首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
The human cytomegalovirus (CMV) a sequence has significant homology to two regions, pac-1 and pac-2, within the a sequence of herpes simplex virus type 1 (HSV-1). Both regions have been shown to be important cis-acting signals in HSV-1 genome maturation. We have demonstrated that a small fragment from within the CMV a sequence, containing the pac-1 and pac-2 motifs, carries all of the signals necessary for generation of genomic termini and for inversion. These observations indicated that the function of these highly conserved sequence motifs was similar in CMV and HSV-1. We have identified and partially purified a host cell protein with affinity for the sequence 5'-GGCGGCGGCGCATAAAA-3' within CMV pac-2. This partially purified protein has an apparent molecular weight of 89,000 under denaturing conditions and could be renatured after sodium dodecyl sulfate-polyacrylamide gel electrophoresis, suggesting that the capacity to bind DNA was the property of a single polypeptide chain. This activity was found in a wide variety of human cell lines, including those that are permissive as well as those that are nonpermissive for CMV growth, but not in cell lines from monkey, mouse, or drosophila origins. Our work implicates a host cell protein in a sequence function.  相似文献   

4.
5.
The orphan receptor C5L2 has recently been described as a high affinity binding protein for complement fragments C5a and C3a that, unlike the previously described C5a receptor (CD88), couples only weakly to G(i)-like G proteins (Cain, S. A., and Monk, P. N. (2002) J. Biol. Chem. 277, 7165-7169). Here we demonstrate that C5L2 binds the metabolites of C4a and C3a, C4a des-Arg(77), and C3a des-Arg(77) (also known as the acylation-stimulating protein or ASP) at a site distinct from the C5a binding site. The binding of these metabolites to C5L2 does not stimulate the degranulation of transfected rat basophilic leukemia cells either through endogenous rat G proteins or when co-transfected with human G(alpha 16). C3a des-Arg(77)/ASP and C3a can potently stimulate triglyceride synthesis in human skin fibroblasts and 3T3-L1 preadipocytes. Here we show that both cell types and human adipose tissue express C5L2 mRNA and that the human fibroblasts express C5L2 protein at the cell surface. This is the first demonstration of the expression of C5L2 in cells that bind and respond to C3a des-Arg(77)/ASP and C3a. Thus C5L2, a promiscuous complement fragment-binding protein with a high affinity site that binds C3a des-Arg(77)/ASP, may mediate the acylation-stimulating properties of this peptide.  相似文献   

6.
The involvement of the G-alpha protein GNA3 in the production of cell wall-degrading enzymes (CWDEs) by Trichoderma reesei during antagonism against Pythium ultimum was investigated. cAMP content was 2.8-fold higher in the T. reesei mutant gna3QL than in the parental TU-6. The gna3QL, like TU-6, inhibited the growth of P. ultimum in dual culture assays. Scanning electron microscopy showed that the gna3QL promoted more morphological alterations of P. ultimum cell wall than TU-6. In general, gna3QL produced higher activities of CWDEs than TU-6. We therefore suggest that CWDEs production during mycoparasitism by T. reesei against P. ultimum may be associated with the level of GNA3 activity.  相似文献   

7.
8.
Neural Wiskott-Aldrich syndrome protein (N-WASP) is an essential regulator of actin cytoskeleton formation via its association with the actin-related protein (Arp) 2/3 complex. It is believed that the C-terminal Arp2/3 complex-activating domain (verprolin homology, cofilin homology, and acidic (VCA) or C-terminal region of WASP family proteins domain) of N-WASP is usually kept masked (autoinhibition) but is opened upon cooperative binding of upstream regulators such as Cdc42 and phosphatidylinositol 4,5-bisphosphate (PIP2). However, the mechanisms of autoinhibition and association with Arp2/3 complex are still unclear. We focused on the acidic region of N-WASP because it is thought to interact with Arp2/3 complex and may be involved in autoinhibition. Partial deletion of acidic residues from the VCA portion alone greatly reduced actin polymerization activity, demonstrating that the acidic region contributes to Arp2/3 complex-mediated actin polymerization. Surprisingly, the same partial deletion of the acidic region in full-length N-WASP led to constitutive activity comparable with the activity seen with the VCA portion. Therefore, the acidic region in full-length N-WASP plays an indispensable role in the formation of the autoinhibited structure. This mutant contains WASP-homology (WH) 1 domain with weak affinity to the Arp2/3 complex, leading to activity in the absence of part of the acidic region. Furthermore, the actin comet formed by the DeltaWH1 mutant of N-WASP was much smaller than that of wild-type N-WASP. Partial deletion of acidic residues did not affect actin comet size, indicating the importance of the WH1 domain in actin structure formation. Collectively, the acidic region of N-WASP plays an essential role in Arp2/3 complex activation as well as in the formation of the autoinhibited structure, whereas the WH1 domain complements the activation of the Arp2/3 complex achieved through the VCA portion.  相似文献   

9.
10.
11.
12.
ActA is a bacterially encoded protein that enables Listeria monocytogenes to hijack the host cell actin cytoskeleton. It promotes Arp2/3-dependent actin nucleation, but its interactions with cellular components of the nucleation machinery are not well understood. Here we show that two domains of ActA (residues 85-104 and 121-138) with sequence similarity to WASP homology 2 domains bind two actin monomers with submicromolar affinity. ActA binds Arp2/3 with a K(d) of 0.6 microm and competes for binding with the WASP family proteins N-WASP and Scar1. By chemical cross-linking, ActA, N-WASP, and Scar1 contact the same three subunits of the Arp2/3 complex, p40, Arp2, and Arp3. Interestingly, profilin competes with ActA for binding of Arp2/3, but actophorin (cofilin) does not. The minimal Arp2/3-binding site of ActA (residues 144-170) is C-terminal to both actin-binding sites and shares sequence homology with Arp2/3-binding regions of WASP family proteins. The maximal activity at saturating concentrations of ActA is identical to the most active domains of the WASP family proteins. We propose that ActA and endogenous WASP family proteins promote Arp2/3-dependent nucleation by similar mechanisms and require simultaneous binding of Arp2 and Arp3.  相似文献   

13.
14.
Chromomycin A3 binds to left-handed poly(dG-m5dC)   总被引:1,自引:0,他引:1  
The interaction of chromomycin A3 (an antitumor antibiotic) with right-handed and left-handed polynucleotides has been studied by absorbance, fluorescence, circular dichroism, 31P-NMR and 1H-NMR techniques. Binding to either the B form of poly(dG-dC) or the Z form of poly(dG-m5dC) shifts the absorbance maximum to higher wavelength and enhances the fluorescence of the drug. Circular dichroic spectra of solutions containing various concentrations of chromomycin A3 and fixed concentrations of either B or Z polynucleotides show well defined isoelliptic points at similar wavelengths. At the isoelliptic point, the drug complex with B DNA exhibits positive ellipticity while with Z DNA it exhibits negative ellipticity. 31P-NMR spectra of the chromomycin A3 complex with the Z form of poly(dG-m5dC) demonstrate that the Z conformation is retained in the drug complex up to one molecule drug/four base pairs. At Mg2+ concentrations lower than that necessary to stabilize the left-handed conformation of poly(dG-m5dC) alone, 31P analysis shows that chromomycin A3 can bind simultaneously to both the B and Z conformations of poly(dG-m5dC), with no effect on the B-Z equilibrium. These data demonstrate that chromomycin A3 binds to left-handed poly(dG-m5dC) with retention of the left-handed conformation up to saturating drug concentrations.  相似文献   

15.
Neutrophil receptor(s) for neutrophil activating peptides 1 and 2 were studied by competition binding experiments with radiolabeled NAP-1 and NAP-2 preparations. NAP-1 bound with one affinity, NAP-2 with two quite different affinities, to common receptor(s) on neutrophils. Concentrations of NAP-2 needed to induce exocytosis of beta-glucosaminidase corresponded to the higher dissociation constant of the two binding equilibria. Thus, the binding of NAP-2 to PMN with high affinity does not activate the cells.  相似文献   

16.
17.
18.
Big mitogen-activated kinase 1 (BMK1/ERK5) is a member of the MAPK family activated by growth factors that mediates cell growth and survival. Previous data show that BMK1 can be activated by steady laminar flow and is atheroprotective by preventing endothelial cells from undergoing apoptosis. The primary structure of BMK1 is distinct from other MAPK members by virtue of a unique long C-tail, suggesting specific mechanisms of regulation. To characterize regulatory mechanisms for BMK1 function, we identified binding proteins by yeast two-hybrid analysis. Among these proteins, the scaffolding protein 14-3-3 was identified. BMK1 bound to 14-3-3beta in vitro and in vivo as demonstrated by glutathione S-transferase (GST)-14-3-3beta fusion protein pull-down assays and coimmunoprecipitation. Phosphorylation of BMK1 was most likely required for this interaction. GST-14-3-3beta pull-down assays using truncated constructs of BMK1 and site-directed BMK1 mutants demonstrated that the interaction requires serine 486 within the C terminus of BMK1. BMK1 bound to 14-3-3beta basally, and the interaction was greatly abrogated when BMK1 was activated. The interaction of 14-3-3beta and BMK1 inhibited kinase activities stimulated by constitutively active (CA)-MEK5 and epidermal growth factor. Mutation of serine 486 (BMK1-S486A) prevented the interaction with 14-3-3beta and enhanced BMK1 activity upon epidermal growth factor stimulation. These data demonstrate an inhibitory function for 14-3-3beta binding to BMK1 and show that serine 486 phosphorylation represents a novel regulatory mechanism for BMK1.  相似文献   

19.
The Smc5/6 complex belongs to the SMC (structural maintenance of chromosomes) family, which also includes cohesin and condensin. In Saccharomyces cerevisiae, the Smc5/6 complex contains six essential non-Smc elements, Nse1-6. Very little is known about how these additional elements contribute to complex function except for Nse2/Mms21, which is an E3 small ubiquitin-like modifier (SUMO) ligase important for Smc5 sumoylation. Characterization of two temperature-sensitive mutants, nse5-ts1 and nse5-ts2, demonstrated the importance of Nse5 within the Smc5/6 complex for its stability and functionality at forks during hydroxyurea-induced replication stress. Both NSE5 alleles showed a marked reduction in Smc5 sumoylation to levels lower than those observed with mms21-11, a mutant of Mms21 that is deficient in SUMO ligase activity. However, a phenotypic comparison of nse5-ts1 and nse5-ts2 revealed a separation of importance between Smc5 sumoylation and the function of the Smc5/6 complex during replication. Only cells carrying the nse5-ts1 allele exhibited defects such as dissociation of the replisome from stalled forks, formation of fork-associated homologous recombination intermediates, and hydroxyurea sensitivity that is additive with mms21-11. These defects are attributed to a failure in Smc5/6 localization to forks in nse5-ts1 cells. Overall, these data support the premise that Nse5 is important for vital interactions between components within the Smc5/6 complex, and for its functionality during replication stress.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号