首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The pyruvate dehydrogenase complex of Bacillus stearothermophilus was treated with Staphylococcus aureus V8 proteinase, causing cleavage of the dihydrolipoamide acetyltransferase polypeptide chain (apparent Mr 57 000), inhibition of the enzymic activity and disassembly of the complex. Fragments of the dihydrolipoamide acetyltransferase chains with apparent Mr 28 000, which contained the acetyltransferase activity, remained assembled as a particle ascribed the role of an inner core of the complex. The lipoic acid residue of each dihydrolipoamide acetyltransferase chain was found as part of a small but stable domain that, unlike free lipoamide, was able still to function as a substrate for reductive acetylation by pyruvate in the presence of intact enzyme complex or isolated pyruvate dehydrogenase (lipoamide) component. The lipoyl domain was acidic and had an apparent Mr of 6500 (by sedimentation equilibrium), 7800 (by sodium dodecyl sulphate/polyacrylamide-gel electrophoresis) and 10 000 and 20 400 (by gel filtration in the presence and in the absence respectively of 6M-guanidinium chloride). 1H-n.m.r. spectroscopy of the dihydrolipoamide acetyltransferase inner core demonstrated that it did not contain the segments of highly mobile polypeptide chain found in the pyruvate dehydrogenase complex. 1H-n.m.r. spectroscopy of the lipoyl domain demonstrated that it had a stable and defined tertiary structure. From these and other experiments, a model of the dihydrolipoamide acetyltransferase chain is proposed in which the small, folded, lipoyl domain comprises the N-terminal region, and the large, folded, core-forming domain that contains the acetyltransferase active site comprises the C-terminal region. These two regions are separated by a third segment of the chain, which includes a substantial region of polypeptide chain that enjoys high conformational mobility and facilitates movement of the lipoyl domain between the various active sites in the enzyme complex.  相似文献   

2.
The dihydrolipoamide acetyltransferase component (E2p) of the pyruvate dehydrogenase complex of Escherichia coli contains three highly homologous sequences of about 100 residues that are tandemly repeated to form the N-terminal half of the polypeptide chain. All three sequences include a lysine residue that is a site for lipoylation and they appear to form independently folded functional domains. These lipoyl domains are in turn linked to a much larger (about 300 residues) subunit-binding domain of the E2p chain that aggregates to form the octahedral inner core of the complex and also contains the acetyltransferase active site. In order to investigate whether individual lipoyl domains play different parts in the enzymic mechanism, selective deletions were made in vitro in the dihydrolipoamide acetyltransferase gene (aceF) so as to excise one or two of the repeating sequences. This was facilitated by the high degree of homology in these sequences, which allowed the creation of hybrid lipoyl domains that closely resemble the originals. Pyruvate dehydrogenase complexes incorporating these genetically reconstructed E2p components were purified and their structures were confirmed. It was found that the overall catalytic activity, the system of active site coupling, and the ability to complement pyruvate dehydrogenase complex mutants, were not significantly affected by the loss of one or even two lipoyl domains per E2p chain. No special role can be attached thus far to individual lipoyl domains. On the other hand, certain genetic deletions affecting the acetyltransferase domain caused inactivation of the complex, highlighting particularly sensitive areas of that part of the E2p chain.  相似文献   

3.
L C Packman  G Hale    R N Perham 《The EMBO journal》1984,3(6):1315-1319
Each polypeptide chain in the lipoate acetyltransferase (E2) core of the pyruvate dehydrogenase complex from Escherichia coli contains three repeating sequences in the N-terminal half of the molecule. The repeats are highly homologous in primary structure and each includes a lysine residue that is a potential site for lipoylation. We have shown that all three sites are lipoylated, at least in part, and that the three lipoylated segments of the E2 chain can be isolated as distinct functional domains after limited proteolysis. Each domain becomes partly acetylated in the intact complex in the presence of substrate. In the primary structure, the domains are separated by regions of polypeptide chain oddly rich in alanine and proline residues. These regions are probably the conformationally mobile segments observed in the 1H-n.m.r. spectrum of the complex and which are removed by tryptic cleavage at Lys-316. The C-terminal half of the molecule contains the acetyltransferase active site and the binding sites for E1, E3 and other E2 subunits. The pyruvate dehydrogenase complex of E. coli, which has a heterogeneous quaternary structure, is thus far unique among the 2-oxo acid dehydrogenase complexes in possessing more than one lipoyl domain per E2 chain, but this may be a general feature of the enzyme from Gram-negative organisms.  相似文献   

4.
The pyruvate dehydrogenase complex of Escherichia coli was treated with o-phenylene bismaleimide in the presence of the substrate pyruvate, producing almost complete cross-linking of the lipoate acetyltransferase polypeptide chains as judged by sodium dodecyl sulphate/polyacrylamide-gel electrophoresis. This took place without effect on the catalytic activities of the other two component enzymes and with little evidence of cross-links being formed with other types of protein subunit. Limited proteolysis with trypsin indicated that the cross-links were largely confined to the lipoyl domains of the lipoate acetyltransferase component of the same enzyme particle. This intramolecular cross-linking had no effect on the very sharp resonances observed in the 1H n.m.r. spectrum of the enzyme complex, which derive from regions of highly mobile polypeptide chain in the lipoyl domains. Comparison of the spin–spin relaxation times, T2, with the measured linewidths supported the idea that the highly mobile region is best characterized as a random coil. Intensity measurements in spin-echo spectra showed that it comprises a significant proportion (probably not less than one-third) of a lipoyl domain and is thus much more than a small hinge region, but there was insufficient intensity in the resonances to account for the whole lipoyl domain. On the other hand, no evidence was found in the 1H n.m.r. spectrum for a substantial structured region around the lipoyl-lysine residues that was free to move on the end of this highly flexible connection. If such a structured region were bound to other parts of the enzyme complex for a major part of its time, its resonances might be broadened sufficiently to evade detection by 1H n.m.r. spectroscopy.  相似文献   

5.
The soluble tellurium oxyanion, tellurite, is toxic for most organisms. At least in part, tellurite toxicity involves the generation of oxygen-reactive species which induce an oxidative stress status that damages different macromolecules with DNA, lipids and proteins as oxidation targets. The objective of this work was to determine the effects of tellurite exposure upon the Escherichia coli pyruvate dehydrogenase (PDH) complex. The complex displays two distinct enzymatic activities: pyruvate dehydrogenase that oxidatively decarboxylates pyruvate to acetylCoA and tellurite reductase, which reduces tellurite (Te4+) to elemental tellurium (Teo). PDH complex components (AceE, AceF and Lpd) become oxidized upon tellurite exposure as a consequence of increased carbonyl group formation. When the individual enzymatic activities from each component were analyzed, AceE and Lpd did not show significant changes after tellurite treatment. AceF activity (dihydrolipoil acetyltransferase) decreased ~30% when cells were exposed to the toxicant. Finally, pyruvate dehydrogenase activity decreased >80%, while no evident changes were observed in complex′s tellurite reductase activity.  相似文献   

6.
The hydrogenase from Paracoccus denitrificans, which is an intrinsic membrane protein, has been solubilised from membranes by Triton X-100. The partial specific volume of the solubilised protein has been determined using sucrose density gradient centrifugation in H2O and 2H2O. The values of the specific volumes of hydrogenase, measured in the presence or absence of Triton X-100, are 0.73 and 0.74 ml . g-1, respectively, indicating that hydrogenase binds much less than one micelle of Triton X-100. The sedimentation coefficient of hydrogenase is increased from 10.4 S to 15.9 S on removal of detergent. The Stokes' radius of hydrogenase, determined by gel filtration on Sepharose 6B, is 5.5 nm in the presence of Triton X-100 compared to 6.7 nm in the absence of detergent. The apparent molecular weight therefore increases from 242,500 to 466,000 on removal of detergent. In the presence of urea and sodium dodecylsulphate, the hydrogenase has an apparent molecular weight of 63,000. The enzyme therefore behaves as a non-covalently linked tetramer in the presence of Triton X-100. Removal of Triton X-100 results in association of tetramers to form octamers.  相似文献   

7.
8.
The 2-oxoglutarate dehydrogenase multienzyme complex of Escherichia coli was treated with trypsin at pH 7.0 at 0 degrees C. Loss of the overall catalytic activity was accompanied by rapid cleavage of the lipoate succinyltransferase polypeptide chains, this apparent Mr falling from 50 000 to 36 000 as judged by sodium dodecyl sulphate/polyacrylamide-gel electrophoresis. A slower shortening of the 2-oxoglutarate decarboxylase chains was also observed, whereas the lipoamide dehydrogenase chains were unaffected. The inactive trypsin-treated enzyme had lost the lipoic acid-containing regions of the lipoate succinyltransferase polypeptide chains, yet remained a highly assembled structure, as judged by gel filtration and electron microscopy. The lipoic acid-containing regions are therefore likely to be physically exposed in the complex, protruding from the structural core formed by the lipoate succinyltransferase component between the subunits of the other component enzymes. Proton nuclear magnetic resonance spectroscopy of the 2-oxoglutarate dehydrogenase complex revealed the existence of substantial regions of polypeptide chain with remarkable intramolecular mobility, most of which were retained after removal of the lipoic acid-containing regions by treatment of the complex with trypsin. By analogy with the comparably mobile regions of the pyruvate dehydrogenase complex of E. coli, it is likely that the highly mobile regions of polypeptide chain in the 2-oxoglutarate complex are in the lipoate succinyltransferase component and encompass the lipoyl-lysine residues. It is clear, however, that the mobility of this polypeptide chain is not restricted to the immediate vicinity of these residues.  相似文献   

9.
The molecular weight and polypeptide chain stoichiometry of the native pyruvate dehydrogenase multienzyme complex from Escherichia coli were determined by independent techniques. The translational diffusion coefficient (Do20,w) of the complex was measured by laser light intensity fluctuation spectroscopy and found to be 0.90 (±0.02) × 10?11m2/s. When this was combined in the Svedberg equation with the measured sedimentation coefficient (so20,w = 60.2 (±0.4) S) and partial specific volume (v? = 0.735 (±0.01) ml/g), the molecular weight of the intact native complex was calculated to be 6.1 (±0.3) × 106. The polypeptide chain stoichiometry (pyruvate decarboxylase: lipoate acetyltransferase: lipoamide dehydrogenase) of the same sample of pyruvate dehydrogenase complex was measured by the radioamidination technique of Bates et al. (1975) and found to be 1.56:1.0:0.78.From this stoichiometry and the published polypeptide chain molecular weights estimated by sodium dodecyl sulphate/polyacrylamide gel electrophoresis, a minimum chemical molecular weight of 283,000 was calculated. This structure must therefore be repeated approximately 22 times to make up the native complex, a number which is in good agreement with the expected repeat of 24 times if the lipoate acetyltransferase core component has octahedral symmetry. It is consistent with what appears in the electron microscope to be trimer-clustering of the lipoate acetyltransferase chains at the corners of a cube. It rules out any structure based on 16 lipoate acetyltransferase chains comprising the enzyme core.The preparation of pyruvate dehydrogenase complex was polydisperse: in addition to the major component, two minor components with sedimentation coefficients (so20,w) of 90.3 (±0.9) S and 19.8 (±0.3) S were observed. Together they comprised about 17% of the total protein in the enzyme sample. Both were in slowly reversible equilibrium with the major 60.2 S component but appeared to be enzymically active in the whole complex reaction. The faster-sedimenting species is probably a dimer of the complex, whereas the slower-sedimenting species has the properties of an incomplete aggregate of the component enzymes of the complex based on a trimer of the lipoate acetyltransferase chain.  相似文献   

10.
Deletion of two of the three homologous lipoyl domains that form the N-terminal half of each dihydrolipoamide acetyltransferase (E2p) polypeptide chain of the Escherichia coli pyruvate dehydrogenase complex can be achieved by in vitro deletion in the structural gene aceF. A site-directed mutagenesis of this shortened aceF gene was carried out to replace the glutamine residue at position 291 (wild-type numbering) with a histidine residue. Residue 291 is near the middle of a long segment (about 30 amino acid residues) of polypeptide chain, rich in alanine, proline, and charged amino acids, that links the remaining lipoyl domain to the dihydrolipoamide dehydrogenase (E3) binding domain in the E2p chain. A fully active enzyme complex was still assembled, and despite the enormous size of the particle (Mr approximately 4 x 10(6)), sharp resonances attributable to the single new histidine residue per E2p chain could be detected in the 400-MHz 1H NMR spectrum of the complex. The sharpness of these resonances, their chemical shifts (7.94 and 7.05 ppm), and the apparent pKa (6.4) of the side chain were all consistent with this histidine residue being exposed to solvent in a conformationally flexible region of the E2p polypeptide chain. These experiments provide direct proof for the conformational flexibility of this region of polypeptide chain, which is thought to play an important part in the movement of the lipoyl domain required for active site coupling in the enzyme complex.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
The intramolecular passage of substrate between the component enzymes of the pyruvate dehydrogenase multienzyme complex of Escherichia coli was examined. A series of partly reassembled complexes, varying only in their E1 (pyruvate decarboxylase, EC 1.2.4.1) content, was incubated with pyruvate in the absence of CoA, conditions under which the lipoic acid residues covalently bound to the E2 (lipoate acetyltransferase, EC2.3.1.12) chains of the complex become reductively acetylated, and the reaction then ceases. The fraction of E2 chains thus acetylated was estimated by specific reaction of the thiol groups in the acetyl-lipoic acid moieties with N-ethyl[2,3-14C]maleimide. The simplest interpretation of the results was that a single E1 dimer is capable of catalysing the rapid acetylation of 8-12 E2 chains, in good agreement with the results of Bates, Danson, Hale, Hooper & Perham [(1977) Nature (London) 268, 313-316]. This novel functional connexion of active sites must be brought about by transacetylation reactions between lipoic acid residues of neighbouring E2 chains in the enzyme complex. There was also a slow transacylation process between the rapidly acetylated lipoic acid residues and those that did not react in the initial, faster phase. This interaction was not investigated in detail, since it is too slow to be of kinetic significance in the normal enzymic reaction.  相似文献   

12.
13.
In vitro deletion and site-directed mutagenesis of the aceF gene of Escherichia coli was used to generate dihydrolipoamide acetyltransferase (E2p) polypeptide chains containing various permutations and combinations of functional and non-functional lipoyl domains. A lipoyl domain was rendered non-functional by converting the lipoylatable lysine residue to glutamine. Two- and three-lipoyl domain E2p chains, with lipoyl-lysine (Lys244) substituted by glutamine in the innermost lipoyl domains (designated +/- and +/+/-, respectively), and similar chains with lipoyl-lysine (Lys143) substituted by glutamine in the outer lipoyl domains (designated -/+ and -/-/+), were constructed. In all instances, pyruvate dehydrogenase complexes were assembled in vivo around E2p cores composed of the modified peptide chains. All the complexes were essentially fully active in catalysis, although the complex containing the -/-/+ version of the E2p polypeptide chain showed a 50% reduction in specific catalytic activity. Similarly, active-site coupling in the complexes containing the +/-, +/+/- and -/+ constructions of the E2p chains was not significantly different from that achieved by the wild-type complex. However, active-site coupling in the complex containing the -/-/+ version of the E2p chain was slightly impaired, consistent with the reduced overall complex activity. These results indicate that during oxidative decarboxylation there is no mandatory order of reductive acetylation of repeated lipoyl domains within E2p polypeptide chains, and strongly suggest that the three tandemly repeated lipoyl domains in the wild-type E2p chain function independently in the pyruvate dehydrogenase complex.  相似文献   

14.
15.
Two lipoic acid residues on each dihydrolipoamide acetyltransferase (E2) chain of the pyruvate dehydrogenase multienzyme complex of Escherichia coli were found to undergo oxidoreduction reactions with NAD+ catalysed by the lipoamide dehydrogenase component. It was observed that: (a) 2 mol of reagent/mol of E2 chain was incorporated when the complex was incubated with N-ethylmaleimide in the presence of acetyl-SCoA and NADH; (b) 4 mol of reagent/mol of E2 chain was incorporated when the complex was incubated with N-ethylmaleimide in the presence of NADH; (c) between 1 and 2 mol of acetyl groups/mol of E2 chain was incorporated when the complex was incubated with acetyl-SCoA plus NADH; (d) 2 mol of acetyl groups/mol of E2 chain was incorporated when the complex was incubated with pyruvate either before or after many catalytic turnovers through the overall reaction. There was no evidence to support the view that only half of the dihydrolipoic acid residues can be reoxidized by NAD+. However, chemical modification of lipoic acid residues with N-ethylmaleimide was shown to proceed faster than the accompanying loss of enzymic activity under all conditions tested, which indicates that not all the lipoyl groups are essential for activity. The most likely explanation for this result is an enzymic mechanism in which one lipoic acid residue can take over the function of another.  相似文献   

16.
Bromopyruvate behaves as an active-site-directed inhibitor of the pyruvate decarboxylase (E1) component of the pyruvate dehydrogenase complex of Escherichia coli. It requires the cofactor thiamin pyrophosphate (TPP) and acts initially as an inhibitor competitive with pyruvate (Ki ca. 90 microM) but then proceeds to react irreversibly with the enzyme, probably with the thiol group of a cysteine residue. E1 catalyzes the decomposition of bromopyruvate, the enzyme becoming inactivated once every 40-60 turnovers. Bromopyruvate also inactivates the intact pyruvate dehydrogenase complex in a TPP-dependent process, but the inhibition is more rapid and is mechanistically different. Under these conditions, bromopyruvate is decarboxylated, and the lipoic acid residues in the lipoate acetyltransferase (E2) component become reductively bromoacetylated. Further bromopyruvate then reacts with the new thiol groups thus generated in the lipoic acid residues, inactivating the complex. If reaction with the lipoic acid residues is prevented by prior treatment of the complex with N-ethylmaleimide in the presence of pyruvate, the mode of inhibition reverts to irreversible reaction with the E1 component. In both types of inhibition of E1, reaction of 1 mol of bromopyruvate/mol of E1 chain is required for complete inactivation, and all the evidence is consistent with reaction taking place at or near the pyruvate binding site.  相似文献   

17.
Amino-acid sequences around two lipoic acid residues in the lipoate acetyltransferase component of the pyruvate dehydrogenase complex of Escherichia coli were investigated. A single amino acid sequence of 13 residues was found. A repeated amino acid sequence in the lipoate acetyltransferase chain might explain this result.  相似文献   

18.
The lipoyl domains of the dihydrolipoyl acyltransferase (E2p, E2o) components of the pyruvate and 2-oxoglutarate dehydrogenase multienzyme complexes are specifically recognised by their cognate 2-oxo acid decarboxylase (E1p, E1o). A prominent surface loop links the first and second beta-strands in all lipoyl domains, close in space to the lipoyl-lysine beta-turn. This loop was subjected to various modifications by directed mutagenesis of a sub-gene encoding a lipoyl domain of Escherichia coli E2p. Deletion of the loop (four residues) rendered the domain incapable of reductive acetylation by E. coli E1p in the presence of pyruvate, but insertion of a new loop (six residues) corresponding to that in the E2o lipoyl domain partly restored this ability, albeit with a much lower rate. However, the modified domain remained unable to undergo reductive succinylation by E1o in the presence of 2-oxoglutarate. Additional exchange of the two residues on the C-terminal side of the loop (V14A, E15T) had no effect. Insertion of a different four-residue loop also restored a limited ability to undergo reductive acetylation, but still significantly less than that of the wild-type domain. Exchanging the residue on the N-terminal side of the lipoyl-lysine beta-turn in the E2p and E2o domains (G39T), both singly and in conjunction with the loop exchange, had no effect on the ability of the E2p domain to be reductively acetylated but did confer a slight increase in susceptibility to reductive succinylation. All mutant E2p domains, apart from that with the loop deletion (LD), were readily lipoylated in vitro by E. coli lipoate protein ligase A; the E2p LD mutant could be lipoylated only at a significantly lower rate. Likewise, this domain exhibited 1D and 2D NMR spectra characteristic of a partially folded protein, whereas the spectra of mutants with modified loops were similar to those of the wild-type domain. The surface loop is evidently important to the structural integrity of the domain and may help to stabilize the thioester bond linking the acyl group to the reduced lipoyl-lysine swinging arm as part of the catalytic mechanism. Recognition of the lipoyl domain by its partner E1 appears to be a complex process and not attributable to any single determinant on the domain.  相似文献   

19.
The pyruvate dehydrogenase complex of Escherichia coli contains two lipoic acid residues per dihydrolipoamide acetyltransferase chain, and these are known to engage in the part-reactions of the enzyme. The enzyme complex was treated with trypsin at pH 7.0, and a partly proteolysed complex was obtained that had lost almost 60% of its lipoic acid residues although it retained 80% of its pyruvate dehydrogenase-complex activity. When this complex was treated with N-ethylmaleimide in the presence of pyruvate and the absence of CoASH, the rate of modification of the remaining S-acetyldihydrolipoic acid residues was approximately equal to the accompanying rate of loss of enzymic activity. This is in contrast with the native pyruvate dehydrogenase complex, where under the same conditions modification proceeds appreciably faster than the loss of enzymic activity. The native pyruvate dehydrogenase complex was also treated with lipoamidase prepared from Streptococcus faecalis. The release of lipoic acid from the complex followed zero-order kinetics for most of the reaction, whereas the accompanying loss of pyruvate dehydrogenase-complex activity lagged substantially behind. These results eliminate a model for the enzyme mechanism in which specifically one of the two lipoic acid residues on each dihydrolipoamide acetyltransferase chain is essential for the reaction. They are consistent with a model in which the dihydrolipoamide acetyltransferase component contains more lipoic acid residues than are required to serve the pyruvate decarboxylase subunits under conditions of saturating substrates, enabling the function of an excised or inactivated lipoic acid residue to be taken over by another one. Unusual structural properties of the enzyme complex might permit this novel feature of the enzyme mechanism.  相似文献   

20.
The crystal structure of the recombinant thiamin diphosphate-dependent E1 component from the Escherichia coli pyruvate dehydrogenase multienzyme complex (PDHc) has been determined at a resolution of 1.85 A. The E. coli PDHc E1 component E1p is a homodimeric enzyme and crystallizes with an intact dimer in an asymmetric unit. Each E1p subunit consists of three domains: N-terminal, middle, and C-terminal, with all having alpha/beta folds. The functional dimer contains two catalytic centers located at the interface between subunits. The ThDP cofactors are bound in the "V" conformation in clefts between the two subunits (binding involves the N-terminal and middle domains), and there is a common ThDP binding fold. The cofactors are completely buried, as only the C2 atoms are accessible from solution through the active site clefts. Significant structural differences are observed between individual domains of E1p relative to heterotetrameric multienzyme complex E1 components operating on branched chain substrates. These differences may be responsible for reported alternative E1p binding modes to E2 components within the respective complexes. This paper represents the first structural example of a functional pyruvate dehydrogenase E1p component from any species. It also provides the first representative example for the entire family of homodimeric (alpha2) E1 multienzyme complex components, and should serve as a model for this class of enzymes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号