首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The "Polynesian motif" defines a lineage of human mtDNA that is restricted to Austronesian-speaking populations and is almost fixed in Polynesians. It is widely thought to support a rapid dispersal of maternal lineages from Taiwan ~4000 years ago (4 ka), but the chronological resolution of existing control-region data is poor, and an East Indonesian origin has also been proposed. By analyzing 157 complete mtDNA genomes, we show that the motif itself most likely originated >6 ka in the vicinity of the Bismarck Archipelago, and its immediate ancestor is >8 ka old and virtually restricted to Near Oceania. This indicates that Polynesian maternal lineages from Island Southeast Asia gained a foothold in Near Oceania much earlier than dispersal from either Taiwan or Indonesia 3-4 ka would predict. However, we find evidence in minor lineages for more recent two-way maternal gene flow between Island Southeast Asia and Near Oceania, likely reflecting movements along a "voyaging corridor" between them, as previously proposed on archaeological grounds. Small-scale mid-Holocene movements from Island Southeast Asia likely transmitted Austronesian languages to the long-established Southeast Asian colonies in the Bismarcks carrying the Polynesian motif, perhaps also providing the impetus for the expansion into Polynesia.  相似文献   

2.
Polynesian genetic affinities to populations of Asia were studied using mtDNA markers. A total of 1,037 individuals from 12 populations were screened for a 9-bp deletion in the intergenic region between the COII and tRNA(Lys) genes that approaches fixation in Polynesians. Sequence-specific oligonucleotide probes that identify specific mtDNA control region nucleotide substitutions were used to describe variation in individuals with the 9-bp deletion. The 9-bp deletion was not observed in northern Indians, Bangladeshis, or Pakistanis but was seen at low to moderate frequencies in the nine other Southeast Asian populations. Three substitutions in the control region at positions 16217, 16247, and 16261 have previously been observed at high frequency in Polynesian mtDNAs; this "Polynesian motif" was observed in 20% of east Indonesians with the 9-bp deletion but was observed in only one additional individual. mtDNA types related to the Polynesian motif are highest in frequency in the corridor from Taiwan south through the Philippines and east Indonesia, and the highest diversity for these types is in Taiwan. These results are consistent with linguistic evidence of a Taiwanese origin for the proto-Polynesian expansion, which spread throughout Oceania by way of Indonesia.  相似文献   

3.
Although genetic studies have contributed greatly to our understanding of the colonization of Near and Remote Oceania, important gaps still exist. One such gap is the Solomon Islands, which extend between Bougainville and Vanuatu, thereby bridging Near and Remote Oceania, and include both Austronesian-speaking and Papuan-speaking groups. Here, we describe patterns of mitochondrial DNA (mtDNA) and nonrecombining Y chromosome (NRY) variation in over 700 individuals from 18 populations in the Solomons, including 11 Austronesian-speaking groups, 3 Papuan-speaking groups, and 4 Polynesian Outliers (descended via back migration from Polynesia). We find evidence for ancient (pre-Lapita) colonization of the Solomons in old NRY paragroups as well as from M2-M353, which probably arose in the Solomons ~9,200 years ago and is the most frequent NRY haplogroup there. There are no consistent genetic differences between Austronesian-speaking and Papuan-speaking groups, suggesting extensive genetic contact between them. Santa Cruz, which is located in Remote Oceania, shows unusually low frequencies of mtDNA and NRY haplogroups of recent Asian ancestry. This is in apparent contradiction with expectations based on archaeological and linguistic evidence for an early (~3,200 years ago), direct colonization of Santa Cruz by Lapita people from the Bismarck Archipelago, via a migration that "leapfrogged" over the rest of the Solomons. Polynesian Outliers show dramatic island-specific founder events involving various NRY haplogroups. We also find that NRY, but not mtDNA, genetic distance is correlated with the geographic distance between Solomons groups and that historically attested spheres of cultural interaction are associated with the recent genetic structure of Solomons groups, as revealed by mtDNA HV1 sequence and Y-STR haplotype diversity. Our results fill an important lacuna in human genetic studies of Oceania and aid in understanding the colonization and genetic history of this region.  相似文献   

4.
Analyses of mitochondrial DNA (mtDNA) and nonrecombining Y chromosome (NRY) variation in the same populations are sometimes concordant but sometimes discordant. Perhaps the most dramatic example known of the latter concerns Polynesians, in which about 94% of Polynesian mtDNAs are of East Asian origin, while about 66% of Polynesian Y chromosomes are of Melanesian origin. Here we analyze on a genome-wide scale, to our knowledge for the first time, the origins of the autosomal gene pool of Polynesians by screening 377 autosomal short tandem repeat (STR) loci in 47 Pacific Islanders and compare the results with those obtained from 44 Chinese and 24 individuals from Papua New Guinea. Our data indicate that on average about 79% of the Polynesian autosomal gene pool is of East Asian origin and 21% is of Melanesian origin. The genetic data thus suggest a dual origin of Polynesians with a high East Asian but also considerable Melanesian component, reflecting sex-biased admixture in Polynesian history in agreement with the Slow Boat model. More generally, these results also demonstrate that conclusions based solely on uniparental markers, which are frequently used in population history studies, may not accurately reflect the history of the autosomal gene pool of a population.  相似文献   

5.
The genus Bidens (Compositae) comprises c. 230 species distributed across five continents, with the 41 Polynesian species displaying the greatest ecomorphological variation in the group. However, the genus has had a long and complicated taxonomic history, and its phylogenetic and biogeographic history are poorly understood. To resolve the evolutionary history of the Polynesian Bidens, 152 individuals representing 91 species were included in this study, including 39 of the 41 described species from Polynesia. Four chloroplast and two nuclear DNA markers were utilized to estimate phylogenetic relationships, divergence times, and biogeographic history. Bidens was found to be polyphyletic within Coreopsis, consistent with previous assessments. The Polynesian radiation was resolved as monophyletic, with the initial dispersal into the Pacific possibly from South America to either the Hawaiian or Marquesas Islands. From the Marquesas, Bidens dispersed to the Society Islands, and ultimately to the Austral Islands. The initial diversification of the crown group in the Pacific is estimated to have occurred ~1.63 mya (0.74–2.72, 95% HPD), making Polynesian Bidens among the youngest and most rapid plant diversification events documented in the Pacific. Our findings suggest that relatively rare long‐distance dispersal and founder‐event speciation, coupled with subsequent loss of dispersal potential and within‐island speciation, can explain the repeated and explosive adaptive radiation of Bidens throughout the archipelagoes of Polynesia.  相似文献   

6.
Archaeological, linguistic, and genetic studies show that Austronesian (AN)-speaking Polynesian ancestors came from Asia/Taiwan to the Bismarck Archipelago in Near Oceania more than 3,600 years ago, and then expanded into Remote Oceania. However, it remains unclear whether they extensively mixed with indigenous Melanesians who had populated the Bismarck Archipelago before their arrival. To examine the extent of admixture between Polynesian ancestors and indigenous Melanesians, mitochondrial DNA (mtDNA) variations in the D-loop region and the cytochrome oxidase and lysine transfer RNA (COII/tRNA(Lys)) intergenic 9-bp deletion were analyzed in the following three Oceanian populations: 1) Balopa Islanders as AN-speaking Melanesians living in the northwestern end of the Bismarck Archipelago, 2) Tongans as AN-speaking Polynesians, and 3) Gidra as non-Austronesian-speaking Melanesians in the southwestern lowlands of Papua New Guinea. Phylogenetic analysis of mtDNA sequences revealed that more than 60% of mtDNA sequences in the Balopa Islanders were very similar to those in Tongans, suggesting an extensive gene flow from Polynesian ancestors to indigenous Melanesians. Furthermore, analysis of pairwise difference distributions for the D-loop sequences with the 9-bp deletion and the Polynesian motif (i.e., T16217C, A16247G, and C16261T) suggested that the expansion of Polynesian ancestors possessing these variations occurred approximately 7,000 years ago.  相似文献   

7.
8.
Melanesian origin of Polynesian Y chromosomes   总被引:16,自引:0,他引:16  
BACKGROUND: Two competing hypotheses for the origins of Polynesians are the 'express-train' model, which supposes a recent and rapid expansion of Polynesian ancestors from Asia/Taiwan via coastal and island Melanesia, and the 'entangled-bank' model, which supposes a long history of cultural and genetic interactions among Southeast Asians, Melanesians and Polynesians. Most genetic data, especially analyses of mitochondrial DNA (mtDNA) variation, support the express-train model, as does linguistic and archaeological evidence. Here, we used Y-chromosome polymorphisms to investigate the origins of Polynesians. RESULTS: We analysed eight single nucleotide polymorphisms (SNPs) and seven short tandem repeat (STR) loci on the Y chromosome in 28 Cook Islanders from Polynesia and 583 males from 17 Melanesian, Asian and Australian populations. We found that all Polynesians belong to just three Y-chromosome haplotypes, as defined by unique event polymorphisms. The major Y haplotype in Polynesians (82% frequency) was restricted to Melanesia and eastern Indonesia and most probably arose in Melanesia. Coalescence analysis of associated Y-STR haplotypes showed evidence of a population expansion in Polynesians, beginning about 2,200 years ago. The other two Polynesian Y haplotypes were widespread in Asia but were also found in Melanesia. CONCLUSIONS: All Polynesian Y chromosomes can be traced back to Melanesia, although some of these Y-chromosome types originated in Asia. Together with other genetic and cultural evidence, we propose a new model of Polynesian origins that we call the 'slow-boat' model: Polynesian ancestors did originate from Asia/Taiwan but did not move rapidly through Melanesia; rather, they interacted with and mixed extensively with Melanesians, leaving behind their genes and incorporating many Melanesian genes before colonising the Pacific.  相似文献   

9.
The human settlement of the Pacific Islands represents one of the most recent major migration events of mankind. Polynesians originated in Asia according to linguistic evidence or in Melanesia according to archaeological evidence. To shed light on the genetic origins of Polynesians, we investigated over 400 Polynesians from 8 island groups, in comparison with over 900 individuals from potential parental populations of Melanesia, Southeast and East Asia, and Australia, by means of Y chromosome (NRY) and mitochondrial DNA (mtDNA) markers. Overall, we classified 94.1% of Polynesian Y chromosomes and 99.8% of Polynesian mtDNAs as of either Melanesian (NRY-DNA: 65.8%, mtDNA: 6%) or Asian (NRY-DNA: 28.3%, mtDNA: 93.8%) origin, suggesting a dual genetic origin of Polynesians in agreement with the "Slow Boat" hypothesis. Our data suggest a pronounced admixture bias in Polynesians toward more Melanesian men than women, perhaps as a result of matrilocal residence in the ancestral Polynesian society. Although dating methods are consistent with somewhat similar entries of NRY/mtDNA haplogroups into Polynesia, haplotype sharing suggests an earlier appearance of Melanesian haplogroups than those from Asia. Surprisingly, we identified gradients in the frequency distribution of some NRY/mtDNA haplogroups across Polynesia and a gradual west-to-east decrease of overall NRY/mtDNA diversity, not only providing evidence for a west-to-east direction of Polynesian settlements but also suggesting that Pacific voyaging was regular rather than haphazard. We also demonstrate that Fiji played a pivotal role in the history of Polynesia: humans probably first migrated to Fiji, and subsequent settlement of Polynesia probably came from Fiji.  相似文献   

10.
The origin of the Polynesian bottle gourd (Lagenaria siceraria), an important crop species in prehistoric Polynesia, has remained elusive. Most recently, a South American origin has been favored as the bottle gourd could have been introduced from this continent with the sweet potato by Polynesian voyagers around A.D. 1,000. To test the hypothesis of an American origin for the Polynesian bottle gourd, we developed seven markers specific to bottle gourd (two chloroplast and five nuclear). The nuclear markers were developed using a new technique where polymorphic inter simple sequence repeat (ISSR) markers are converted into single-locus polymerase chain reaction and sequencing markers--an approach that will be useful for developing markers in other taxa. All seven markers were sequenced in 36 cultivars of bottle gourd from Asia, the Americas, and Polynesia. The results support a dual origin for the Polynesian bottle gourd: the chloroplast markers are exclusively of Asian origin, but the nuclear markers show alleles originating in both the Americas and Asia. Because hybridization of Polynesian bottle gourds with post-European introductions cannot be excluded, ancient DNA from archaeological material will be useful for further elucidating the prehistoric movements of this species in Polynesia. This work has implications not only for the dispersal of the Polynesian bottle gourd but also for the domestication and dispersal of the species as a whole.  相似文献   

11.
Stable isotopes (δ13C, δ15N, and δ34S) are used to characterize the diet of the adult individuals (n = 99) interred in the Namu burial ground located on the Polynesian outlier of Taumako (~300–750 BP). Polynesian outliers are islands on the fringe of Remote Oceania that were inhabited by a back migration of populations from Polynesia during prehistory. As a result of admixture with nearby island communities, little is known about the social structure and social diversity of the prehistoric inhabitants of Taumako. The distribution of prestige grave goods within the Namu cemetery has been used as evidence to support the premise that Taumakoan social structure was stratified like Polynesian societies. Here we test the hypothesis that “wealthy” individuals and males will display isotopic ratios indicative of the consumption of “high status” foods in the Pacific islands such as pork, chicken, sea turtle, and pelagic fish. The isotope results suggest the δ34S values were diagenetically altered, possibly an effect of volcanism. The carbon and nitrogen stable isotope ratios indicate that the diet of all the individuals included a mixture of C3 terrestrial plant foods (likely starchy staples such as yam, taro, and breadfruit, in addition to nuts) and a variety of marine resources, including reef and pelagic fish. The stable isotope results indicate that wealthy individuals and males were eating more foods from higher trophic levels, interpreted as being high status animal foods. The socially differentiated food consumption patterns are discussed within a Pacific island context. Am J Phys Anthropol 151:589–603, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

12.
The islands of remote Polynesia (east of Rotuma, Samoa, Tonga and New Zealand) have long been thought to contain few, if any, native ants. The findings of recent sediment core studies, however, challenge this conventional wisdom and indicate some species may be native. The majority of ant species in remote Polynesia, however, are introductions from tropical and subtropical regions around the world. Despite this diversity of origins, and the lack of a common coevolutionary history in the region, patterns of organization in remote Polynesian ant communities are generally similar to those observed in coevolved continental areas. The distribution of ant species across Polynesia is consistent with a primary mechanism of anthropogenic introductions, with the availability of suitable habitat as a secondary mechanism. The species-area relationship for better-collected Polynesian islands reveals these islands are depauperate compared to Melanesian islands with endemic species. Four out of five of the “world’s worst” invasive ant species are present in remote Polynesia. Recent studies have documented how range expansions of such ant species have had detrimental effects on native arthropod populations, although the overall effects of introduced ants per se on naïve endemic island arthropods may never be known with certainty. Considering the relatively fragile nature of island ecosystems, and the potential transformative effects of invasive ants on arthropod communities, vigilance is required to prevent the spread of invasive ant species across Polynesia.  相似文献   

13.
Conservation of a dinucleotide simple sequence repeat locus in sharks   总被引:5,自引:0,他引:5  
Recent studies indicate that the flanking region and repeat motif structure of conserved microsatellite loci are useful for phylogenetic inference. Most comparative studies of microsatellite loci involve relatively closely related species, however, primarily because primers developed for one species often amplify only related species. We describe an analysis of a microsatellite locus in lamniform sharks that we estimate has been conserved for a billion years. Combined analysis of the flanking sequence and repeat motif structure resulted in a gene tree comparable to those reported from similar analyses of other genes. The conservation of the simple sequence repeat (SSR), and of the sequence flanking the SSR, is explained by a low substitution rate in sharks coupled with the possibility that mutations which interrupt perfect repeats are lost by replication slippage.  相似文献   

14.
The importance of water in biological systems has long been recognized in chemistry and biology communities. In this article we describe a new manner by which water affects biomolecular behaviors, called halogen–water–hydrogen bridge (XWH bridge), that is, one hydrogen bonding (H-bonding) in water-mediated H-bond bridge is replaced by halogen bonding (X-bonding). Although behaving similarly to water-mediated H-bond motif, the XWH bridge usually stands in multifurcated forms and possesses stronger directionality. Quantum mechanical analysis on several model and real systems reveals that the XWH bridges are more thermodynamically stable than other water-involved interactions, and this stability is further enhanced by the cooperation of X-bonding and H-bonding. Crystal structure survey clearly demonstrates the significance of XWH bridges in stabilization of biomolecular conformations and in mediation of protein–protein, protein–nucleic acid, and receptor–ligand recognition and binding. These findings shed light into the potential value of XWH bridges in drug design and biological engineering.  相似文献   

15.
It is now generally accepted that Polynesia was first settled by peoples from southeast Asia. An alternative that eastern parts of Polynesia were first inhabited by Amerindians has found little support. There are, however, many indications of a 'prehistoric' (i.e. before Polynesia was discovered by Europeans) contact between Polynesia and the Americas, but genetic evidence of a prehistoric Amerindian contribution to the Polynesian gene pool has been lacking. We recently carried out genomic HLA (human leucocyte antigen) typing as well as typing for mitochondrial DNA (mtDNA) and Y chromosome markers of blood samples collected in 1971 and 2008 from reputedly non-admixed Easter Islanders. All individuals carried HLA alleles and mtDNA types previously found in Polynesia, and most of the males carried Y chromosome markers of Polynesian origin (a few had European Y chromosome markers), further supporting an initial Polynesian population on Easter Island. The HLA investigations revealed, however, that some individuals also carried HLA alleles which have previously almost only been found in Amerindians. We could trace the introduction of these Amerindian alleles to before the Peruvian slave trades, i.e. before the 1860s, and provide suggestive evidence that they were introduced already in prehistoric time. Our results demonstrate an early Amerindian contribution to the Polynesian gene pool on Easter Island, and illustrate the usefulness of typing for immunogenetic markers such as HLA to complement mtDNA and Y chromosome analyses in anthropological investigations.  相似文献   

16.
17.
The Botocudo Indians were hunter‐gatherer groups that occupied the East‐Central regions of Brazil decimated during the colonial period in the country. During the 19th century, craniometric studies suggested that the Botocudo resembled more the Paleoamerican population of Lagoa Santa than typical Native Americans groups. These results suggest that the Botocudo Indians might represent a population that retained the biological characteristics of early groups of the continent, remaining largely isolated from groups that gave origin to the modern Native South American variation. Moreover, recently, some of the Botocudo remains have been shown to have mitochondrial and autosomal DNA lineages currently found in Polynesian populations. Here, we explore the morphological affinities of Botocudo skulls within a worldwide context. Distinct multivariate analyses based on 32 craniometric variables show that 1) the two individuals with Polynesian DNA sequences have morphological characteristics that fall within the Polynesian and Botocudo variation, making their assignation as Native American specimens problematic, and 2) there are high morphological affinities between Botocudo, Early Americans, and the Polynesian series of Easter Island, which support the early observations that the Botocudo can be seen as retaining the Paleoamerican morphology, particularly when the neurocranium is considered. Although these results do not elucidate the origin of the Polynesian DNA lineages among the Botocudo, they support the hypothesis that the Botocudo represent a case of late survival of ancient Paleoamerican populations, retaining the morphological characteristics of ancestral Late Pleistocene populations from Asia. Am J Phys Anthropol 157:202–216, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

18.
The leucine rich repeat (LRR) motif that participates in many biomolecular recognition events in cells was suggested as a general scaffold for producing artificial receptors. We describe here the design and first total chemical synthesis of small LRR proteins, and their structural analysis. When evaluating the tertiary structure as a function of different number of repeating units (1-3), we were able to find that the 3-repeats sequence, containing 90 amino acids, folds into the expected structure.  相似文献   

19.
The diversity and composition of biological communities might often depend on colonization history because early colonists can exclude future colonists through a priority effect. These priority effects, which have been observed across a wide variety of ecosystems, often arise because early colonists have sufficient time to use available resources efficiently and subsequently withhold them from invaders. Here, we explore the extent to which rapid local adaptive evolution contributes to the pervasiveness of these priority effects. Using an individual-based simulation, we show that early colonization allows the descendants of colonists to adapt to novel conditions and reduce the establishment success of an initially ecologically equivalent competing species. Our model predicts that slight differences in colonization timing and adaptive capacity between species can substantially alter the dynamics and diversity of communities. We also show that priority effects and gene flow can generate a novel mechanism for the expansion and retraction of species distributions in a metacommunity. Our results suggest that local adaptation combined with stochastic colonization events can obscure direct relationships between species distributions and environmental gradients. Given the increasing recognition of rapid, microgeographic evolution in natural populations, we expect that evolutionary priority effects could affect the structure and dynamics of many natural metacommunities.  相似文献   

20.
Soil nematode communities and food web indices can inform about the complexity, nutrient flows and decomposition pathways of soil food webs, reflecting soil quality. Relative abundance of nematode feeding and life‐history groups are used for calculating food web indices, i.e., maturity index (MI), enrichment index (EI), structure index (SI) and channel index (CI). Molecular methods to study nematode communities potentially offer advantages compared to traditional methods in terms of resolution, throughput, cost and time. In spite of such advantages, molecular data have not often been adopted so far to assess the effects of soil management on nematode communities and to calculate these food web indices. Here, we used high‐throughput amplicon sequencing to investigate the effects of tillage (conventional vs. reduced) and organic matter addition (low vs. high) on nematode communities and food web indices in 10 European long‐term field experiments and we assessed the relationship between nematode communities and soil parameters. We found that nematode communities were more strongly affected by tillage than by organic matter addition. Compared to conventional tillage, reduced tillage increased nematode diversity (23% higher Shannon diversity index), nematode community stability (12% higher MI), structure (24% higher SI), and the fungal decomposition channel (59% higher CI), and also the number of herbivorous nematodes (70% higher). Total and labile organic carbon, available K and microbial parameters explained nematode community structure. Our findings show that nematode communities are sensitive indicators of soil quality and that molecular profiling of nematode communities has the potential to reveal the effects of soil management on soil quality.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号