首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Acetaldehyde alone and retinoic acid alone have been shown to increase and decrease, respectively, collagen production by stellate cells in culture. In this study the effects of retinoic acid on alpha(1)(I) and alpha(2)(I) collagen expression and its influence on the enhancing effects of acetaldehyde were determined. Retinoic acid decreased the activation of the alpha(2)(I) collagen promoter and decreased the message of alpha(2)(I) collagen in cultured stellate cells, but had no effect on either the activation of the alpha(1)(I) collagen promoter or on the alpha(1)(I) collagen message. This depressant effect of retinoic acid was also evident in the transfected alpha(2)(I) collagen promoter mutated at the retinoic acid response element (RARE). The activation of the alpha(2)(I) collagen promoter by acetaldehyde was not decreased significantly by retinoic acid, but was suppressed by the retinoic acid receptor (RAR) selective retinoid SRI-6751-84. Retinoic acid, however, decreased the acetaldehyde-induced enhancement of the alpha(1)(I) and alpha(2)(I) collagen messages. Acetaldehyde also resulted in a decrease in RAR beta message and RARbeta protein. This study shows that retinoic acid depresses alpha(2)(I) collagen gene expression but that this effect is less pronounced when the expression of this collagen is enhanced by acetaldehyde, which also decreases RARbeta message and protein. Furthermore, the action of retinoic acid in inhibiting alpha(2)(I) collagen gene expression occurs at sites other than the RARE site.  相似文献   

2.
Hepatic fibrosis is due to the increased synthesis and deposition of type I collagen. Acetaldehyde activates type I collagen promoters. Nuclear factor kappaB (NF-kappaB) was previously shown to inhibit expression of murine alpha(1)(I) and human alpha(2)(I) collagen promoters. The present study identifies binding of NF-kappaB, present in nuclear extracts of stellate cells, to a region between -553 and -537 of the murine alpha(2)(I) collagen promoter. The NF-kappaB (p65) expression vector inhibited promoter activity. Mutation of the promoter at the NF-kappaB-binding site increased basal promoter activity and abrogated the activating and inhibitory effects of transforming growth factor beta and tumor necrosis factor alpha, respectively, on promoter activity. Acetaldehyde increased IkappaB-alpha kinase activity and phosphorylated IkappaB-alpha, NF-kappaB nuclear protein, and its binding to the promoter. However, the activating effect of acetaldehyde was not affected by the mutation of the promoter. In conclusion, although acetaldehyde increases the binding of NF-kappaB to the murine alpha(2)(I) collagen promoter, this binding does not mediate the activating effect of acetaldehyde on promoter activity. The effects of acetaldehyde in increasing the translocation of NF-kappaB to the nucleus with increased DNA binding activity may be important in mediating the effects of acetaldehyde on other genes.  相似文献   

3.
4.
5.
Acetaldehyde was previously shown to activate the alpha1(I) and alpha2(I) collagen promoters and to increase collagen production in activated stellate cells. Also, CCAAT/enhancer binding protein beta (C/EBPbeta) binds and activates the mouse alpha1(I) collagen promoter. This study investigates the role of C/EBPbeta in mediating the activation of the alpha1(I) collagen promoter by acetaldehyde. Nuclear extracts isolated from cultured activated rat hepatic stellate cells formed four protein-DNA complexes on electrophoretic mobility shift assay with an oligonucleotide including the C/EBP binding site between -365 and -335 in the alpha1(I) collagen promoter. The four complexes were identified to represent C/EBPbeta binding to the oligonucleotide by supershift with C/EBPbeta antibody. The principal C/EBP isoform found in the nuclear extracts from stellate cells was C/EBPbeta, with very low amounts of C/EBPalpha detected. Acetaldehyde (200 microM) increased C/EBPbeta protein in stellate nuclear extracts, increased its binding to the promoter, and activated the alpha1(I) collagen promoter in transfected stellate cells. Mutation of the C/EBPbeta binding site markedly decreased nuclear protein binding. A transfected promoter, mutated at the C/EBP binding site, had decreased basal activity, was not activated by acetaldehyde, and was not activated when cotransfected with a C/EBPbeta expression vector. This study shows that C/EBPbeta is the predominant C/EBP isoform found in activated stellate cells and that increased C/EBPbeta protein and C/EBPbeta binding to a proximal C/EBP binding site in the promoter mediates the activating effect of acetaldehyde.  相似文献   

6.
Leptin, a liver profibrogenic cytokine, induces oxidative stress in hepatic stellate cells (HSCs), with increased formation of the oxidant H2O2, which signals through p38 and extracellular signal-regulated kinase 1/2 (ERK1/2) pathways, stimulating tissue inhibitor of metalloproteinase-1 production. Since oxidative stress is a pathogenic mechanism of liver fibrosis and activation of collagen gene is a marker of fibrogenesis, we evaluated the effects of leptin on collagen I expression. We report here that, in LX-2 human HSCs, leptin enhances the levels of alpha1(I) collagen mRNA, promoter activity and protein. Janus kinase (JAK)1 and JAK2 were activated. H2O2 formation was increased; this was prevented by the JAK inhibitor AG490, suggesting a JAK-mediated process. ERK1/2 and p38 were activated, and the activation was blocked by catalase, consistent with an H2O2-dependent mechanism. AG490 and catalase also prevented leptin-stimulated alpha1(I) collagen mRNA expression. PD098059, an ERK1/2 inhibitor, abrogated ERK1/2 activation and suppressed alpha1(I) collagen promoter activity, resulting in mRNA down-regulation. The p38 inhibitor SB203580 and overexpression of dominant negative p38 mutants abrogated p38 activation and down-regulated the mRNA. While SB203580 had no effect on the promoter activity, it reduced the mRNA half-life from 24 to 4 h, contributing to the decreased mRNA level. We conclude that leptin stimulates collagen production through the H2O2-dependent and ERK1/2 and p38 pathways via activated JAK1 and JAK2. ERK1/2 stimulates alpha1(I) collagen promoter activity, whereas p38 stabilizes its mRNA. Accordingly, interference with leptin-induced oxidative stress by antioxidants provides an opportunity for the prevention of liver fibrosis.  相似文献   

7.
8.
Liver wound healing is an integrated process in which hepatic stellate cells play a major role. We hypothesized that the cellextracellular signaling protein integrin-linked kinase (ILK) is important in transducing signals from the extracellular matrix to stellate cells and thus plays a critical role in stellate cell activation and fibrogenesis during liver injury. Liver injury and subsequent stellate cell activation led to a 3-fold increase in ILK expression and increased kinase activity. Overexpression of ILK in isolated stellate cells led to enhanced motility and adhesion as well as increases in smooth muscle alpha-actin and type I collagen mRNA expression. The effects of ILK on stellate cell phenotypes were phosphatidylinositol 3-kinase-dependent. Forced expression of ILK in vivo led to increases in type I collagen, smooth muscle alpha-actin, transforming growth factor-beta, and extra domain A (EDA) fibronectin mRNAs (by 3.2-, 3.5-, 2.5-, and 2.2-fold, respectively; n = 8, p < 0.05 for each versus the control), whereas inhibition of ILK in vivo led to significant reductions in these mRNAs. Morphometric analysis revealed that ILK overexpression led to a 31.4% increase in liver collagen content (n = 8, p < 0.05 versus the control); in contrast ILK knockdown in vivo led to a significant reduction in fibrogenesis. We conclude that ILK plays an important pathophysiological role in vivo in liver wound healing.  相似文献   

9.
10.
To study the anti-fibrogenic mechanisms of S-adenosylmethionine (AdoMet), transgenic mice harboring the -17 kb to +54 bp of the collagen alpha2 (I) promoter (COL1A2) cloned upstream from the beta-gal reporter gene were injected with carbon tetrachloride (CCl4) to induce fibrosis and coadministered either AdoMet or saline. Control groups received AdoMet or mineral oil. AdoMet lowered the pathology in CCl4-treated mice as shown by transaminase levels, hematoxylin and eosin, Masson's trichrome staining, and collagen I expression. beta-Galactosidase activity indicated activation of the COL1A2 promoter in stellate cells from CCl4-treated mice and repression of such activation by AdoMet. Lipid peroxidation, transforming growth factor-beta (TGFbeta) expression, and decreases in glutathione levels were prevented by AdoMet. Incubation of primary stellate cells with AdoMet down-regulated basal and TGFbeta-induced collagen I and alpha-smooth muscle actin proteins. AdoMet metabolites down-regulated collagen I protein and mRNA levels. AdoMet repressed basal and TGFbeta-induced reporter activity in stellate cells transfected with COL1A2 promoter deletion constructs. AdoMet blocked TGFbeta induction of the -378 bp region of the COL1A2 promoter and prevented the phosphorylation of extracellular signal-regulated kinase 1/2 and the binding of Sp1 to the TGFbeta-responsive element. These observations unveil a novel mechanism by which AdoMet could ameliorate liver fibrosis.  相似文献   

11.
The peroxisome proliferator-activated receptors (PPARs) impart diverse cellular effects in biological systems. Because stellate cell activation during liver injury is associated with declining PPARgamma expression, we hypothesized that its expression is critical in stellate cell-mediated fibrogenesis. We therefore modulated its expression during liver injury in vivo. PPARgamma was depleted in rat livers by using an adenovirus-Cre recombinase system. PPARgamma was overexpressed by using an additional adenoviral vector (AdPPARgamma). Bile duct ligation was utilized to induce stellate cell activation and liver fibrosis in vivo; phenotypic effects (collagen I, smooth muscle alpha-actin, hydroxyproline content, etc.) were measured. PPARgamma mRNA levels decreased fivefold and PPARgamma protein was undetectable in stellate cells after culture-induced activation. During activation in vivo, collagen accumulation, assessed histomorphometrically and by hydroxyproline content, was significantly increased after PPARgamma depletion compared with controls (1.28 +/- 0.14 vs. 1.89 +/- 0.21 mg/g liver tissue, P < 0.03). In isolated stellate cells, AdPPARgamma overexpression resulted in significantly increased adiponectin mRNA expression and decreased collagen I and smooth muscle alpha-actin mRNA expression compared with controls. During in vivo fibrogenesis, rat livers exposed to AdPPARgamma had significantly less fibrosis than controls. Collagen I and smooth muscle alpha-actin mRNA expression were significantly reduced in AdPPARgamma-infected rats compared with controls (P < 0.05, n = 10). PPARgamma-deficient mice exhibited enhanced fibrogenesis after liver injury, whereas PPARgamma receptor overexpression in vivo attenuated stellate cell activation and fibrosis. The data highlight a critical role for PPARgamma during in vivo fibrogenesis and emphasize the importance of the PPARgamma pathway in stellate cells during liver injury.  相似文献   

12.
The CCAAT/enhancer binding protein beta (C/EBPbeta) was previously shown to bind to the alpha(1)(I) collagen promoter at -365 to -335 (site 1) and to activate it. Acetaldehyde also activates the promoter, and this effect is mediated by an increase in stellate-cell C/EBPbeta protein and C/EBPbeta binding. The present study identified two additional distal sites (sites 2 and 3) of binding of C/EBPbeta, in the nuclear extracts of stellate cells, at -399 to -370 and -623 to -592 in the alpha(1)(I) collagen promoter. The C/EBPbeta protein activates the promoter at all three sites. Acetaldehyde increases C/EBPbeta binding to all three sites. Activation by acetaldehyde is abrogated in the transfected promoter mutated at either site 1 or site 3 but is not affected by mutation at site 2. Binding of the 20-kDa C/EBPbeta isoform (p20C/EBPbeta), which is eliminated by mutation at the distal site 3 of C/EBP binding, is necessary for the activation by acetaldehyde of the alpha(1)(I) collagen promoter.  相似文献   

13.
Accumulation of extracellular matrix (ECM) is a hallmark feature of vascular disease. We have previously shown that hyperglycemia induces the expression of B(2)-kinin receptors in vascular smooth muscle cells (VSMC) and that bradykinin (BK) and hyperglycemia synergize to stimulate ECM production. The present study examined the cellular mechanisms through which BK contributes to VSMC fibrosis. VSMC treated with BK (10(-8) M) for 24 h significantly increased alpha(2)(I) collagen mRNA levels. In addition, BK produced a two- to threefold increase in alpha(2)(I) collagen promoter activity in VSMC transfected with a plasmid containing the alpha(2)(I) collagen promoter. Furthermore, treatment of VSMC with BK for 24 h produced a two- to threefold increase in the secretion rate of tissue inhibitor of metalloproteinase 1 (TIMP-1). The increase in alpha(2)(I) collagen mRNA levels and alpha(2)(I) collagen promoter activity, as well as TIMP-1 secretion, in response to BK were blocked by anti-transforming growth factor-beta (anti-TGF-beta) neutralizing antibodies. BK (10(-8) M) increased the endogenous production of TGF-beta1 mRNA and protein levels. Inhibition of the mitogen-activated protein kinase (MAPK) pathway by PD-98059 inhibited the increase of alpha(2)(I) collagen promoter activity, TIMP-1 production, and TGF-beta1 protein levels observed in response to BK. These findings provide the first evidence that BK induces collagen type I and TIMP-1 production via autocrine activation of TGF-beta1 and implicate MAPK pathway as a key player in VSMC fibrosis in response of BK.  相似文献   

14.
15.
16.
17.
Interferon alpha (IFN-alpha) inhibits growth, at least in part, through induction of apoptosis. However, the molecular mechanisms underlying IFN-alpha-induced apoptosis are not completely understood. In the present study, we found that IFN-alpha induced a sustained activation of c-Jun N-terminal kinase 1 (JNK1), but not extracellular kinases (ERKs), in Daudi B lymphoma cells, as assessed by Western blotting using phospho-specific antibodies. Several lines of evidence support the notion that the IFN-alpha-induced activation of JNK is responsible for IFN-alpha-induced apoptosis, at least in part, through upregulation of TNF-related apoptosis-inducing ligand (TRAIL). First, pretreatment of Daudi cells with a JNK inhibitor reduced IFN-alpha-induced upregulation of TRAIL and loss of mitochondrial membrane potential (DeltaPsim) and annexin-positive cells, which was assessed by flow cytometry. Second, a dominant-negative form of JNK1 (dnJNK1) also reduced these apoptotic events, while a constitutively active form of JNK1, MKK7-JNK1beta, enhanced them. Finally, treatment with IFN-alpha enhanced the promoter activity of the TRAIL gene, which was partially abrogated by either JNK inhibitor or dnJNK1, while it was moderately enhanced by MKK7-JNK1beta. These findings are useful for understanding molecular mechanisms of IFN-alpha-induced apoptosis and also for development of treatment modalities of some tumors with IFN-alpha.  相似文献   

18.
Recent studies have revealed that ghrelin may be an antioxidant and anti-inflammatory agent in many organs, however its role in chronic liver injury (CLI) remains unclear. The role of nitric oxide (NO) in CLI is controversial as evidence suggests that NO is either a primary mediator of liver cell injury or exhibits a protective effect against injurious stimuli. Recent evidence demonstrated that the therapeutic potential for ghrelin was through eNOS activation and increase in NO production. However, its role on NO production in the liver has not been previously investigated. The aim of this study was to investigate the role of ghrelin in treatment of CLI, and whether this action is mediated through NO. Forty male rats were divided into four groups: Group I: Control; Group II: chronic liver injury (CLI); Group III: CLI + Ghrelin; and Group IV: CLI + Ghrelin + l-NAME. Liver enzymes and tumor necrosis factor alpha (TNF-α), were measured to assess hepatocellular injury. Liver tissue collagen content, malondialdehyde (MDA), gene expression of Bax, Bcl-2, and eNOS were assessed to determine the mechanism of ghrelin action. Results showed that ghrelin decreased serum liver enzymes and TNF-α levels. Ghrelin also reduced liver tissue collagen, MDA, and Bax gene expression, and increased Bcl-2 and eNOS gene expression. The effects on TNF-α, collagen, MDA, Bax, and eNOS were partially reversed in Group IV, suggesting that ghrelin's action could be through modulation of NO levels. Therefore, ghrelin's hepatoprotective effect is partially mediated by NO release.  相似文献   

19.
20.
Activation of c-Jun amino-terminal kinase (JNK) facilitates tumour necrosis factor (TNF)-induced cell death. The p38 mitogen-activated protein kinase pathway is induced by TNF stimulation, but it has not been implicated in TNF-induced cell death. Here, we show that hepatocyte-specific ablation of p38alpha in mice results in excessive activation of JNK in the liver after in vivo challenge with bacterial lipopolysaccharide (LPS). Despite increased JNK activity, p38alpha-deficient hepatocytes were not sensitive to LPS/TNF toxicity showing that JNK activation was not sufficient to mediate TNF-induced liver damage. By contrast, LPS injection caused liver failure in mice lacking both p38alpha and IkappaB kinase 2 (IKK2) in hepatocytes. Therefore, when combined with partial nuclear factor-kappaB inhibition, p38alpha deficiency sensitizes the liver to cytokine-induced damage. Collectively, these results reveal a new function of p38alpha in collaborating with IKK2 to protect the liver from LPS/TNF-induced failure by controlling JNK activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号