small region of a putative prophage in the Corynebacterium diphtheria genome. These findings interestingly highlight the uniqueness of over half of the sequences, whilst the dominance of a pathogen-specific prophage sequences imply their role in virulence.  相似文献   

15.
The literature on the subject of dental bacterial plaque is extensive. In spite of considerable research, the mode of its formation together with the variability in bacterial content requires further clarification. Mechanical methods of plaque control are effective but limited in a population sense. Of the numerous chemotherapeutic agents in plaque control, chlorhexidin appears the most effective.  相似文献   

16.
牙菌斑是由多种微生物在牙面上沉积,有机基质互相集聚、交联而形成的生物膜结构,生物膜中微生物相互依存、相互竞争,构成了复杂的微生态关系。牙菌斑生物膜的形成是导致龋齿重要过程。本文综述了细菌生物膜与龋齿发生的关系,以期为龋齿的预防与治疗提供新的思路。  相似文献   

17.

Objective

Urease enzymes produced by oral bacteria generate ammonia, which can have a significant impact on the oral ecology and, consequently, on oral health. To evaluate the relationship of urease with dental plaque microbial profiles in children as it relates to dental caries, and to identify the main contributors to this activity.

Methods

82 supragingival plaque samples were collected from 44 children at baseline and one year later, as part of a longitudinal study on urease and caries in children. DNA was extracted; the V3–V5 region of the 16S rRNA gene was amplified and sequenced using 454 pyrosequencing. Urease activity was measured using a spectrophotometric assay. Data were analyzed with Qiime.

Results

Plaque urease activity was significantly associated with the composition of the microbial communities of the dental plaque (Baseline P = 0.027, One Year P = 0.012). The bacterial taxa whose proportion in dental plaque exhibited significant variation by plaque urease levels in both visits were the family Pasteurellaceae (Baseline P<0.001; One Year P = 0.0148), especially Haemophilus parainfluenzae. No association was observed between these bacteria and dental caries. Bacteria in the genus Leptotrichia were negatively associated with urease and positively associated with dental caries (Bonferroni P<0.001).

Conclusions

Alkali production by urease enzymes primarily from species in the family Pasteurellaceae can be an important ecological determinant in children’s dental plaque. Further studies are needed to establish the role of urease-associated bacteria in the acid/base homeostasis of the dental plaque, and in the development and prediction of dental caries in children.  相似文献   

18.
19.

Background  

Surface roughness is the main factor determining bacterial adhesion, biofilm growth and plaque formation on the dental surfaces in vivo. Air-polishing of dental surfaces removes biofilm but can also damage the surface by increasing its roughness. The purpose of this study was to investigate the surface damage of different conditions of air-polishing performed in vitro on a recently introduced dental restorative composite.  相似文献   

20.
pH in the extracellular matrix of bacterial biofilms is of central importance for microbial metabolism. Biofilms possess a complex three-dimensional architecture characterized by chemically different microenvironments in close proximity. For decades, pH measurements in biofilms have been limited to monitoring bulk pH with electrodes. Although pH microelectrodes with a better spatial resolution have been developed, they do not permit the monitoring of horizontal pH gradients in biofilms in real time. Quantitative fluorescence microscopy can overcome these problems, but none of the hitherto employed methods differentiated accurately between extracellular and intracellular microbial pH and visualized extracellular pH in all areas of the biofilms. Here, we developed a method to reliably monitor extracellular biofilm pH microscopically with the ratiometric pH-sensitive dye C-SNARF-4, choosing dental biofilms as an example. Fluorescent emissions of C-SNARF-4 can be used to calculate extracellular pH irrespective of the dye concentration. We showed that at pH values of <6, C-SNARF-4 stained 15 bacterial species frequently isolated from dental biofilm and visualized the entire bacterial biomass in in vivo-grown dental biofilms with unknown species composition. We then employed digital image analysis to remove the bacterial biomass from the microscopic images and adequately calculate extracellular pH values. As a proof of concept, we monitored the extracellular pH drop in in vivo-grown dental biofilms fermenting glucose. The combination of pH ratiometry with C-SNARF-4 and digital image analysis allows the accurate monitoring of extracellular pH in bacterial biofilms in three dimensions in real time and represents a significant improvement to previously employed methods of biofilm pH measurement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号