首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lipopolysaccharides from Pseudomonas aeruginosa O1 (Lányi classification), O3 (Habs classification), O13 and O14 (Wokatsch classification), and strain NCTC 8505, which is also related to serogroup O3 (Habs), have structurally similar O-specific polysaccharide chains built up of tetrasaccharide repeating units involving L-rhamnose (Rha), 2-acetamido-2-deoxy-D-glucose (GlcNAc), 2-acetamido-2-deoxy-L-galacturonic acid (GalNAcA), and a di-N-acyl derivative of bacillosamine (BacN): 2,4-diacetamido-2,4,6-trideoxy-D-glucose or 2-acetamido-2,4,6-trideoxy-4-[(S)-3-hydroxybutyramido]-D-glucose. The latter derivative was obtained free by solvolysis with hydrogen fluoride of carboxyl-reduced Habs O3 polysaccharide, and was identified by 1H-nuclear magnetic resonance spectroscopy and by mass spectrometry of the corresponding methylated alditol. Habs O3, Lányi O1, and Wokatsch O14 polysaccharides contained O-acetyl groups. Solvolysis with hydrogen fluoride of the native Habs O3 polysaccharide resulted in selective cleavage of the glycosidic linkages of 6-deoxy sugars to give the trisaccharide fragment involving all three N-acylated amino sugars. Similar solvolysis of NCTC 8505 polysaccharide afforded a mixture of disaccharide and trisaccharide with N,N'-diacetylbacillosamine at the reducing end. Smith degradation of Habs O3 polysaccharide resulted in selective oxidation of rhamnose to give a glycoside of a trisaccharide with glyceraldehyde as the aglycone. Smith degradation of NCTC 8505 polysaccharide was complicated by the formation of the glycoside of a trisaccharide with an aglycone of unknown structure. A trisaccharide with rhamnose at the reducing end was also isolated after Smith degradation of the latter polysaccharide. Analysis of the composition and structure of all oligosaccharides obtained, and detailed examination of the 13C-nuclear magnetic resonance spectra of these oligosaccharides, and of both intact and modified polysaccharides, revealed the following structures of the repeating units. The structure for the NCTC 8505 polysaccharide differs from that proposed previously [Tahara, Y. and Wilkinson, S.G. (1983) Eur. J. Biochem. 134, 299-304] in the configurations assigned to the glycosidic linkages of rhamnose and bacillosamine. The results obtained show the P. aeruginosa strains studied to represent three different O-serotypes in a single O-serogroup (Formula: see text).  相似文献   

2.
Structural studies were carried out on the O-polysaccharide fraction obtained by mild acid treatment of the lipopolysaccharide from Pseudomonas aeruginosa IID 1009 (ATCC 27585). The O-polysaccharide was composed of L-rhamnose, N-acetyl-D-quinovosamine, and N-acetyl-L-galactosaminuronic acid in a molar ratio of 1:1:1. The results from analysis of fragments obtained by hydrogen fluoride hydrolysis of O-polysaccharide, together with data on methylation analysis and nuclear magnetic resonance spectroscopic analysis, led to the most likely structure of the repeating units of the polymer chain ----4)L-GalNAcA(alpha 1----3)D-QuiNAc(alpha 1----3)L-Rha(alpha 1----, in which about 70% of the rhamnose residues were O-acetylated at C-2. This structure coincides with that of the repeating unit of Lanyi 02 a,b polysaccharides.  相似文献   

3.
Structural studies were carried out on the O-polysaccharide fraction obtained from the lipopolysaccharide of Pseudomonas aeruginosa IID 1008 (ATCC 27584). The O-polysaccharide comprises L-rhamnose, N-acetyl-D-quinovosamine, N-acetyl-D-galactosaminuronic acid, and N-formyl-D-galactosaminuronic acid. The characterization of oligosaccharide fragments resulting from acid hydrolysis, Smith degradation and alkaline degradation of the O-polysaccharide, together with 1H-NMR and 13C-NMR spectroscopic data of the polysaccharide, led to the following structure for the repeating units: ----3)Rha(alpha 1----4)GalNAcA(alpha 1----4 GalNFoA(alpha 1----3)QuiNAc(alpha 1----. Almost all of the carboxyl groups of the N-acetylgalactosaminuronic acid residues and about half of the same groups of the N-formylgalactosaminuronic acid residues were in an amide form.  相似文献   

4.
Structural studies were carried out on the O-polysaccharide fraction obtained from the lipopolysaccharide of Pseudomonas aeruginosa IID 1012, the standard strain of Homma serogroup K, by mild acid treatment. The O-polysaccharide was composed of L-rhamnose, N-acetyl-D-quinovosamine, and N-acetyl-D-galactosaminuronic acid. The results from analysis of fragments obtained by acid hydrolysis and Smith degradation of the O-polysaccharide, together with data on methylation analysis and nuclear magnetic resonance spectroscopic measurement of the polysaccharide, led to the most likely structure of the repeating units of the polymer chain, ----4)D-GalNAcA(alpha 1----3)D-QuiNAc(beta 1----2)L-Rha(alpha 1----3)L-Rha(alpha 1----, in which about 20% of the N-acetylgalactosaminuronic acid residues were in an amide form and about 75% of the same residues were O-acetylated at C-3.  相似文献   

5.
The O-specific polysaccharide, obtained on mild acid degradation of lipopolysaccharide of Pseudomonas aeruginosa O13 (Lányi classification), is built up of trisaccharide repeating units involving 2-acetamidino-2,6-dideoxy-D-glucose (N-acetyl-D-quinovosamine, D-QuiNAc), 2-acetamidino-2,6-dideoxy-L-galactose (L-fucosacetamidine, L-FucAm), and a new sialic-acid-like sugar, 5,7-diacetamido-3,5,7,9-tetradeoxy-D-glycero-L-galacto-nonuloso n ic acid (Sug), and thus contains simultaneously both acidic and basic functions. Cleavage of the polysaccharide with hydrogen fluoride in methanol revealed the high stability of the glycosidic linkage of the ulosonic acid and afforded methyl glycosides of a disaccharide and a trisaccharide. The structures of the new ulosonic acid and acetamidino group were established by analysing the oligosaccharide fragments by 1H, 13C nuclear magnetic resonance spectrometry, as well as on the basis of their chemical conversions: alkaline hydrolysis of the acetamidino group into acetamido group, reductive deamination with lithium borohydride into the ethylamino group and acetylation with acetic anhydride in pyridine accompanied by intramolecular acylation of the acetamidino function by the ulosonic acid to form a six-membered lactam ring. Identification of the oligosaccharide fragments and comparative analysis of the 13C nuclear magnetic resonance spectra of the oligosaccharides and polysaccharide revealed the following structure of the repeating unit: ----3)D-QuiNAcp(alpha 1----3)Sugp(alpha 2----3)L-FucAmp(alpha 1----.  相似文献   

6.
Structure of the O-antigen of Francisella tularensis strain 15.   总被引:2,自引:0,他引:2  
The O-specific polysaccharide, obtained by mild acid degradation of the lipopolysaccharide of Francisella tularensis strain 15, contained 2-acetamido-2,6-dideoxy-D-glucose (D-QuiNAc), 4,6-dideoxy-4-formamido-D-glucose (D-Qui4NFm), and 2-acetamido-2-deoxy-D-galacturonamide (D-GalNAcAN) in the ratios 1:1:2. Tri- and tetra-saccharide fragments were obtained on treatment of the polysaccharide with anhydrous hydrogen fluoride and partial hydrolysis with 0.1 M hydrochloric acid, respectively. On the basis of 1H- and 13C-n.m.r. spectroscopy of the polysaccharide and the saccharides, it was concluded that the O-antigen had the structure: ----4)-alpha-D-GalpNAcAN-(1----4)-alpha-D-GalpNAcAN-(1----3) -beta-D-QuipNAc-(1----2)-beta-D-Quip4NFm-(1----. This O-antigen is related in structure to those of Pseudomonas aeruginosa O6, immunotype 1, and IID 1008, and Shigella dysenteriae type 7.  相似文献   

7.
O-specific polysaccharides, obtained on mild acid degradation of lipopolysacchrides of the serologically related strains Pseudomonas aeruginosa O3 (Lányi classification), O25 (Wokatsch classification) and immunotypes 3 and 7 (Fisher classification), are built up of trisaccharide repeating units involving 2-acetamido-2,6-dideoxy-D-galactose (N-acetyl-D-fucosamine), 2,3-diacetamido-2,3-dideoxy-D-mannuronic acid or 2,3-diacetamido-2,3-dideoxy-L-guluronic acid and 3-acetamidino-2-acetamido-2,3-dideoxy-D-mannuronic acid or 3-acetamidino-2-acetamido-2,3-dideoxy-L-guluronic acid. Lányi O3(a),3d,3f and Wokatsch O25 polysaccharides contain also O-acetyl groups. On the basis of solvolysis with anhydrous hydrogen fluoride, resulting in trisaccharide fragments with N-acetylfucosamine residue at the reducing terminus, chemical modifications of the acetamidino group (alkaline hydrolysis to the acetamido group or reductive deamination to the ethylamino group), as well as analysis by 1H-NMR (including nuclear Overhauser effect experiments) and 13C-NMR spectroscopy, and fast-atom bombardment mass spectrometry, it was concluded that the repeating units of the polysaccharides have the following structures: (Formula: see text) where HexNAcAmA = alpha-L-GulNAcAmA (approximately 70%) or beta-D-ManNacAMA (approximately 30%). Lányi O3(a),3d,3f polysaccharide involves two types of repeating units, which differ from each other only in the configuration at C-5 of the 3-acetamidino-2-acetamido-2,3-dideoxyuronic acid residue. Lányi O3(a),3c,O3a,3d,3e and Fisher immunotypes 3 and 7 polysaccharides contain, together with the major repeating units shown above, a small proportion of units in which the derivative of alpha-L-guluronic acid is replaced by the corresponding beta-D-manno isomer. The data obtained provide the opportunity to substantiate the serological interrelations between these strains of P. aeruginosa by the presence in the O-specific polysaccharides of common monosaccharides or disaccharide fragments. The distinctions between them stem from the presence or absence of the O-acetyl group, a different configuration of the glycosidic linkage of the N-acetylfucosamine residue and/or a different configuration at C-5 of one or both derivatives of diaminouronic acids.  相似文献   

8.
We have established a human--mouse heterohybridoma cell line producing a human monoclonal antibody TS-3G2 (IgG gamma 1, K). This monoclonal antibody specifically bound to O-polysaccharides belonging to plural Pseudomonas aeruginosa Homma serotypes, A and H, in contrast to serotype-specific monoclonal antibody which exclusively bound to strains belonging to a single specific serotype. The binding affinity for serotype A strains was higher than that for serotype H strains. Competitive enzyme immunoassay experiments with O-polysaccharide preparations derived from IID 1001, NCTC 8505 (serotype A) and IID 1009 (serotype H) and their derivatives demonstrated that the N-acetyl-L-galactosaminuronic acid residue in O-polysaccharide was essentially involved in the epitope for TS-3G2. Furthermore, a 6-deoxy-hexosamine residue neighboring the reducing terminal of N-acetyl-L-galactosaminuronic acid residues was also concerned with the epitope to some extent. In the experimental infection model of normal mice, the monoclonal antibody TS-3G2 showed a protective activity against both strains of serotype A and H.  相似文献   

9.
Structural studies were carried out on a rhamnose-rich polysaccharide isolated from the O-polysaccharide fraction of lipopolysaccharide in Pseudomonas aeruginosa IID 1008 (ATCC 27584) after destruction of the major O-specific chain by alkaline treatment. The isolated polysaccharide contained rhamnose, 3-O-methyl-6-deoxyhexose, glucose, xylose, alanine, galactosamine and phosphorus in a molar ratio of 67:6.9:4.3:2.1:1.1:1.0:4.1. Data from analysis involving Smith degradation, methylation, 1H-NMR spectroscopy and optical rotation measurement showed that the polysaccharide was built up of three moieties, a rhamnan chain composed of about 70 D-rhamnose residues, the core chain and an oligosaccharide chain comprising 3-O-methyl-6-deoxyhexose, xylose, rhamnose and probably glucose. The repeating unit of the rhamnan chain was indicated to have the following structure:----3)D-Rha(alpha 1----3)D-Rha(alpha 1----2)D-Rha(alpha 1----. This structure is identical with that proposed previously for the repeating unit of the side chain of lipopolysaccharide from plant pathogenic bacteria Pseudomonas syringae pv. morsprunorum C28 [Smith, A.R.W., Zamze, S.E., Munro, S.M., Carter, K. J. and Hignett, R.C. (1985) Eur. J. Biochem. 149, 73-78].  相似文献   

10.
The O-specific polysaccharide chain of the Pseudomonas aurantiaca IMV 31 lipopolysaccharide contains N-acetyl-L-fucosamine (FucNAc) and di-N-acetyl-D-bacillosamine (2,4-diacetamido-2,4,6-trideoxyglucose, Bac(NAc)2) in the ratio 2:1. On the basis of methylation, solvolysis with anhydrous hydrogen fluoride, and computer-assisted analysis of 13C-NMR spectrum, it was concluded that the trisaccharide repeating unit of the polysaccharide possesses the following structure: structure: ----3)-beta-D-Bac(NAc)2-(1----3)-alpha-L-FucNAc-(1----3)-alpha-L- FucNAc-(1----.  相似文献   

11.
The O-specific polysaccharide of Salmonella arizonae O59 (Arizona 19) is composed of D-galactose, N-acetyl-D-glucosamine, and N-acetyl-L-fucosamine (FucNAc, 2-acetamido-2,6-dideoxy-L-galactose) in the ratio 1:1:1. The computerized calculation of the 13C NMR spectrum of the polysaccharide, based on the monosaccharide composition, spectra of the free monosaccharides and glycosydation effects, together with the chemical analysis (methylation and Smith degradation) showed that the polysaccharide is built up of trisaccharide repeating units of the following structure: ----3)-alpha-L-FucNAcp(1----3)-beta-D-GlcNAcp-(1----2)-beta- D-Galp-1(----. The molecular basis of serological interrelations between S. arizonae O59 and Pseudomonas aeruginosa O7 (Lányi) is discussed.  相似文献   

12.
Lipopolysaccharides were isolated from dry bacterial cells of Pseudomonas aeruginosa O5a,b,c, O5a,b,d, O5a,d (Lányi classification) and immunotype 6 (Fisher classification) by the Westphal procedure. Their polysaccharide chains were built up of trisaccharide repeating units containing D-xylose, 2-acetamido-2,6-dideoxy-D-galactose and a new sialic acid-like sugar, the di-N-acyl derivative of 5,7-diamino-3,5,7,9-tetradeoxy-L-glycero-L-manno-nonulosonic (pseudaminic) acid. Formyl, acetyl and (R)-3-hydroxybutyryl groups were identified as the N-acyl substituents of the last monosaccharide; O5a,b,c and O5a,b,d lipopolysaccharides also contained O-acetyl groups. The glycosidic linkage of pseudaminic acid was extremely labile towards acids, and mild acid degradation of the lipopolysaccharides produced, instead of the O-specific polysaccharides, their trisaccharide fragments with pseudaminic acid at the reducing terminus. Similar degradation of immunotype 6 lipopolysaccharides, followed by oxidation with sodium metaperiodate, resulted in a disaccharide fragment due to destruction of xylose. In contrast the glycosidic linkage of pseudaminic acid proved to be more stable towards treatment with hydrogen fluoride than those of xylose and N-acetylfucosamine. As a result, solvolysis of immunotype 6 lipopolysaccharide with hydrogen fluoride in methanol gave methyl glycosides of a disaccharide and a trisaccharide with pseudaminic acid at the non-reducing terminus. Mild acid hydrolysis of these oligosides afforded free 5-N-acetyl-7-N-formylpseudaminic acid, which was identified by the 1H ande 13C nuclear magnetic resonance data, as well as by the mass spectrum of the corresponding fully methylated aldonic acid. As a result of the identification of all oligosaccharides obtained and comparative analysis of the 13C nuclear magnetic resonance spectra of the oligosaccharides and lipopolysaccharides the following structures were established for the repeating units of the polysaccharide chains of the lipopolysaccharides: (Formula: see text) where D-Xyl = D-xylose, D-FucNAc = 2-acetamido-2,6-dideoxy-D-galactose, Pse5N7NFm = 5-amino-3,5,7,9-tetradeoxy-7-formamido-L-glycero-L-manno-nonulosonic+ ++ acid (7-N-formylpseudaminic acid). All the polysaccharides have an identical carbohydrate skeleton and differ from each other by the acyl substituent at N-5 of pseudaminic acid [acetyl or (R)-3-hydroxybutyryl group] or by the presence or absence of the O-acetyl group at position 4 of N-acetylfucosamine. The data obtained account properly for the O specificity of the studied P. aeruginosa strains.  相似文献   

13.
Mild acid degradation of lipopolysaccharides from Pseudomonas aeruginosa O10a and O10a,b (Lányi classification) resulted in O-specific polysaccharides built up of trisaccharide repeating units containing 2-acetamido-2,6-dideoxy-D-glucose (N-acetylquinovosamine, DQuiNAc), 2-acetamido-2,6-dideoxy-D-galactose (N-acetylfucosamine, DFucNAc), and 5-acetamido-3,5,7,9-tetradeoxy-7-[(R)-3-hydroxybutyramido] -L-glycero-L-manno-nonulosonic acid. The latter is a di-N-acyl derivative of a new sialic-acid-like sugar which was called by us pseudaminic acid (PseN2). A 3-hydroxybutyric acid residue was also found in natural carbohydrates for the first time. In the O10a,b polysaccharide pseudaminic acid carried an O-acetyl group at position 4. For selective cleavage of the O10a polysaccharide, solvolysis with hydrogen fluoride was employed which, owing to the relatively high stability of the glycosidic linkage of pseudaminic acid, led to the disaccharide with this sugar on the non-reducing terminus. Performing the solvolysis in methanol afforded the methyl glycoside of this disaccharide which proved to be more advantageous for further analysis. Carboxyl-reduction made the glycosidic linkage of pseudaminic acid extremely labile, and mild acid hydrolysis of the carboxyl-reduced 010a polysaccharide afforded the trisaccharide with a ketose derivative on the reducing terminus. Establishing the structure of the oligosaccharide fragments obtained and interpreting the 13C nuclear resonance spectra of the polysaccharides allowed to determine the following structure for their repeating units: (formula: see text) In the polysaccharides the N-acetylquinovosamine residue is attached not to pseudaminic acid itself, but to its N-acyl substituent, 3-hydroxybutyryl group, and thus the monomers are linked via both glycosidic and amidic linkages.  相似文献   

14.
The structure of the Salmonella O:40 (Group R) antigen was determined from an analysis of the antigenic O-polysaccharide component of the lipopolysaccharide produced by Salmonella riogrande O:40. Using 1H- and 13C-NMR spectroscopy, methylation analysis, and periodate degradation methods, the O-polysaccharide was found to be a high molecular weight branched polymer of repeating pentasaccharide units having the structure: [formula: see text] The reported human blood group A activity was concluded to reside in an epitope of a terminal trisaccharide portion of the O-chain involving alpha-D-GalpNAc and beta-D-GlcpNAc residues linked (1----3) and (1----2), respectively, to beta-D-Manp branched residues in which the alpha-D-GalpNAc residue would appear to be the critical antigenic factor recognized by polyclonal blood group A antisera.  相似文献   

15.
An O-specific polysaccharide, containing 6-deoxy-L-talose (6dTal), N-acetyl-D-fucosamine (FucNAc), 3-amino-3,6-dideoxy-D-glucose with an unidentified N-acyl substituent (Qui3NR), and O-acetyl groups, was obtained on mild acid degradation of a Pseudomonas fluorescens strain 361 lipopolysaccharide. On the basis of O-deacetylation, acid hydrolysis, methylation, selective solvolysis with anhydrous hydrogen fluoride, and 13C NMR analysis, the polysaccharide is built up of trisaccharide repeating units of the following structure: (Formula: see text).  相似文献   

16.
O-Specific side chain of P. aeruginosa immunotype 3 lipopolysaccharide is composed of N-acetyl-D-fucosamine (FucNAc), 2,3-diacetamido-2,3-dideoxy-L-guluronic acid (GulN2Ac2A) and 3-acetamidino = 2-acetamido = 2,3 = dideoxy = D-mannuronic acid (ManNAcAmA). The latter sugar is identified on the basis of solvolysis with anhydrous hydrogen fluoride, 13C NMR spectroscopy and fast-atom bombardment mass spectrometry analysis, as well as of reactions of acetamidino function (alkaline hydrolysis to acetamido group and reductive deamination to ethylamino group). Earlier, in the course of investigation of P. aeruginosa O3 lipopolysaccharides, the structure of 1-methyl-2-imidazoline was erroneously ascribed to the acetamidino group. The following structure was established for the repeating unit of immunotype 3 polysaccharide which is identical to P. aeruginosa O3(a),3c polysaccharide: ----4)-beta-D-ManNAcAmA-(1----4)-alpha-L-GulN2Ac2A-(1----3)- beta-D-FucNac-(1----.  相似文献   

17.
Acidic O-specific polysaccharides were isolated on mild acidic degradation of lipopolysaccharides of Pseudomonas aeruginosa serotypes O4a,b, O4a,c, O4a,d (Lányi classification) and serologically related to them serotype O6 (Habs classification) and immunotype 1 (Fisher classification). The polysaccharides had identical monosaccharide composition and were built up of L-rhamnose, 2-acetamido-2,6-dideoxy-D-glucose,2-formamido-2-deoxy-D-galacturonic acid and 2-acetamido-2-deoxy-D-galactouronamide residues. The latter two derivatives of D-galactosaminuronic acid were found in nature for the first time. All the polysaccharides, but Lányi serotype O4a,c, contained O-acetyl groups. The polysaccharides were readily de-O-acetylated with aqueous triethylamine and de-N-formylated with dilute hydrochloric acid. De-N-formylated polysaccharide of serotype O4a,c was selectively cleaved with nitrous acid upon 2-amino-2-deoxygalacturonic acid residues to form a tetrasaccharide with a 2,5-anhydrotaluronic acid residue on the reducing end. The tetrasaccharide represented a modified repeating unit of the polysaccharide. Solvolysis of all intact polysaccharides with hydrogen fluoride selectively split the glycosidic linkages of 6-deoxy sugars to give the same trisaccharide, including both derivatives of galactosaminuronic acid and having 2-acetamido-2,6-dideoxyglucose on the reducing end. Structural investigation of the oligosaccharides obtained together with methylation analysis and 13C nuclear magnetic resonance data revealed the following structures of the O-specific polysaccharides: (Formula: see text) An independent confirmation of the structures of the repeating units was obtained as the result of full interpretation of the 13C nuclear magnetic resonance spectra of the intact and modified polymers. Spectral data analysis revealed a number of regularities in the effects of glycosidation connecting their values with the anomeric and absolute configuration of pyranose residues. The data on the structures of the O-specific polysaccharides indicated that each of the five P. aeruginosa strains under study should be considered as an individual O-serotype within one O-serogroup.  相似文献   

18.
On mild acid degradation of Pseudomonas aeruginosa O:3a,b and O:3a,d lipopolysaccharides O-specific polysaccharides were isolated. Both polysaccharides were found to contain 2-acetamido-2,6-dideoxy-D-galactose, identified as fucosamine hydrochloride formed after hydrolysis with a very low yield. The other two components of the trisaccharide repeating unit, 2,3-diacetamido-2,3-dideoxy-D-mannuronic acid and 2,3-(1-acetyl-2-methyl-2-imidazolino-5,4)-2,3-dideoxy-D-mannuronic acid, were identified without isolation in their free state directly in the course of structural investigation of the polysaccharides. Both these monosaccharides have never before been found in nature. Solvolysis of either O:3a,b or O:3a,d polysaccharides with liquid hydrogen fluoride resulted in the formation of the same trisaccharide, N-acetylfucosamine residue being the reducing end. The structure of this trisaccharide, which is the repeating unit of both polysaccharides, was deduced from the results of successive chemical modifications and 13C-nuclear magnetic resonance spectra recorded for every oligosaccharide formed. As a result, the acidic diaminosugars were converted into 2,3-diacetamido-2,3-dideoxy-D-mannose indistinguishable from authentic sample. The O-specific polysaccharides O:3a,b and O:3a,d differed in the configuration of the glycosidic bond of N-acetylfucosamine residue only and had the following structures: leads to 4)DManImU(beta 1 leads to 4)DMan(NAc)2U (beta 1 leads to 3)DFucNAc(beta 1- leads to 4)DManImU(beta 1 leads to 4)DMan(NAc)2U (beta 1 leads to 3)DFucNAc(alpha 1- where DManImU = 2.3-(1-acetyl-2-methyl-2-imidazolino-5,4)-2, 3-dideoxy-D-mannuronic acid, DMan(NAc)2U = 2,3-diacetamido-2,3-dideoxy-D-mannuronic acid, DFucNAc = 2-acetamido-2,6-dideoxy-D-galactose. The structures established were in agreement with optical rotations and assignments of all the signals in the 13C-nuclear magnetic resonance spectra of the polysaccharides.  相似文献   

19.
O-Specific polysaccharide built up of trisaccharide repeating units containing 3-acetamidino-2-acetamido-2,3-dideoxy-D-mannuronic acid (ManNAcAmA), 2,3-diacetamido-2,3-dideoxy-D-mannuronic acid (Man(NAc)2A), N-acetyl-D-fucosamine (FucNAc), and O-acetyl group was obtained on mild acid hydrolysis of P. aeruginosa O25 (Wokatsch classification) lipopolysaccharide. Basing on de-O-acetylation of polysaccharide with aqueous triethylamine accompanied by hydrolysis of acetamidino group to acetamido group, as well as on the 1H and 13C NMR data, the following structure of the repeating unit of the polysaccharide was established: (Formula: see text) P. aeruginosa O25 polysaccharide has the same carbohydrate skeleton as that of P. aeruginosa O3a,b (Lányi classification) and differs from the latter only by the presence of the O-acetyl group at position 4 of N-acetylfucosamine.  相似文献   

20.
Structure of the type 5 capsular polysaccharide of Staphylococcus aureus   总被引:7,自引:0,他引:7  
The Staphylococcus aureus type 5 capsular polysaccharide is composed of 2-acetamido-2-deoxy-L-fucose (1 part), 2-acetamido-2-deoxy-D-fucose (1 part), and 2-acetamido-2-deoxy-D-mannuronic acid (1 part). On the basis of methylation analysis, optical rotation, high-field one- and two-dimensional 1H- and 13C-n.m.r. experiments, and selective cleavage with 70% aqueous hydrogen fluoride, the polysaccharide was found to be a partially O-acetylated (50%) polymer of the repeating trisaccharide unit, [----4)-3-O-Ac-beta-D-ManpNAcA-(1----4)-a-L-FucpNAc-(1----3) -beta-D-FucpNAc-(1----]n.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号