首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We find that Rad50S mutations in yeast and mammals exhibit constitutive PIKK (PI3-kinase like kinase)-dependent signaling [T. Usui, H. Ogawa, J.H. Petrini, A DNA damage response pathway controlled by Tel1 and the Mre11 complex. Mol. Cell 7 (2001) 1255-1266.; M. Morales, J.W. Theunissen, C.F. Kim, R. Kitagawa, M.B. Kastan, J.H. Petrini, The Rad50S allele promotes ATM-dependent DNA damage responses and suppresses ATM deficiency: implications for the Mre11 complex as a DNA damage sensor. Genes Dev. 19 (2005) 3043-4354.]. The signaling depends on Mre11 complex functions, consistent with its role as a DNA damage sensor. Rad50S is distinct from hypomorphic mutations of Mre11 and Nbs1 in mammals [M. Morales, J.W. Theunissen, C.F. Kim, R. Kitagawa, M.B. Kastan, J.H. Petrini, The Rad50S allele promotes ATM-dependent DNA damage responses and suppresses ATM deficiency: implications for the Mre11 complex as a DNA damage sensor. Genes Dev. 19 (2005) 3043-3054.; J.P. Carney, R.S. Maser, H. Olivares, E.M. Davis, Le M. Beau, J.R. Yates, III, L. Hays, W.F. Morgan, J.H. Petrini, The hMre11/hRad50 protein complex and Nijmegen breakage syndrome: linkage of double-strand break repair to the cellular DNA damage response. Cell 93 (1998) 477-486.; G.S. Stewart, R.S. Maser, T. Stankovic, D.A. Bressan, M.I. Kaplan, N.G. Jaspers, A. Raams, P.J. Byrd, J.H. Petrini, A.M. Taylor, The DNA double-strand break repair gene hMRE11 is mutated in individuals with an ataxia-telangiectasia-like disorder. Cell 99 (1999) 577-587.; B.R. Williams, O.K. Mirzoeva, W.F. Morgan, J. Lin, W. Dunnick, J.H. Petrini, A murine model of nijmegen breakage syndrome. Curr. Biol. 12 (2002) 648-653.; J.W. Theunissen, M.I. Kaplan, P.A. Hunt, B.R. Williams, D.O. Ferguson, F.W. Alt, J.H. Petrini, Checkpoint failure and chromosomal instability without lymphomagenesis in Mre11(ATLD1/ATLD1) mice. Mol. Cell 12 (2003) 1511-1523.] and the Mre11 complex deficiency in yeast [T. Usui, H. Ogawa, J.H. Petrini, A DNA damage response pathway controlled by Tel1 and the Mre11 complex. Mol. Cell 7 (2001) 1255-1266.; D'D. Amours, S.P. Jackson, The yeast Xrs2 complex functions in S phase checkpoint regulation. Genes Dev. 15 (2001) 2238-49. ; M. Grenon, C. Gilbert, N.F. Lowndes, Checkpoint activation in response to double-strand breaks requires the Mre11/Rad50/Xrs2 complex. Nat. Cell Biol. 3 (2001) 844-847. ] where the signaling is compromised. Herein, we describe evidence for chronic signaling by Rad50S and discuss possible mechanisms.  相似文献   

2.
BOOK REVIEWS     
《植被学杂志》2002,13(3):454-454
Book reviewed in this article: Press, M.C., Huntly, N.J. & Levin, S. (eds.) 2001. Ecology: achievement and challenge.  相似文献   

3.
BOOK REVIEWS     
Brundu, G., Brock, J., Camarda, I., Child, L. & Wade, M. (eds.) 2001. Plant Invasions: Species Ecology and Ecosystem Management .  相似文献   

4.
Waterkeyn, J. G., Cowman, A. F., and Cooke, B. M. 2001. Plasmodium falciparum: Gelatin enrichment selects for parasites with full-length chromosome 2. Implications for cytoadhesion assays. Experimental Parasitology 97, 115-118.  相似文献   

5.
Anderson, C. W., Dunn, J. J., Freimuth, P. I., Galloway, A. M. and Allalunis-Turner, M. J. Frameshift Mutation in PRKDC, the Gene for DNA-PKcs, in the DNA Repair-Defective, Human, Glioma-Derived Cell Line M059J. Radiat. Res. 156, 2-9 (2001).The glioma-derived cell line M059J is hypersensitive to ionizing radiation, lacks DNA-PK activity, and fails to express protein for the catalytic subunit, DNA-PKcs, while a sister cell line, M059K, derived from the same tumor, has normal DNA-PK activity. Both cell lines are near pentaploid and have multiple copies of chromosome 8, the chromosome on which the DNA-PKcs gene, PRKDC, is located. Sequence analysis of PCR-amplified exons revealed the loss in M059J cells of a single "A" nucleotide in exon 32, corresponding to the first nucleotide of codon 1351 (ACC, Thr) of PRKDC. Loss of the "A" nucleotide would terminate the DNA-PKcs reading frame early in exon 33. DNA from M059K cells had only the wild-type sequence. An analysis of sequences surrounding PRKDC exon 32 from 87 unrelated individuals revealed no polymorphic nucleotides except for a triplet repeat near the 3' end of this exon; no individual had a frameshift mutation in exon 32. No other sequence differences in PRKDC between M059J and M059K cells were observed in approximately 15,000 bp of genomic sequence including the sequences of exons 5 through 38 and surrounding intron sequence, suggesting a possible reduction to homozygosity at this locus prior to acquisition of the mutation leading to the M059J cell line.  相似文献   

6.
Kv1.1 channels are expressed in many regions of the brain and spinal cord [Monaghan, M. M.; Trimmer, J. S.; Rhodes, K. J. J. Neurosci.2001, 21, 5973; Rasband, M. N.; Trimmer, J. S. J. Comp. Neurol.2001, 429, 166; Trimmer, J. S.; Rhodes, K. J. Ann. Rev. Physiol.2004, 66, 477]. When expressed alone, they produce a delayed rectifier slowly inactivating type current that contributes to hyperpolarizing the neuron following depolarization. In the hippocampus Kv1.1 is co-expressed with Kvbeta1 (and other beta subunits), which converts Kv1.1 into a transient, fast inactivating current, reducing its ability to hyperpolarize the cell and thus increasing neuronal excitability. To reduce neuronal excitability, screening for compounds that prevent inactivation of Kv1.1 channels by Kvbeta1 was performed using a yeast two-hybrid screen. A variety of compounds were discovered in this assay and subsequently determined to disrupt inactivation of the ionic currents, and hence were termed 'disinactivators'. Several of these disinactivators also inhibited pentylenetetrazole-induced seizures (PTZ) in mice. Compounds were found to act by several mechanisms to prevent Kvbeta1 inactivation of Kv1.1 channels, including enhancement of Ca(2+) release/influx and by direct mechanisms. Two structural classes were identified that act on a Kvbeta1N70-Kv1.1 chimera where the N-terminal 70 amino acids of Kvbeta1 were attached to the N-terminus of Kv1.1. It is likely that these disinactivators act directly on the Kvbeta1 N-terminus or its receptor site on Kv1.1, thus preventing it from blocking Kv1.1 channels. Compounds acting by this mechanism may be useful for reducing neuronal hyperexcitability in diseases such as epilepsy and neuropathic pain.  相似文献   

7.
ElaC is a widespread gene found in eubacteria, archaebacteria, and mammals with a highly conserved sequence. Two human ElaC variants were recently associated with cancer (Tavtigian, S. V., Simard, J., Teng, D. H., Abtin, V., Baumgard, M., Beck, A., Camp, N. J., Carillo, A. R., Chen, Y., Dayananth, P., Desrochers, M., Dumont, M., Farnham, J. M., Frank, D., Frye, C., Ghaffari, S., Gupte, J. S., Hu, R., Iliev, D., Janecki, T., Kort, E. N., Laity, K. E., Leavitt, A., Leblanc, G., McArthur-Morrison, J., Pederson, A., Penn, B., Peterson, K. T., Reid, J. E., Richards, S., Schroeder, M., Smith, R., Snyder, S. C., Swedlund, B., Swensen, J., Thomas, A., Tranchant, M., Woodland, A. M., Labrie, F., Skolnick, M. H., Neuhausen, S., Rommens, J., and Cannon-Albright, L. A. (2001) Nat. Genet. 27, 172-180; Yanaihara, N., Kohno, T., Takakura, S., Takei, K., Otsuka, A., Sunaga, N., Takahashi, M., Yamazaki, M., Tashiro, H., Fukuzumi, Y., Fujimori, Y., Hagiwara, K., Tanaka, T., and Yokota, J. (2001) Genomics 72, 169-179). Analysis of the primary sequence indicates homology to an arylsulfatase and predicts a metallo-beta-lactamase fold. At present, no ElaC gene product has been investigated. We cloned the Escherichia coli ElaC gene and purified the recombinant gene product. An enzymatic analysis showed that ElaC does not encode an arylsulfatase but rather encodes a phosphodiesterase that hydrolyzes bis(p-nitrophenyl)phosphate with a k(cat) of 59 s(-1) and K' of 4 mm. Kinetic analysis of the dimeric enzyme revealed positive cooperativity for the substrate bis(p-nitrophenyl)phosphate with a Hill coefficient of 1.6, whereas hydrolysis of the substrate thymidine-5'-p-nitrophenyl phosphate followed Michaelis-Menten kinetics. Furthermore, the enzyme is capable of binding two zinc or two iron ions. However, it displays phosphodiesterase activity only in the zinc form. The metal environment characterized by zinc K-edge x-ray absorption spectroscopy was modeled with two histidine residues, one carboxylate group, and 1.5 oxygen atoms. This corresponds to the coordination found in other metallo-beta-lactamase domain proteins. Phosphodiesterase activity is strongly dependent on the presence of zinc. These results identify the currently unassigned gene product ElaC to be a novel binuclear zinc phosphodiesterase.  相似文献   

8.
Studies of mucins suggest that the structural effects of O-glycans are restricted to steric interactions between peptide-linked GalNAc residues and adjacent polypeptide residues. It has been proposed, however, that differential O-glycan sialylation alters the structure of the stalk-like region of the T cell co-receptor, CD8, and that this, in turn, modulates ligand binding (Daniels, M. A., Devine, L., Miller, J. D., Moser, J. M., Lukacher, A. E., Altman, J. D., Kavathas, P., Hogquist, K. A., and Jameson, S. C. (2001) Immunity 15, 1051-1061; Moody, A. M., Chui, D., Reche, P. A., Priatel, J. J., Marth, J. D., and Reinherz, E. L. (2001) Cell 107, 501-512). We characterize the glycosylation of soluble, chimeric forms of the alphaalpha- and alphabeta-isoforms of murine CD8 containing the O-glycosylated stalk of rat CD8alphaalpha, and we show that the stalk O-glycans are differentially sialylated in CHO K1 versus Lec3.2.8.1 cells (82 versus approximately 6%, respectively). Sedimentation analysis indicates that the Perrin functions, Pexp, which reflect overall molecular shape, are very similar (1.61 versus 1.54), whereas the sedimentation coefficients (s) of the CHO K1- and Lec3.2.8.1-derived proteins differ considerably (3.73 versus 3.13 S). The hydrodynamic properties of molecular models also strongly imply that the sialylated and non-sialylated forms of the chimera have parallel, equally highly extended stalks ( approximately 2.6 A/residue). Our analysis indicates that, as in the case of mucins, the overall structure of O-glycosylated stalk-like peptides is sialylation-independent and that the functional effects of differential CD8 O-glycan sialylation need careful interpretation.  相似文献   

9.
Loss of full-length adenomatous polyposis coli (APC) protein correlates with the development of colon cancers in familial and sporadic cases. In addition to its role in regulating β-catenin levels in the Wnt signaling pathway, the APC protein is implicated in regulating cytoskeletal organization. APC stabilizes microtubules in vivo and in vitro, and this may play a role in cell migration (Näthke, I.S., C.L. Adams, P. Polakis, J.H. Sellin, and W.J. Nelson. 1996. J. Cell Biol. 134:165–179; Mimori-Kiyosue, Y., N. Shiina, and S. Tsukita. 2000. J. Cell Biol. 148:505–517; Zumbrunn, J., K. Inoshita, A.A. Hyman, and I.S. Näthke. 2001. Curr. Biol. 11:44–49) and in the attachment of microtubules to kinetochores during mitosis (Fodde, R., J. Kuipers, C. Rosenberg, R. Smits, M. Kielman, C. Gaspar, J.H. van Es, C. Breukel, J. Wiegant, R.H. Giles, and H. Clevers. 2001. Nat. Cell Biol. 3:433–438; Kaplan, K.B., A. Burds, J.R. Swedlow, S.S. Bekir, P.K. Sorger, and I.S. Näthke. 2001. Nat. Cell Biol. 3:429–432). The localization of endogenous APC protein is complex: actin- and microtubule-dependent pools of APC have been identified in cultured cells (Näthke et al., 1996; Mimori-Kiyosue et al., 2000; Reinacher-Schick, A., and B.M. Gumbiner. 2001. J. Cell Biol. 152:491–502; Rosin-Arbesfeld, R., G. Ihrke, and M. Bienz. 2001. EMBO J. 20:5929–5939). However, the localization of APC in tissues has not been identified at high resolution. Here, we show that in fully polarized epithelial cells from the inner ear, endogenous APC protein associates with the plus ends of microtubules located at the basal plasma membrane. Consistent with a role for APC in supporting the cytoskeletal organization of epithelial cells in vivo, the number of microtubules is significantly reduced in apico-basal arrays of microtubule bundles isolated from mice heterozygous for APC.  相似文献   

10.
Mark Wilson 《Ichnos》2013,20(3-4):123-124
Ichnology and Sedimentology of Shallow to Marginal Marine Systems: Ben Nevis & Avalon Reservoirs, Jeanne d’Arc Basin, S. G. Pemberton, M. Spila, A. J. Pulham, T. Saunders, J. A. MacEachern, D. Robbins and I. K. Sinclair, 2001, Geological Association of Canada Short Course Notes, Volume 15, 343 p., ISSN 1189-6094.  相似文献   

11.
Book Review     
Bacillus thuringiensis an Environmental Biopesticide: Theory and Practice

P. F. Entwistle, J. S. Cory, M. J. Bailey & S. Higgs (Eds), 1993 Wiley, Chichester, 311 pp.  相似文献   


12.
Cadherins are transmembrane receptors that mediate cell-cell adhesion. They play an essential role in embryonic development and maintenance of tissue architecture. The Rho family small GTPases regulate actin cytoskeletal dynamics in different cell types. The function of two family members, Rho and Rac, is required for the stability of cadherins at cell-cell contacts. Consistent with the published data we have found that Rac is activated upon induction of intercellular adhesion in epithelial cells. This activation is dependent on functional cadherins (Nakagawa, M., Fukata, M., Yamaga, M., Itoh, N., and Kaibuchi, K. (2001) J. Cell Sci. 114, 1829-1838; Noren, N. K., Niessen, C. M., Gumbiner, B. M., and Burridge, K. (2001) J. Biol. Chem. 276, 3305-3308). Here we show for the first time that clustering of cadherins using antibody-coated beads is sufficient to promote Rac activation. In the presence of Latrunculin B, Rac can be partially activated by antibody-clustered cadherins. These results suggest that actin polymerization is not required for initial Rac activation. Contrary to what has been described before, phosphatidylinositol 3-kinases are not involved in Rac activation following cell-cell adhesion in keratinocytes. Interestingly, inhibition of epidermal growth factor receptor signaling efficiently blocks the increased Rac-GTP levels observed after contact formation. We conclude that cadherin-dependent adhesion can activate Rac via epidermal growth factor receptor signaling.  相似文献   

13.
An efficient method for the synthesis of 5'-O-monomethoxytrityl-2',3'-dideoxy-2'-fluoro-3'-thioarabinothymidine [(5'MMT)araF-T(3'SH), (5)] and its 3'-phosphoramidite derivative (6) suitable for automated incorporation into oligonucleotides, is demonstrated. A key step in the synthesis involves reaction of 5'-O-MMT-2,3'-O-anhydrothymidine (4) (Eleuteri, A.; Reese, C.B.; Song, Q. J. Chem. Soc. Perkin Trans. 1 1996, 2237 pp.) with sodium thioacetate to give (5'-MMT)araF-T(3'SAc) (5) (Elzagheid, M.I.; Mattila, K.; Oivanen, M.; Jones, B.C.N.M.; Cosstick, L?nnberg, H. Eur. J. Org. Chem. 2000, 1987-1991). This nucleoside was then converted to its corresponding phosphoramidite derivative, 6, as described previously ((a) Sun, S.; Yoshida, A.; Piccirilli, J.A. RNA, 1997, 3, 1352-1363; (b) Matulic-Adamic, J.; Beigelman, L. Helvetica Chemica Acta 1999, 82, 2141-2150: (c) Fettes, K.J.; O'Neil, I.; Roberts, S.M.; Cosstick, R. Nucleosides, Nucleotides and Nucl. Acids 2001, 20, 1351-1354).  相似文献   

14.
15.
16.
A large and phylogenetically diverse group of organisms contain truncated hemoglobins, including the unicellular cyanobacterium Synechocystis (Pesce, A., Couture, M., Dewilde, S., Guertin, M., Yamauchi, K., Ascenzi, P., Moens, L., and Bolognesi, M. (2000) EMBO J. 19, 2424-2434). Synechocystis hemoglobin is also hexacoordinate, with a heme pocket histidine that reversibly coordinates the ligand binding site. Hexacoordinate hemoglobins are ubiquitous in plants and are now being identified in a diverse array of organisms including humans (Arredondo-Peter, R., Hargrove, M. S., Moran, J. F., Sarath, G., and Klucas, R. V. (1998) Plant Physiol. 118, 1121-1125; Trent, J. T., III, Watts, R. A., and Hargrove, M. S. (2001) J. Biol. Chem. 276, 30106-30110). Rate constants for association and dissociation of the hexacoordinating amino acid side chain in Synechocystis hemoglobin have been measured along with bimolecular rate constants for association of oxygen and carbon monoxide following laser flash photolysis. These values were compared with ligand binding initiated by rapid mixing. Site-directed mutagenesis was used to determine the roles of several heme pocket amino acids in facilitating hexacoordination and stabilizing bound oxygen. It is demonstrated that Synechocystis hemoglobin contains a very reactive binding site and that ligand migration through the protein is rapid. Rate constants for hexacoordination by His(46) are also large and facilitated by other heme pocket amino acids including Gln(43).  相似文献   

17.
18.
The eukaryotic spindle assembly checkpoint (SAC) monitors microtubule attachment to kinetochores and prevents anaphase onset until all kinetochores are aligned on the metaphase plate. In higher eukaryotes, cytoplasmic dynein is involved in silencing the SAC by removing the checkpoint proteins Mad2 and the Rod-Zw10-Zwilch complex (RZZ) from aligned kinetochores (Howell, B.J., B.F. McEwen, J.C. Canman, D.B. Hoffman, E.M. Farrar, C.L. Rieder, and E.D. Salmon. 2001. J. Cell Biol. 155:1159-1172; Wojcik, E., R. Basto, M. Serr, F. Scaerou, R. Karess, and T. Hays. 2001. Nat. Cell Biol. 3:1001-1007). Using a high throughput RNA interference screen in Drosophila melanogaster S2 cells, we have identified a new protein (Spindly) that accumulates on unattached kinetochores and is required for silencing the SAC. After the depletion of Spindly, dynein cannot target to kinetochores, and, as a result, cells arrest in metaphase with high levels of kinetochore-bound Mad2 and RZZ. We also identified a human homologue of Spindly that serves a similar function. However, dynein's nonkinetochore functions are unaffected by Spindly depletion. Our findings indicate that Spindly is a novel regulator of mitotic dynein, functioning specifically to target dynein to kinetochores.  相似文献   

19.
Analysis of genome and expressed sequence tag data bases at the turn of the millennium unveiled a new protease family named the type II transmembrane serine proteases (TTSPs) in a Journal of Biological Chemistry minireview (Hooper, J. D., Clements, J. A., Quigley, J. P., and Antalis, T. M. (2001) J. Biol. Chem. 276, 857–860). Since then, the number of known TTSPs has more than doubled, and more importantly, our understanding of the physiological functions of individual TTSPs and their contribution to human disease has greatly increased. Progress has also been made in identifying molecular substrates and endogenous inhibitors. This minireview summarizes the current knowledge of the rapidly advancing TTSP field.  相似文献   

20.
Twomey C  McCarthy JV 《FEBS letters》2006,580(17):4015-4020
Previously we described presenilin-1 (PS1) as a GSK-3beta substrate [Kirschenbaum, F., Hsu, S.C., Cordell, B. and McCarthy, J.V. (2001) Substitution of a glycogen synthase kinase-3beta phosphorylation site in presenilin 1 separates presenilin function from beta-catenin signalling. J. Biol. Chem. 276, 7366-7375; Kirschenbaum, F., Hsu, S.C., Cordell, B. and McCarthy, J.V. (2001) Glycogen synthase kinase-3beta regulates presenilin 1 C-terminal fragment levels. J. Biol. Chem. 276, 30701-30707], though it has not been determined whether PS1 is a primed or unprimed GSK-3beta substrate. A means of separating GSK-3beta activity toward primed and unprimed substrates was identified in the GSK-3beta-R96A phosphate binding pocket mutant [Frame, S., Cohen, P. and Biondi, R.M. (2001) A common phosphate binding site explains the unique substrate specificity of GSK3 and its inactivation by phosphorylation. Mol. Cell 7, 1321-1327], which is unable to phosphorylate primed but retains the ability to phosphorylate unprimed GSK-3beta substrates. By using wild type GSK-3beta, GSK-3beta-R96A, and a pharmacological modulator of GSK-3beta activity, we demonstrate that PS1 is an unprimed GSK-3beta substrate. These findings have important implications for regulation of PS1 function and the pathogenesis of Alzheimer's disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号