首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Nerve terminals forming typical synapses with adrenal chromaffin tissues have been examined in the goldfish, frog (Rana pipiens), hamster and rat. Presumptive secretory inclusions present in the terminals are of two distinct types. Electron-lucent synaptic vesicles 30–50 nm in diameter are densely clustered adjacent to membrane thickenings and presumably discharge their contents into the synaptic clefts. Secretory granules (i.e. large dense-cored vesicles) 60–100 nm in diameter are more abundant in other parts of the terminals. Sites of granule exocytosis have been observed in each of the animals investigated. They are usually encountered within apparently undifferentiated areas of plasmalemma and only rarely occur within synaptic thickenings. Granule exocytosis from within synaptic terminals and chromaffin gland cells is most readily observed in specimens exposed, prior to fixation, to saline solutions containing both tannic acid, and 4-aminopyridine and/or elevated levels of K+. These findings show that the pattern of secretory discharge, involving both synaptic and non-synaptic release, which is widespread in invertebrate central nervous systems, is also characteristic of vertebrate, peripheral cholinergic terminals.  相似文献   

2.
We have devised a new method that permits the investigation of exogenous secretory vesicle function using frog oocytes and bovine chromaffin granules, the secretory vesicles from adrenal chromaffin cells. Highly purified chromaffin granule membranes were injected into Xenopus laevis oocytes. Exocytosis was detected by the appearance of dopamine-beta-hydroxylase of the chromaffin granule membrane in the oocyte plasma membrane. The appearance of dopamine-beta-hydroxylase on the oocyte surface was strongly Ca(2+)-dependent and was stimulated by coinjection of the chromaffin granule membranes with InsP3 or Ca2+/EGTA buffer (18 microM free Ca2+) or by incubation of the injected oocytes in medium containing the Ca2+ ionophore ionomycin. Similar experiments were performed with a subcellular fraction from cultured chromaffin cells enriched with [3H]norepinephrine-containing chromaffin granules. Because the release of [3H]norepinephrine was strongly correlated with the appearance of dopamine-beta-hydroxylase on the oocyte surface, it is likely that intact chromaffin granules and chromaffin granule membranes undergo exocytosis in the oocyte. Thus, the secretory vesicle membrane without normal vesicle contents is competent to undergo the sequence of events leading to exocytosis. Furthermore, the interchangeability of mammalian and amphibian components suggests substantial biochemical conservation of the regulated exocytotic pathway during the evolutionary progression from amphibians to mammals.  相似文献   

3.
Central nerve terminals have been examined for ultrastructural signs of release of neurochemical mediators in the annelids Nereis diversicolor, Harmothoe imbricata and Lumbricus terrestris. Two categories of presumptive secretory inclusions are readily distinguished. Exocytosis of ‘storage granules’ is widespread in the neuropile, and involves probable peptidergic terminals as well as more conventional terminals. Plasma membranes at such sites of release are apparently unmodified. In contrast, ‘synaptic vesicles’ are aggregated adjacent to membrane thickenings and specialized clefts, and signs of their fusion with the presynaptic membranes have been observed rarely. The presence of coated pits surmounting omega profiles involving storage granules may indicate that membrane is retrieved in the form of microvesicles from the site of exocytosis. Coated pits associated with synapses have only been observed in areas of membrane adjacent to presumed sites of vesicle exocytosis. The incidence of dual sites of release, often relating to individual terminals, may be indicative of the segregated storage and independent secretion of distinct active principles. Materials released by granule exocytosis may have the role of neuromodulators.  相似文献   

4.
Llobet A  Beaumont V  Lagnado L 《Neuron》2003,40(6):1075-1086
We describe a new approach for making real-time measurements of exocytosis and endocytosis in neurons and neuroendocrine cells. The method utilizes interference reflection microscopy (IRM) to image surface membrane in close contact with a glass coverslip (the "footprint"). At the synaptic terminal of retinal bipolar cells, the footprint expands during exocytosis and retracts during endocytosis, paralleling changes in total surface area measured by capacitance. In chromaffin cells, IRM detects the fusion of individual granules as the appearance of bright spots within the footprint with spatial and temporal resolution similar to total internal reflection fluorescence microscopy. Advantages of IRM over capacitance are that it can monitor changes in surface area while cells are electrically active and it can be applied to mammalian neurons with relatively small synaptic terminals. IRM reveals that vesicles at the synapse of bipolar cells rapidly collapse into the surface membrane while secretory granules in chromaffin cells do not.  相似文献   

5.
In response to an external stimulus, neuronal cells release neurotransmitters from small synaptic vesicles and endocrine cells release secretory proteins from large dense core granules. Despite these differences, endocrine cells express three proteins known to be components of synaptic vesicle membranes. To determine if all three proteins, p38, p65, and SV2, are present in endocrine dense core granule membranes, monoclonal antibodies bound to beads were used to immunoisolate organelles containing the synaptic vesicle antigens. [3H]norepinephrine was used to label both chromaffin granules purified from the bovine adrenal medulla and rat pheochromocytoma (PC12) cells. Up to 80% of the vesicular [3H]norepinephrine was immunoisolated from both labeled purified bovine chromaffin granules and PC12 postnuclear supernatants. In PC12 cells transfected with DNA encoding human growth hormone, the hormone was packaged and released with norepinephrine. 90% of the sedimentable hormone was also immunoisolated by antibodies to all three proteins. Stimulated secretion of PC12 cells via depolarization with 50 mM KCl decreased the amount of [3H]norepinephrine or human growth hormone immunoisolated. Electron microscopy of the immunoisolated fractions revealed large (greater than 100 nm diameter) dense core vesicles adherent to the beads. Thus, large dense core vesicles containing secretory proteins possess all three of the known synaptic vesicle membrane proteins.  相似文献   

6.
The presence of calmodulin-binding proteins in three neurosecretory vesicles (bovine adrenal chromaffin granules, bovine posterior pituitary secretory granules, and rat brain synaptic vesicles) was investigated. When detergent-solubilized membrane proteins from each type of secretory organelle were applied to calmodulin-affinity columns in the presence of calcium, several calmodulin-binding proteins were retained and these were eluted by EGTA from the columns. In all three membranes, a 65-kilodalton (63 kilodaltons in rat brain synaptic vesicles) and a 53-kilodalton protein were found consistently in the EGTA eluate. 125I-Calmodulin overlay tests on nitrocellulose sheets containing transferred chromaffin and posterior pituitary secretory granule membrane proteins showed a similarity in the protein bands labeled with radioactive calmodulin. In the presence of 10(-4) M calcium, eight major protein bands (240, 180, 145, 125, 65, 60, 53, and 49 kilodaltons) were labeled with 125I-calmodulin. The presence of 10 microM trifluoperazine (a calmodulin antagonist) significantly reduced this labeling, while no labeling was seen in the presence of 1 mM EGTA. Two monoclonal antibodies (mAb 30, mAb 48), previously shown to react with a cholinergic synaptic vesicle membrane protein of approximate molecular mass of 65 kilodaltons, were tested on total membrane proteins from the three different secretory vesicles and on calmodulin-binding proteins isolated from these membranes using calmodulin-affinity chromatography. Both monoclonal antibodies reacted with a 65-kilodalton protein present in membranes from chromaffin and posterior pituitary secretory granules and with a 63-kilodalton protein present in rat brain synaptic vesicle membranes. When the immunoblotting was repeated on secretory vesicle membrane calmodulin-binding proteins isolated by calmodulin-affinity chromatography, an identical staining pattern was obtained. These results clearly indicate that an immunologically identical calmodulin-binding protein is expressed in at least three different neurosecretory vesicle types, thus suggesting a common role for this protein in secretory vesicle function.  相似文献   

7.
Both neuronal and endocrine cells contain secretory vesicles that store and release neurotransmitters and peptides. Neuronal cells release their secretory material from both small synaptic vesicles and large dense-core vesicles (LDCVs), whereas endocrine cells release secretory products from LDCVs. Neuronal small synaptic vesicles are known to express three integral membrane proteins: 65,000 calmodulin-binding protein (65-CMBP) (p65), synaptophysin (p38), and SV2. A controversial question surrounding these three proteins is whether they are present in LDCV membranes of endocrine and neuronal cells. Sucrose density centrifugation of adrenal medulla was performed to study and compare the subcellular distribution of two of these small synaptic vesicle proteins (65-CMBP and synaptophysin). Subsequent immunoblotting and 125I-Protein A binding experiments performed on the fractions obtained from sucrose gradients showed that 65-CMBP was present in fractions corresponding to granule membranes and intact chromaffin granules. Similar immunoblotting and 125I-Protein A binding experiments with synaptophysin antibodies showed that this protein was also present in intact granules and granule membrane fractions. However, an additional membrane component, equilibrating near the upper portion of the sucrose gradient, also showed strong immunoreactivity with anti-synaptophysin and high 125I-Protein A binding activity. In addition, immunoblotting experiments on purified plasma and granule membranes demonstrated that 65-CMBP was a component of both membranes, whereas synaptophysin was only present in granule membranes. Thus, there appears to be a different subcellular localization between 65-CMBP and synaptophysin in the chromaffin cell.  相似文献   

8.
Exocytosis, the fusion of secretory vesicles with the plasma membrane to allow release of the contents of the vesicles into the extracellular environment, and endocytosis, the internalization of these vesicles to allow another round of secretion, are coupled. It is, however, uncertain whether exocytosis and endocytosis are tightly coupled, such that secretory vesicles fuse only transiently with the plasma membrane before being internalized (the 'kiss-and-run' mechanism), or whether endocytosis occurs by an independent process following complete incorporation of the secretory vesicle into the plasma membrane. Here we investigate the fate of single secretory vesicles after fusion with the plasma membrane by measuring capacitance changes and transmitter release in rat chromaffin cells using the cell-attached patch-amperometry technique. We show that raised concentrations of extracellular calcium ions shift the preferred mode of exocytosis to the kiss-and-run mechanism in a calcium-concentration-dependent manner. We propose that, during secretion of neurotransmitters at synapses, the mode of exocytosis is modulated by calcium to attain optimal conditions for coupled exocytosis and endocytosis according to synaptic activity.  相似文献   

9.
Proteolytic processing of inactive proenkephalin and proneuropeptides is essential for the production of biologically active enkephalins and many neuropeptides. The incomplete processing of proenkephalin in adrenal medulla suggests that endogenous protease inhibitors may inhibit proenkephalin processing enzymes. This study demonstrates the isolation and characterization of two isoforms of adrenal medullary alpha1-antichymotrypsin (ACT), referred to as ACT-like proteins I and II, which are colocalized with enkephalin in chromaffin granules and which inhibit the proenkephalin processing enzyme known as prohormone thiol protease (PTP). Subcellular fractionation demonstrated enrichment of 56- and 60-kDa ACT-like proteins I and II, respectively, to enkephalin-containing chromaffin granules (secretory vesicles). Immunofluorescence cytochemistry of chromaffin cells indicated a discrete, punctate pattern of ACT immunostaining that resembles that of [Met]enkephalin that is stored in secretory vesicles. Chromatography of adrenal medullary extracts through DEAE-Sepharose and chromatofocusing resulted in the separation of ACT-like proteins I and II that possess different isoelectric points of 5.5 and 4.0, respectively. The 56-kDa ACT-like protein I was purified to apparent homogeneity by Sephacryl S200 chromatography; the 60-kDa ACT-like protein II was isolated by butyl-Sepharose, Sephacryl S200, and concanavalin A-Sepharose columns. The proenkephalin processing enzyme PTP was potently inhibited by ACT-like protein I, with a K(i,app) of 35 nM, but ACT-like protein II was less effective. ACT-like proteins I and II had little effect on chymotrypsin. These results demonstrate the biochemical identification of two secretory vesicle ACT-like proteins that differentially inhibit PTP. The colocalization of the ACT-like proteins and PTP within chromaffin granules indicates that they could interact in vivo. Results from this study suggest that these ACT-like proteins may be considered as candidate inhibitors of PTP, which could provide a mechanism for limited proenkephalin processing in adrenal medulla.  相似文献   

10.
Signaling for Vesicle Mobilization and Synaptic Plasticity   总被引:2,自引:0,他引:2  
The hypothesis that release of classical neurotransmitters and neuropeptides is facilitated by increasing the mobility of small synaptic vesicles (SSVs) and dense core vesicles (DCVs) could not be tested until the advent of methods for visualizing these secretory vesicles in living nerve terminals. In fact, fluorescence imaging studies have only since 2005 established that activity increases secretory vesicle mobility in motoneuron terminals and chromaffin cells. Mobilization of DCVs and SSVs appears to be due to liberation of hindered vesicles to promote quicker diffusion. However, F-actin and synapsin, which have been featured in mobilization models, are not required for activity-dependent increases in the mobility of DCVs or SSVs. Most recently, the signaling required for sustained mobilization has been identified for Drosophila motoneuron DCVs and shown to increase synaptic transmission. Specifically, presynaptic endoplasmic reticulum ryanodine receptor-mediated Ca2+ release activates Ca2+/calmodulin-dependent kinase II to mobilize DCVs and induce post-tetanic potentiation (PTP) of neuropeptide release in the Drosophila neuromuscular junction. The shared signaling for increasing vesicle mobility and PTP links vesicle mobilization and synaptic plasticity.  相似文献   

11.
We tested whether the giant secretory granules observed in the mast cells of the naturally occurring mutant beige mouse (BM) (C57BL/6N-bg) were also present in the adrenal chromaffin cells. The presence of large chromaffin granules (CG) would be a valuable tool for the study of exocytosis in neuronal tissues. Conversely, the observation of large vesicles within chromaffin cells that are different from CG could indicate that CG are of a different origin than granules of mast cells. Ultrastructural analysis demonstrated the presence of large lysososmal-like vesicles in the BM, and also a discrete increase in the number of CG with diameters larger than 240 nm but not of giant CG. In addition, amperometric measurements of single-event exocytosis, using carbon fiber microelectrodes, showed no differences between the quantal size of secretory events from BM and wildtype or bovine chromaffin cells. Minor but significant differences were found between the kinetics of exocytosis in BM cells andwild-type mouse cells. We conclude that CG, but not the abnormal-sized vesicles found in BM chromaffin cells contribute to the catecholamine secretion and that abnormal secretory granules are not present in adrenergic cell lineage.  相似文献   

12.
Exocytosis and membrane recycling   总被引:9,自引:0,他引:9  
Exocytosis implies the fusion of the membrane of secretion granules with, and the insertion into, the plasmalemma. In non-growing systems such an insertion is temporary in that the inserted membrane is eventually removed. Turnover results indicate that the removed membrane is not destroyed but recycled within the cell and reused. In some systems exocytosis occurs over the entire plasmalemma, while in others it is restricted to discrete regions, characterized by peculiar morphology and composition. Thus the fusion of the two membranes is probably preceded by a recognition step. Structural specializations were detected in interacting granule and plasma membranes by freeze-fracture and surface labelling techniques: arrays of intramembrane particles in protozoans and nerve terminals; clearing of particles and surface antigens in other systems. Direct evidence, obtained in some secretory systems, indicates that after exocytosis the granules and plasma membranes do not intermix, but remain segregated. The subsequent recapture of membrane patches of the granule type (in many systems by means of coated pits and vesicles) could then account for the striking specificity of the recycling process, documented by both composition and structural studies. In different systems the recycling of granule membranes is carried out at greatly different rates. Recent results in the parotid gland and neuromuscular junction indicate that this process is Ca2+-dependent.  相似文献   

13.
Parallel observations on central synaptic and neurohaemal terminals of the same types of neurosecretory fibres in the polychaete annelid Nereis diversicolor reveal that their respective populations of inclusions exhibit identical, highly distinctive patterns of affinity for the zinc iodide-osmium tetroxide (ZIO) reagent. The method highlights the duality of possible secretory inclusions in nerve terminals. Many typical synaptic/synaptoid vesicles have ZIO-positive contents, but intermingle with unreactive vesicles. Both positively and negatively reacting vesicles contribute to the unusual dense clusters associated with sites of release of neurochemical mediators, characteristic of polychaete nervous systems. Fewer dense-cored synaptic/synaptoid vesicles have reactive cores. The larger ‘storage granules’ typically have unreactive contents, but dense deposits form within a small minority. A possible cytophysical, in contradistinction from a cytochemical, basis of affinity for ZIO is discussed. The results further support the postulated fundamental identity of synaptic and synaptoid vesicles.  相似文献   

14.
We have analyzed the properties and subcellular localization of synaptophysin (protein p38) in bovine adrenal medulla. In one-dimensional immunoblotting the adrenal antigen appears identical to synaptophysin of rat synaptic vesicles. In two-dimensional immunoblotting it migrates as a heterogeneous band varying in pI from 4.5 to 5.8. Subcellular fractionation by various sucrose gradients revealed that synaptophysin was present in two different cell particles. More than half of the antigens present in adrenal medulla were confined to special membranes that sedimented both with the "large granules" and with microsomal elements. These membranes could be removed from the large granule sediment by washing. In gradients it equilibrated in regions of low sucrose density. These membranes did not contain any markers for chromaffin granules. Less than half of the amount of synaptophysin present in adrenal medulla copurified with chromaffin granules. Despite several variations in the fractionation scheme synaptophysin could not be removed from chromaffin granules. After washing of granule membranes with alkaline solution synaptophysin still cosedimented in gradients with typical granule markers. The concentration of synaptophysin in membranes of chromaffin granules is low (less than 10%) when compared with synaptic vesicles. It is concluded that in adrenal medulla synaptophysin is present in special membranes, probably in high concentration, and in membranes of chromaffin granules, either in a low concentration in all or in a higher concentration in some of them.  相似文献   

15.
The subcellular distribution of three proteins of synaptic vesicles (synaptin/synaptophysin, p65 and SV2) was determined in bovine adrenal medulla and sympathetic nerve axons. In adrenals most p65 and SV2 is confined to chromaffin granules. Part of synaptin/synaptophysin is apparently also present in these organelles, but a considerable portion is found in a light vesicle which does not contain significant concentrations of typical markers of chromaffin granules (cytochrome b-561, dopamine beta-hydroxylase or the amine carrier). An analogous finding was obtained for sympathetic axons. The large dense core vesicles contain most p65 and also SV2 but only a smaller portion of synaptin/synaptophysin. A lighter vesicle containing this latter antigen and some SV2 has also been found. These results establish that in adrenal medulla and sympathetic axons three typical antigens of synaptic vesicles are not restricted to light vesicles. Apparently, a varying part of these antigens is found in chromaffin granules and large dense core vesicles. On the other hand, the light vesicles do not contain significant concentrations of functional antigens of chromaffin granules. Thus, the biogenesis of small presynaptic vesicles which contain all three antigens as well as functional components like the amine carrier is likely to involve considerable membrane sorting.  相似文献   

16.
Parallel observations on synaptic and neurohaemal terminals in the polychaete annelids Nereis diversicolor and Harmothoe imbricata have revealed a remarkable identity of ultrastructure. Even features peculiar to the synaptic vesicles of polychaetes are mirrored by those of synaptoid inclusions. A wide range of terminal types show a clear duality of secretory inclusions, featuring both ‘storage granules’ and synaptic/synaptoid vesicles. The inclusions exhibit a marked zonation. Vesicles form tight clusters with interstitial dense material in many terminals and these make contact with release sites. Terminals containing larger, typically peptidergic granules often have mainly dense-cored synaptic/synaptoid vesicles, although some such inclusions are present in other endings also. A variety of synaptic associations are present, and ‘serial synaptoids’ are formed by neurohaemal terminals. The results are interpreted to suggest that synaptic and synaptoid vesicles have a common functional significance.  相似文献   

17.
Neurons and neuroendocrine cells release transmitters and hormones by exocytosis, a highly regulated process in which secretory vesicles or granules fuse with the plasma membrane to release their contents in response to a calcium trigger. Several stages have been recognized in exocytosis. After recruitment and docking at the plasma membrane, vesicles/granules enter a priming step, which is then followed by the fusion process. Cortical actin remodelling accompanies the exocytotic reaction, but the links between actin dynamics and trafficking events remain poorly understood. Here, we review the action of Rho and ADP-ribosylation factor (ARF) GTPases within the exocytotic pathway in adrenal chromaffin cells. Rho proteins are well known for their pivotal role in regulating the actin cytoskeleton. ARFs were originally identified as regulators of vesicle transport within cells. The possible interplay between these two families of GTPases and their downstream effectors provides novel insights into the mechanisms that govern exocytosis.  相似文献   

18.
Newly synthesized hormones have been suggested to be preferentially secreted by various neuroendocrine cells. This observation indicates that there is a distinct population of secretory granules containing new and old hormones. Recent development of fluorescent timer proteins used in bovine adrenal chromaffin cells revealed that secretory vesicles segregate into distinct age-dependent populations. Here, we verify the preferential release of newly synthesized insulin in the pancreatic β-cell line, MIN6, using a combination of multi-labeling reporter systems with both fluorescent and biochemical procedures. This system allows hormones or granules of any age to be labeled, in contrast to the timer proteins, which require fluorescence shift time. Pulse-chase labeling with different color probes distinguishes insulin secretory granules by age, with younger granules having a predominantly intracellular localization rather than at the cell periphery.  相似文献   

19.
Synaptophysin is a transmembrane glycoprotein of neuroendocrine vesicles. Its content and distribution in subcellular fractions from cultured PC12 cells, rat brain and bovine adrenal medulla were determined by a sensitive dot immunoassay. Synaptophysin-containing fractions appeared as monodispersed populations similar to synaptic vesicles in density and size distribution. Membranes from synaptic vesicles contained approximately 100-times more synaptophysin than chromaffin granules. In conclusion, synaptophysin is located almost exclusively in vesicles of brain and PC12 cells which are distinct from dense core granules.  相似文献   

20.
c-Ret encodes a receptor tyrosine kinase that is essential for normal development of the kidney as well as enteric and sympathetic neurons. Since sympathetic neurons and neuroendocrine chromaffin cells originate from a common progenitor cell, we have examined the relevance of c-Ret for the development of adrenal chromaffin cells by analyzing mouse mutants lacking c-Ret. Adrenal chromaffin cells express c-Ret mRNA at embryonic day (E) 12.5 and 13.5, yet levels of expression decline at later embryonic and postnatal ages. Adrenal medullae of c-Ret deficient mice show normal numbers of tyrosine hydroxylase (TH)-immunoreactive cells at E13.5 and at birth. Ultrastructurally, adrenal chromaffin cells of c-Ret(-/-) mice appear unaltered: chromaffin cells develop typical secretory chromaffin granules, the morphological hallmark of chromaffin cells, and synaptic terminals appear normal. However, adrenaline levels and numbers of chromaffin cells immunoreactive for the adrenaline synthesizing enzyme phenylethanolamine-N-methyltransferase (PNMT) are reduced by about 30% in c-Ret-deficient mice arguing for a direct or indirect role of c-Ret in the regulation of PNMT. Thus, despite expression of c-Ret, adrenal chromaffin cells develop largely normal in mice lacking c-Ret. We therefore conclude that sympathetic neurons and neuroendocrine chromaffin cells profoundly differ in their requirement for c-Ret signaling during development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号