首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
First encounters--deployment of defence-related natural products by plants   总被引:1,自引:0,他引:1  
Plant-derived natural products have important functions in ecological interactions. In some cases these compounds are deployed to sites of pathogen challenge by vesicle-mediated trafficking. Polar vesicle trafficking of natural products, proteins and other, as yet uncharacterized, cargo is emerging as a common theme in investigations of diverse disease resistance mechanisms in plants. Root-derived natural products can have marked effects on interactions between plants and soilborne organisms, for example by serving as signals for initiation of symbioses with rhizobia and mycorrhizal fungi. They may also contribute to competitiveness of invasive plant species by inhibiting the growth of neighbouring plants (allelopathy). Very little is known about the mechanisms of release of natural products from aerial plant parts or from roots, although there are likely to be commonalities in these processes. There is increasing evidence to indicate that pathogens and symbionts can manipulate plant endomembrane systems to suppress host defence responses and facilitate accommodation within plant cells. The relationship between secretory processes and plant interactions forms the focus of this review, which brings together different aspects of the deployment of defence-related natural products by plants.  相似文献   

2.
The traditional medicine based on medicinal plants in the Kingdom of Arabia Saudia presents a strong relationship belonging to natural remedies, health, diet, and folk healing practice recognized by a specific culture. The aim of the current study is to carry out an ethnobotanical review on medicinal plants used in traditional medicine in the Kingdom of Arabia Saudia including information on plant species, used parts, preparation method as well as medical uses. Earlier published data in journals, textbooks, periodicals, websites, and databases written in pharmacological evidence of Suadi medicinal plants were based on gathering information. The present review work reported that 96 species belonging to 47 families have been used in Saudi Pharmacopeia. Amaranthaceae has the highest number of plant species (7) Followed by Asteraceae, Apocynaceae, and Fabaceae with 5 plant species in each. The inventoried plant species in the current work are frequently used for the treatment of various illnesses and to ensure the medication safety of Saudi people. The biological analysis of plant form used in Saudi natural remedies showed the dominance of herb and subshrub form with a percentage of 43% and 30% respectively. The most used preparation method of plant drugs, which used in Saudi Alternative medicine was decoction and infusion. The whole plant, leaves, seeds, and aerial parts were the most useful plant parts in natural preparation in Saudi traditional medicine with a percentage of 29%, 28%, 7%, and 5% respectively as reported in the present review work. The present review work gives big data about medicinal plants used in traditional medicine in the Kingdom of Saudi Arabia including data about plant species, used parts, preparation method as well as medical uses.  相似文献   

3.
植物天然产物是小分子药物、营养品、化妆品、香精香料等的主要来源之一,在国民经济中发挥重要的作用。目前植物天然产物主要依赖于植物提取,这种生产方式占用耕地、生长周期长,而且植物活性成分往往含量低、生产成本高。通过解析植物天然产物生物合成途径,在微生物细胞中重构,创建细胞工厂,实现利用可再生原料发酵合成,为植物天然产物的供给提供了新的路线。本文重点介绍了中国科学院天津工业生物技术研究所在萜类、黄酮类、苯丙素类等重要类型植物天然产物微生物重组合成方面的研究进展,简要探讨了当前研究面临的挑战及未来前景。  相似文献   

4.
Most research on plant-plant chemical interactions has focussed on events following herbivore or pathogen attack. However, undamaged plants also interact chemically as a natural facet of their behaviour, and this may have consequences for insects that use the plants as hosts. In this review, the links between allelopathy and insect behaviour are outlined. Findings on how chemical interactions between different plant species and genotypes affect aphid herbivores and their natural enemies are reviewed, and the role of plant diversity and chemical interaction for trophic interactions in crops is discussed.  相似文献   

5.
The present work constitutes a review of the literature on natural products with potential antitumor activity against ovarian neoplasias. The review refers to five plant extracts and sixty-nine compounds isolated from higher plants and microorganisms, which are classified in appropriate chemical groups and model tested, and cites their activity. Some aspects of recent research with natural products directed to ward producing drugs which are inhibitors of ovarian neoplasia are discussed.  相似文献   

6.
Higher plants continue to afford humankind with many new drugs, for a variety of disease types. In this review, recent phytochemical and biological progress is presented for part of a collaborative multi-institutional project directed towards the discovery of new antitumor agents. The specific focus is on bioactive natural products isolated and characterized structurally from tropical plants collected in Vietnam. The plant collection, identification, and processing steps are described, and the natural products isolated from these species are summarized with their biological activities.  相似文献   

7.
Being sessile organisms, plants show a high degree of developmental plasticity to cope with a constantly changing environment. While plasticity in plants is largely controlled genetically, recent studies have demonstrated the importance of epigenetic mechanisms, especially DNA methylation, for gene regulation and phenotypic plasticity in response to internal and external stimuli. Induced epigenetic changes can be a source of phenotypic variations in natural plant populations that can be inherited by progeny for multiple generations. Whether epigenetic phenotypic changes are advantageous in a given environment, and whether they are subject to natural selection is of great interest, and their roles in adaptation and evolution are an area of active research in plant ecology. This review is focused on the role of heritable epigenetic variation induced by environmental changes, and its potential influence on adaptation and evolution in plants.  相似文献   

8.
Deborah Ann Roach 《Genetica》1993,91(1-3):53-64
Senescence is a decline in age-specific survival and reproduction with advancing age. Studies of evolutionary plant senescence are designed to explain this decline in life history components within the context of natural selection. A review of studies of plant demography reveals senescent declines in both annual and perennial plants, but also suggests that there are some plant species which may not be expected to show senescence. Thus, future comparative studies of closely related species, with and without senescence, should be possible. The assumptions of the major evolutionary theories of senescence are evaluated for their validity with respect to plants. Different plant species violate one or more of the assumptions of the theories, yet the consequences of violating these assumptions have never been investigated. Whereas, to date, evolutionary senescence has been studied only indirectly in plants, it is concluded that plants provide good experimental systems for clarifying our understanding of senescence in natural populations.  相似文献   

9.
Endophytes are micro‐organisms including bacteria and fungi that survive within healthy plant tissues and promote plant growth under stress. This review focuses on the potential of endophytic microbes that induce abiotic stress tolerance in plants. How endophytes promote plant growth under stressful conditions, like drought and heat, high salinity and poor nutrient availability will be discussed. The molecular mechanisms for increasing stress tolerance in plants by endophytes include induction of plant stress genes as well as biomolecules like reactive oxygen species scavengers. This review may help in the development of biotechnological applications of endophytic microbes in plant growth promotion and crop improvement under abiotic stress conditions.

Significance and Impact of the Study

Increasing human populations demand more crop yield for food security while crop production is adversely affected by abiotic stresses like drought, salinity and high temperature. Development of stress tolerance in plants is a strategy to cope with the negative effects of adverse environmental conditions. Endophytes are well recognized for plant growth promotion and production of natural compounds. The property of endophytes to induce stress tolerance in plants can be applied to increase crop yields. With this review, we intend to promote application of endophytes in biotechnology and genetic engineering for the development of stress‐tolerant plants.  相似文献   

10.
11.
Agrobacterial transformation is a main method of creation of transgenic plants under laboratory conditions. It is based on regeneration of whole plants from cells transformed with vectors based on T-DNA of agrobacteria. In addition, natural plants are described that contain T-DNA in their genomes and have been vertically transferring it throughout generations over millennia. This DNA was called cellular T-DNA (cT-DNA), and plants containing it are referred to as naturally transgenic ones. Since evolution involves manifold acts of such plant transformation, the latter appears to play important roles. This review analyzes the significance and feasible functions of cT-DNA in the evolution. Roles of cT-DNA in control of plant morphogenetic reactions and in that of processes related to plant-microbe interactions are also discussed.  相似文献   

12.
Genetic modification of plants has become common practice. However, root-specific genetic modifications have only recently been advocated. Here, a review is presented regarding how root-specific modifications can have both plant internal and rhizosphere-mediated effects on aboveground plant properties and plant performance. Plant internal effects refer to pleiotropic processes such as transportation of the modified gene product. Rhizosphere-mediated effects refer to altered plant-rhizosphere interactions, which subsequently feed back to the plant. Such plant-soil feedback mechanisms have been demonstrated both in natural systems and in crops. Here how plant internal and rhizosphere-mediated effects could enhance or counteract improvements in plant properties for which the genetic modification was intended is discussed. A literature survey revealed that rice is the most commonly studied crop species in the context of root-specific transgenesis, predominantly in relation to stress tolerance. Phytoremediation, a process in which plants are used to clean up pollutants, is also often an objective when transforming roots. These two examples are used to review potential effects of root genetic modifications on shoots. There are several examples in which root-specific genetic modifications only lead to better plant performance if the genes are specifically expressed in roots. Constitutive expression can even result in modified plants that perform worse than non-modified plants. Rhizosphere effects have rarely been examined, but clearly genetic modification of roots can influence rhizosphere interactions, which in turn can affect shoot properties. Indeed, field studies with root-transformed plants frequently show negative effects on shoots that are not seen in laboratory studies. This might be due to the simplified environments that are used in laboratories which lack the full range of plant-rhizosphere interactions that are present in the field.  相似文献   

13.
In recent years, the immunomodulating properties of plants are being studied extensively with greater interest due to the growing awareness on immune system modulation and to achieve the desirable effects on disease prevention. Several plant remedies well-known in traditional medicine exert their anti-infective effects not only by directly affecting the pathogen, but also by stimulating natural and adaptive defense mechanisms of the host. Therefore plant-remedies have become versatile means with improved immunotherapy. The aim of this review is to highlight the efficacy of available literature evidences on natural immunomodulators of plant origin. In addition, several aspects on plants and their phytoconstituents responsible for immunomodulation have been discussed. A brief explanation has also been given on the use and efficacy of chemical immunomodulators. Moreover, this review also discusses biological screening methods for various plant-based immunodrugs that focus on revealing the mechanism involved in immunomodulation. Hence, botanicals, the diverse chemical complexes, could provide appropriate combinations of synergistic moieties useful in immune drug discovery. In this article, we reviewed the importance of traditional medicines as natural products related to immunodrugs.  相似文献   

14.
The flora of New Caledonia encompasses more than 3000 plant species and almost 80% are endemic. New Caledonia is considered as a ‘hot spot’ for biodiversity. With the current global loss of biodiversity and the fact that several drugs and pesticides become obsolete, there is an urgent need to increase sampling and research on new natural products. In this context, we review the chemical knowledge available on New Caledonian native flora from economical perspectives. We expect that a better knowledge of the economic potential of plant chemistry will encourage the plantation of native plants for the development of a sustainable economy which will participate in the conservation of biodiversity. In the second part of this review, we focus on the results exposed in 60 scientific articles and describe the identification of 225 original compounds from basal angiosperms and eudicot rosids. We discuss the economic potential of plants and molecules from medicinal and industrial perspectives. This review also highlights several plants and groups, such as Amborella sp., Piperaceae, or Phyllanthaceae, that are unexplored in New Caledonia despite their high chemical interest. Those plants are considered to have priority in future chemical investigations.  相似文献   

15.
刘登义 《生态学报》1996,16(6):660-663
病原菌在自然植物种群中普遍存在,其对寄主植物的生长发育,对寄主植物种群的大小、结构、动态、遗传和进化等都有重要影响。本文着重论述:1)病原菌对寄主植物个体的影响;2)病原菌对寄主植物种群生物学的影响;3)菌病发生的空间格局;4)病原菌感染的种群模型。  相似文献   

16.
桫椤科植物是古老的孑遗植物,现存的桫椤天然群落极为罕见,为了解桫椤(Alsophila spinulosa)及桫椤科(Cyatheaceae)植物在生物群落的中生存与保育状态研究现状,本文通过搜集国内外关于桫椤及桫椤科植物相关文献进行研究。桫椤科植物分布于高温潮湿、光斑直射的生境,常以斑块状分布于常绿阔叶林林缘。现阶段,桫椤科植物保护面临的主要问题是生态旅游、毁林开荒、环境污染、药材的违法采摘和挖掘等,这导致桫椤科植物的生境遭受干扰和破碎,桫椤科植株数量下降。对桫椤科植物的保护方式主要有就地保护、迁地保护,分子生物学技术在桫椤科植物繁育中应用逐渐增加。生物和非生物因素制约着桫椤科植物的分布和多样性,其中,生物因素特别是种间关系对桫椤植物的生长发育和分布有着重要影响,从种间关系的视角出发探讨桫椤科植物的保护或许不失为新时代桫椤科植物保护的有效方式。讨论了桫椤植科物相关的种间关系:桫椤科植物-微生物互作、桫椤科植物-其他植物互作、桫椤科植物-动物互作,探讨了桫椤科植物面临灭绝的因素以及近年来桫椤科植物相关的保护策略及成效,为桫椤科植物的有效利用和保护提供一定理论基础。  相似文献   

17.
The flora of New Caledonia encompasses more than 3000 plant species and an endemism of almost 80%. New Caledonia is even considered as one of the 34 ‘hot spots’ for biodiversity. Considering the current global loss of biodiversity and the fact that several drugs and pesticides become obsolete, there is an urgent need to increase sampling and research on new natural products. In this context, here, we reviewed the chemical knowledge available on New Caledonian native flora from economical perspectives. We expect that a better knowledge of the economic potential of plant chemistry will encourage the plantation of native plants for the development of a sustainable economy which will participate in the conservation of biodiversity. This review is divided into three parts, and the third part which is presented here summarizes the scientific literature related to the chemistry of endemic santalales, caryophyllales, and asterids. We show that the high rate of endemism is correlated with the originality of phytochemicals encountered in New Caledonian plants. A total of 176 original natural compounds have been identified from these plants, whereas many species have not been investigated so far. We also discuss the economic potential of plants and molecules with consideration of their medicinal and industrial perspectives. This review finally highlights several groups, such as Sapotaceae, that are unexplored in New Caledonia despite the high chemical interest in them. These plants are considered to have priority in future chemical investigations.  相似文献   

18.
19.
Bacteria in the plant tissue culture environment   总被引:1,自引:0,他引:1  
Bacteria and plants are joined in various symbiotic relationships that have developed over millennia and have influenced the evolution of both groups. Bacteria inhabit the surfaces of most plants and are also present inside many plant organs. These bacteria may have positive, neutral or negative impacts on their plant hosts. Probiotic effects may improve plant nutrition or increase resistance to biotic and abiotic stresses. Conversely pathogenic bacteria may kill or reduce the vigor of plant hosts. In addition some bacteria inhabit plants and profit from excess metabolites or shelter while not injuring the plant. Micropropagation of plants is based on the stimulation of organogenesis or embryogenesis from explants that are superficially decontaminated and placed into a sterile environment. If successful, this process removes bacteria from surfaces, but those inhabiting inner tissues and organs are usually not affected by these steriliants. In vitro conditions are designed for optimal plant growth and development, however these conditions are also often ideal for bacterial multiplication. The presence of bacteria in the in vitro environment was almost universally considered negative for plant culture, but more recently this view has been questioned. Certain bacteria appear to have a beneficial effect on the explants in culture; increasing multiplication and rooting, increasing explant quality, and organo- and embryogenesis of recalcitrant genotypes. The most important role of beneficial bacteria for micropropagated plants is likely to be during acclimatization, when growth is resumed under natural conditions. This review includes the role of bacterial interactions in plants, especially those grown in vitro.  相似文献   

20.
Medicinal plants, a source of different phytochemical compounds, are now subjected to a variety of environmental stresses during their growth and development. Different ecologically limiting factors including temperature, carbon dioxide, lighting, ozone, soil water, soil salinity and soil fertility has significant impact on medicinal plants′ physiological and biochemical responses, as well as the secondary metabolic process. Secondary metabolites (SMs) are useful for assessing the quality of therapeutic ingredients and nowadays, these are used as important natural derived drugs such as immune suppressant, antibiotics, anti-diabetic, and anti-cancer. Plants have the ability to synthesize a variety of secondary metabolites to cope with the negative effects of stress. Here, we focus on how individual environmental variables influence the accumulation of plant secondary metabolites. A total of 48 articles were found to be relevant to the review topic during our systematic review. The review showed the influence of different environmental variables on SMs production and accumulation is complex suggesting the relationship are not only species-specific but also related to increases and decline in SMs by up to 50 %. Therefore, this review improves our understanding of plant SMs ability to adapt to key environmental factors. This can aid in the efficient and long-term optimization of cultivation techniques under ambient environmental conditions in order to maximize the quality and quantity of SMs in plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号