首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nuclei isolated from eukaryotic cells can be depleted of histones and most soluble nuclear proteins to isolate a structural framework called the nuclear scaffold. This structure maintains specific interactions with genomic DNA at sites known as scaffold attached regions (SARs), which are thought to be the bases of DNA loops. In both Saccharomyces cerevisiae and Schizosaccharomyces pombe, genomic ARS elements are recovered as SARs. In addition, SARs from Drosophila melanogaster bind to yeast nuclear scaffolds in vitro and a subclass of these promotes autonomous replication of plasmids in yeast. In the present report, we present fine mapping studies of the Drosophila ftz SAR, which has both SAR and ARS activities in yeast. The data establish a close relationship between the sequences involved in ARS activity and scaffold binding: ARS elements that can bind the nuclear scaffold in vitro promote more efficient plasmid replication in vivo, but scaffold association is not a strict prerequisite for ARS function. Efficient interaction with nuclear scaffolds from both yeast and Drosophila requires a minimal length of SAR DNA that contains reiteration of a narrow minor groove structure of the double helix.  相似文献   

2.
We have previously mapped scaffold-attached regions (SARs) on an 800-kilobase DNA walk from the Drosophila X chromosome. We have also previously shown that the strength of binding, i.e., the ability of SARs to bind to all nuclear scaffolds or only to a fraction of them varied from one SAR to another one. In the present study, 71 of the 85 subfragments that bind scaffolds and 38 fragments that do not bind scaffolds were tested for their ability to promote autonomous replicating sequence (ARS) activity in Saccharomyces cerevisiae. Sixteen SAR-containing fragments from the chromosome walk were also examined for association to yeast nuclear scaffolds in vitro. All identified ARSs (a total of 27) were present on SAR-containing fragments, except two, which were adjacent to SARs. There is thus a correlation between ARS and SAR activities, and this correlation defines a SAR subclass. Moreover, the presence of an ARS on a DNA fragment appeared to be highly correlated with the strength of binding. The binding activity was highly conserved from Drosophila melanogaster to yeast. These data suggest that Drosophila DNA sequences responsible for binding to components of the nuclear scaffold from either D. melanogaster or yeast may be involved in the process of heterologous extrachromosomal replication in yeasts.  相似文献   

3.
Scaffold attachment of DNA loops in metaphase chromosomes   总被引:19,自引:0,他引:19  
We have examined the higher-order loop organization of DNA in interphase nuclei and metaphase chromosomes from Drosophila Kc cells, and we detect no changes in the distribution of scaffold-attached regions (SARs) between these two phases of the cell cycle. The SARs, previously defined from experiments with interphase nuclei, not only are bound to the metaphase scaffold when endogenous DNA is probed but also rebind specifically to metaphase scaffolds when added exogenously as cloned, end-labeled fragments. Since metaphase scaffolds have a simpler protein pattern than interphase nuclear scaffolds, and both have a similar binding capacity, it appears that the population of proteins required for the specific scaffold-DNA interaction is limited to those found in metaphase scaffolds. Surprisingly, metaphase scaffolds isolated from Drosophila Kc cells contain both the lamin protein and a pore-complex protein, glycoprotein (gp) 188. To study whether lamin contributes to the SAR-scaffold interaction, we have carried out comparative binding studies with scaffolds from HeLa metaphase chromosomes, which are free of lamina, and from HeLa interphase nuclei. All Drosophila SAR fragments tested bind with excellent specificity to HeLa interphase scaffolds, whereas a subset of them bind to HeLa metaphase scaffolds. The maintenance of the scaffold-DNA interaction in metaphase indicates that lamin proteins are not involved in the attachment site for at least a subset of Drosophila SARs. This evolutionary and cell-cycle conservation of scaffold binding sites is consistent with a fundamental role for these fragments in the organization of the genome into looped domains.  相似文献   

4.
SARs (scaffold attachment regions) are candidate DNA elements for partitioning eukaryotic genomes into independent chromatin loops by attaching DNA to proteins of a nuclear scaffold or matrix. The interaction of SARs with the nuclear scaffold is evolutionarily conserved and appears to be due to specific DNA binding proteins that recognize SARs by a mechanism not yet understood. We describe a novel, evolutionarily conserved protein domain that specifically binds to SARs but is not related to SAR binding motifs of other proteins. This domain was first identified in human scaffold attachment factor A (SAF-A) and was thus designated SAF-Box. The SAF-Box is present in many different proteins ranging from yeast to human in origin and appears to be structurally related to a homeodomain. We show here that SAF-Boxes from four different origins, as well as a synthetic SAF-Box peptide, bind to natural and artificial SARs with high specificity. Specific SAR binding of the novel domain is achieved by an unusual mass binding mode, is sensitive to distamycin but not to chromomycin, and displays a clear preference for long DNA fragments. This is the first characterization of a specific SAR binding domain that is conserved throughout evolution and has DNA binding properties that closely resemble that of the unfractionated nuclear scaffold.  相似文献   

5.
Interaction of DNA with nuclear scaffolds in vitro   总被引:25,自引:0,他引:25  
We have previously identified a number of specific DNA fragments called SARs (scaffold-associated regions) that are associated with the nuclear scaffold and define the basis of DNA loops. We demonstrate that cloned DNA fragments containing SAR sequences bind to nuclear scaffolds in vitro with the same specificity as have genomic SAR fragments. This specific interaction is observed with the biochemically complex type I scaffolds. These scaffolds are composed of the nuclear lamina proteins and a set of other proteins that forms the internal network of these structures. So-called type II scaffolds, which are composed primarily of the lamina proteins and lack the proteins of the internal network, do not bind the SAR fragments at a detectable level. Competition experiments show that different SARs share common structural elements and can bind to the same sites on the nuclear scaffold, although with different affinities. Moreover, the SAR binding sites appear to be evolutionarily conserved, as all the Drosophila SARs also bind with identical specificity to nuclear scaffolds derived from rat liver nuclei. These Sar interaction studies were carried out with lithium 3,5-diiodosalicylate-extracted nuclei. Interestingly, scaffolds prepared by high-salt extraction also bind the genomic and exogenously added SAR fragments specifically. However, the endogenous transcribed sequences, as opposed to the same fragments added as purified DNA, associate randomly with these scaffolds.  相似文献   

6.
Studies on nuclear scaffolds and scaffold attachment regions (SARs) have recently been extended to different plant species and indicate that SARs are involved in the structural and functional organization of the plant genome, as is the case for other eukaryotes. One type of SAR seems to delimit structural chromatin loops and may also border functional units of gene expression and DNA replication. Another group of SARs map close to regulatory elements and may be directly involved in gene expression. In this overview, we summarize the structural and functional properties of plant SARs in comparison with those of SARs from animals and yeast.  相似文献   

7.
Nuclear matrix attachment regions (MARs) play a crucial role in chromatin architecture, gene expression, and DNA replication. Although it is well known that yeast autonomously replicating sequences (ARSs) bind nuclear matrix and MARs also function as ARS elements in yeast, whether a heterologous MAR or ARS element acts as a replication origin in the chromosome has not been elucidated. We previously identified a MAR (rMAR) located in the nontranscribed spacer (NTS) of silkworm Attacus ricini rDNA. We report here that this rMAR contains 10 copies of ARS consensus sequence (ACS) and several DNA unwinding regions. The rMAR employs ARS activity in yeast and a rARS element locates in the 3(') region of the rMAR. Furthermore, we have also revealed that either the rMAR or the rARS element functions as a replication origin in the chromosome. Our results provide the first direct evidence to demonstrate that heterologous rMAR and rARS display chromosomal origin activity, suggesting that the chromosome structure and replication origin of rDNA reserve some common features during evolution.  相似文献   

8.
We have identified a MAR/SAR recognition signature (MRS) which is common to a large group of matrix and scaffold attachment regions. The MRS is composed of two degenerate sequences (AATAAYAA and AWWRTAANNWWGNNNC) within close proximity. Analysis of >300 kb of genomic sequence from a variety of eukaryotic organisms shows that the MRS faithfully predicts 80% of MARs and SARs. In each case where we find a MRS, the corresponding DNA region binds specifically to the nuclear scaffold. Although all MRSs are associated with a SAR, not all known SARs and MARs contain a MRS, suggesting that at least two classes exist, one containing a MRS, the other not. Evidence is presented that the two sequence elements of the bipartite MRS occupy a position on the nucleosome near the dyad axis, together creating a putative protein binding site. The identification of a MAR- and SAR-associated DNA element is an important step forward towards understanding the molecular mechanisms of these elements. It will allow: (i) analysis of the genomic location of SARs, e.g. in relationship to genes, based on sequence information alone, rather than on the basis of an elaborate biochemical assay; (ii) identification and analysis of proteins that specifically bind to the MRS.  相似文献   

9.
Matrix/scaffold attachment regions (MARs/SARs) partition chromatin into functional loop domains. Here we have identified a chicken protein that selectively binds to MARs from the chicken lysozyme locus and to MARs from Drosophila, mouse, and human genes. This protein, named ARBP (for attachment region binding protein), was purified to homogeneity and shown to bind to MARs in a cooperative fashion. ARBP is an abundant nuclear protein and a component of the internal nuclear network. Deletion mutants indicate that multiple AT-rich sequences, if contained in a minimal approximately 350 bp MAR fragment, can lead to efficient binding of ARBP. Furthermore, dimerization mutants show that, to bind ARBP efficiently, MAR sequences can act synergistically over large distances, apparently with the intervening DNA looping out. The binding characteristics of ARBP to MARs reproduce those of unfractionated matrix preparations, suggesting that ARBP is an important nuclear element for the generation of functional chromatin loops.  相似文献   

10.
Maize nuclear DNA sequences capable of promoting the autonomous replication of plasmids in yeast were isolated by ligating Eco RI-digested fragments into yeast vectors unable to replicate autonomously. Three such autonomously replicating sequences (ARS), representing two families of highly repeated sequences within the maize genome, were isolated and characterized. Each repetitive family shows hybridization patterns on a Southern blot characteristic of a dispersed sequence. Unlike most repetitive sequences in maize, both ARS families have a constant copy number and characteristic genomic hybridization pattern in the inbred lines examined. Larger genome clones with sequence homology to the ARS-containing elements were selected from a lambda library of maize genomic DNA. There was typically only one copy of an ARS-homologous sequence on each 12–15 kb genomic fragment.  相似文献   

11.
Autonomously replicating sequences (ARSs) in the yeast Yarrowia lipolytica require two components: an origin of replication (ORI) and centromere (CEN) DNA, both of which are necessary for extrachromosomal maintenance. To investigate this cooperation in more detail, we performed a screen for genomic sequences able to confer high frequency of transformation to a plasmid-borne ORI. Our results confirm a cooperation between ORI and CEN sequences to form an ARS, since all sequences identified in this screen displayed features of centromeric DNA and included the previously characterized CEN1-1, CEN3-1 and CEN5-1 fragments. Two new centromeric DNAs were identified as they are unique, map to different chromosomes (II and IV) and induce chromosome breakage after genomic integration. A third sequence, which is adjacent to, but distinct from the previously characterized CEN1-1 region was isolated from chromosome I. Although these CEN sequences do not share significant sequence similarities, they display a complex pattern of short repeats, including conserved blocks of 9 to 14 bp and regions of dyad symmetry. Consistent with their A+T-richness and strong negative roll angle, Y. lipolytica CEN-derived sequences, but not ORIs, were capable of binding isolated Drosophila nuclear scaffolds. However, a Drosophila scaffold attachment region that functions as an ARS in other yeasts was unable to confer autonomous replication to an ORI-containing plasmid. Deletion analysis of CEN1-1 showed that the sequences responsible for the induction of chromosome breakage could be eliminated without compromising extrachromosomal maintenance. We propose that, while Y. lipolytica CEN DNA is essential for plasmid maintenance, this function can be supplied by several sub-fragments which, together, form the active chromosomal centromere. This complex organization of Y. lipolytica centromeres is reminiscent of the regional structures described in the yeast Schizosaccharomyces pombe or in multicellular eukaryotes.  相似文献   

12.
Using a low-salt extraction procedure, we isolated nuclear scaffolds from tobacco that bind specific plant DNA fragments in vitro. One of these fragments was characterized in more detail; this characterization showed that it contains sequences with structural properties analogous to animal scaffold attachment regions (SARs). We showed that scaffold attachment is evolutionarily conserved between plants and animals, although different SARs have different binding affinities. Furthermore, we demonstrated that flanking a chimeric transgene with the characterized SAR-containing fragment reduces significantly the variation in expression in series of transformants with an active insertion, whereas a SAR fragment from the human beta-globin locus does not. Moreover, the frequency distribution patterns of transgene activities showed that most of the transformants containing the plant SAR fragment had expression levels clustered around the mean. These data suggest that the particular plant DNA fragment can insulate the reporter gene from expression-influencing effects exerted from the host chromatin.  相似文献   

13.
We have previously shown that yeast scaffold attachment regions (SARs) flanking a chimeric beta-glucuronidase (GUS) reporter gene increased per-copy expression levels by 24-fold in tobacco suspension cell lines stably transformed by microprojectile bombardment. In this study, we examined the effect of a DNA fragment originally identified in a tobacco genomic clone by its activity in an in vitro binding assay. The tobacco SAR has much greater scaffold binding affinity than does the yeast SAR, and tobacco cell lines stably transformed with constructs containing the tobacco SAR accumulated greater than fivefold more GUS enzyme activity than did lines transformed with the yeast SAR construct. Relative to the control construct, flanking the GUS gene with plant SARs increased overall expression per transgene copy by almost 140-fold. In transient expression assays, the same construct increased expression only approximately threefold relative to a control without SARs, indicating that the full SAR effect requires integration into chromosomal DNA. GUS activity in individual stable transformants was not simply proportional to transgene copy number, and the SAR effect was maximal in cell lines with fewer than approximately 10 transgene copies per tobacco genome. Lines with significantly higher copy numbers showed greatly greatly reduced expression relative to the low-copy-number lines. Our results indicate that strong SARs flanking a transgene greatly increases expression without eliminating variation between transformants. We propose that SARs dramatically reduce the severity or likelihood of homology-dependent gene silencing in cells with small numbers of transgenes but do not prevent silencing of transgenes present in many copies.  相似文献   

14.
B B Amati  S M Gasser 《Cell》1988,54(7):967-978
We describe here for the first time the isolation of a yeast nuclear scaffold that maintains specific interactions with yeast genomic DNA sequences. The scaffold-DNA interaction is reversible and saturable, and some binding sites are conserved between yeast and Drosophila KC cells. Second, we find that the specific sequences bound to the yeast nuclear scaffold are the putative origins of replication (ARS elements) and a chromosomal centromere, CENIII. The scaffold association has been closely mapped at the ARS1 locus, and appears to include the 11 bp ARS consensus, but not the ABF-1 binding site. Competition studies show that ARS1 does not compete for CENIII binding, allowing us to distinguish two classes of scaffold attachment sites by functional and structural criteria.  相似文献   

15.
We have postulated that chromosomal replication origin regions in eukaryotes have in common clusters of certain modular sequence elements (Benbow, Zhao, and Larson, BioEssays 14, 661-670, 1992). In this study, computer analyses of DNA sequences from six origin regions showed that each contained one or more potential initiation regions consisting of a putative DUE (DNA unwinding element) aligned with clusters of SAR (scaffold associated region), and ARS (autonomously replicating sequence) consensus sequences, and pyrimidine tracts. The replication origins analyzed were from the following loci: Tetrahymena thermophila macronuclear rDNA gene, Chinese hamster ovary dihydrofolate reductase amplicon, human c-myc proto-oncogene, chicken histone H5 gene, Drosophila melanogaster chorion gene cluster on the third chromosome, and Chinese hamster ovary rhodopsin gene. The locations of putative initiation regions identified by the computer analyses were compared with published data obtained using diverse methods to map initiation sites. For at least four loci, the potential initiation regions identified by sequence analysis aligned with previously mapped initiation events. A consensus DNA sequence, WAWTTDDWWWDHWGWHMAWTT, was found within the potential initiation regions in every case. An additional 35 kb of combined flanking sequences from the six loci were also analyzed, but no additional copies of this consensus sequence were found.  相似文献   

16.
The yeast Cryptococcus humicola has several attractive properties for practical applications such as in bioremediation and as a source of industrially useful enzymes and compounds. We have developed an autonomously replicating vector of C. humicola to improve its properties. We initially tried to isolate an autonomously replicating sequence (ARS) from genomic DNA by transformation using a genomic DNA library. We obtained a candidate plasmid vector harboring an ARS that gave high transformation efficiency. Southern blot analysis of transformants revealed the autonomous replication of the introduced vector in some transformants. However, the vector was not only variously altered in length but also linearized. PCR analysis indicated that a telomere-like sequence repeat (TTAGGGGG) n was added to the termini of linearized vector. Thus, we constructed an autonomously replicating linear vector having ten repeats of the telomere-like sequence at both ends. The vector transformed the yeast cells with high transformation efficiency (3230 CFU/μg of DNA), which was approximately 25-fold higher than that of a control vector lacking the repeats, and was autonomously replicated at a roughly constant size. The copy number was estimated to be less than one copy, and Ura+ mitotic stability varied widely among the transformants and was related to plasmid segregation efficiency.  相似文献   

17.
The yeast ARS-1 element contains a scaffold attachment region (SAR) that we have previously shown can bind to plant nuclear scaffolds in vitro. To test effects on expression, constructs in which a chimeric beta-glucuronidase (GUS) gene was flanked by this element were delivered into tobacco suspension cells by microprojectile bombardment. In stably transformed cell lines, GUS activity averaged 12-fold higher (24-fold on a gene copy basis) for a construct containing two flanking SARs than for a control construct lacking SARs. Expression levels were not proportional to gene copy number, as would have been predicted if the element simply reduced position effect variation. Instead, the element appeared to reduce an inhibitory effect on expression in certain transformants containing multiple gene copies. The effect on expression appears to require chromosomal integration, because SAR constructs were only twofold more active than the controls in transient assays.  相似文献   

18.
Oxytricha nova is a hypotrichous ciliate with micronuclei and macronuclei. Micronuclei, which contain large, chromosomal-sized DNA, are genetically inert but undergo meiosis and exchange during cell mating. Macronuclei, which contain only small, gene-sized DNA molecules, provide all of the nuclear RNA needed to run the cell. After cell mating the macronucleus is derived from a micronucleus, a derivation that includes excision of the genes from chromosomes and elimination of the remaining DNA. The eliminated DNA includes all of the repetitious sequences and approximately 95% of the unique sequences. We cloned large restriction fragments from the micronucleus that confer replication ability on a replication-deficient plasmid in Saccharomyces cerevisiae. Sequences that confer replication ability are called autonomously replicating sequences. The frequency and effectiveness of autonomously replicating sequences in micronuclear DNA are similar to those reported for DNAs of other organisms introduced into yeast cells. Of the 12 micronuclear fragments with autonomously replicating sequence activity, 9 also showed homology to macronuclear DNA, indicating that they contain a macronuclear gene sequence. We conclude from this that autonomously replicating sequence activity is nonrandomly distributed throughout micronuclear DNA and is preferentially associated with those regions of micronuclear DNA that contain genes.  相似文献   

19.
Summary A HeLa DNA fragment, which may function as an anchorage point to the nuclear matrix for human chromosomes 1 and 2, also functions as an autonomously replicating sequence (ARS) in the yeast Saccharomyces cerevisiae. In the present report we show that this DNA fragment contains both bent DNA and an A-T rich region which appear to be associated with the ARS function. More interestingly, DNA sequence analysis shows that the spatial distribution of these features is strikingly similar to that found in the yeast ARS1 element.  相似文献   

20.
Special AT-rich sequence-binding protein 1 (SATB1), a DNA-binding protein expressed predominantly in thymocytes, recognizes an ATC sequence context that consists of a cluster of sequence stretches with well-mixed A's, T's, and C's without G's on one strand. Such regions confer a high propensity for stable base unpairing. Using an in vivo cross-linking strategy, specialized genomic sequences (0.1–1.1 kbp) that bind to SATB1 in human lymphoblastic cell line Jurkat cells were individually isolated and characterized. All in vivo SATB1-binding sequences examined contained typical ATC sequence contexts, with some exhibiting homology to autonomously replicating sequences from the yeast Saccharomyces cerevisiae that function as replication origins in yeast cells. In addition, LINE 1 elements, satellite 2 sequences, and CpG island–containing DNA were identified. To examine the higher-order packaging of these in vivo SATB1-binding sequences, high-resolution in situ fluorescence hybridization was performed with both nuclear “halos” with distended loops and the nuclear matrix after the majority of DNA had been removed by nuclease digestion. In vivo SATB1-binding sequences hybridized to genomic DNA as single spots within the residual nucleus circumscribed by the halo of DNA and remained as single spots in the nuclear matrix, indicating that these sequences are localized at the base of chromatin loops. In human breast cancer SK-BR-3 cells that do not express SATB1, at least one such sequence was found not anchored onto the nuclear matrix. These findings provide the first evidence that a cell type–specific factor such as SATB1 binds to the base of chromatin loops in vivo and suggests that a specific chromatin loop domain structure is involved in T cell–specific gene regulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号