首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Arbuscular mycorrhizas (AM) can increase plant acquisition of P and N. No published studies have investigated the impact of P and AM on the allocation of N to the plant defence, cyanogenic glucosides. We investigated the effects of soil P and AM on cyanogenic glucoside (dhurrin) concentration in roots and shoots of two forage sorghum lines differing in cyanogenic potential (HCNp). Two harvest times allowed plants grown at high and low P to be compared at the same age and the same size, to take account of known ontogenetic changes in shoot HCNp. P responses were dependent on ontogeny and tissue type. At the same age, P‐limited plants were smaller and had higher shoot HCNp but lower root HCNp. Ontogenetically controlled comparisons showed a P effect of lesser magnitude, and that there was also an increase in the allocation of N to dhurrin in shoots of P‐limited plants. Colonization by AM had little effect on shoot HCNp, but increased root HCNp and the allocation of N to dhurrin in roots. Divergent responses of roots and shoots to P, AM and with ontogeny demonstrate the importance of broadening the predominantly foliar focus of plant defence studies/theory, and of ontogenetically controlled comparisons.  相似文献   

2.
Plant defences can incur allocation costs and such costs incurred early in ontogeny may result in opportunity costs with effects evident later in life. A unified understanding of the growth cost of defence requires the identification of plants with varying ontogenetic trajectories of preferably resource demanding defences and an appropriate measurement of the growth cost of these defences. To develop such tools, we first compared nitrogen-based chemical defence (cyanogenic glycosides) in juvenile and adult foliage of three species of Eucalyptus (Myrtaceae). We found marked differences between the species, with two having much lower concentrations of foliar cyanogenic glycosides in seedlings compared to adults. We next used seedlings of two species to measure the resource (nitrogen) and growth cost of deploying cyanogenic glycosides. We found evidence that for every 1.0 nitrogen invested in cyanogenic glycosides, 1.49 additional nitrogens were effectively added to the leaves. We also found that deployment of cyanogenic glycosides was associated with a reduction in net assimilation rate (NAR) at constant leaf nitrogen. We did not, however, detect an overall growth cost associated with cyanogenic glycoside deployment because the rise in leaf nitrogen associated with this deployment apparently counteracted the reduction in NAR.  相似文献   

3.
Goodger JQ  Choo TY  Woodrow IE 《Oecologia》2007,153(4):799-808
Many studies have shown that similarly aged plants within a species or population can vary markedly in the concentration of defence compounds they deploy to protect themselves from herbivores. Some studies have also shown that the concentration of these compounds can change with development, but no empirical research has mapped such an ontogenetic trajectory in detail. To do this, we grew cyanogenic Eucalyptus yarraensis seedlings from three half-sibling families under constant glasshouse conditions, and followed their foliar cyanogenic glycoside (prunasin) concentration over time for 338 days after sowing (DAS). Plants in all families followed a similar temporal pattern. Plants increased in foliar prunasin concentration from a very low level (10 μg cyanide (CN) equivalents g−1) in their first leaves, to a maximum of, on average, 1.2 mg CN g−1 at about 240 DAS. From 240 to 338 DAS, prunasin concentration gradually decreased to around 0.7 mg CN g−1. Significant differences between families in maximum prunasin concentration were detected, but none were detected in the time at which this maximum occurred. In parallel with these changes in prunasin concentration, we detected an approximately linear increase in leaf mass per unit leaf area (LMA) with time, which reflected a change from juvenile to adult-like leaf anatomy. When ontogenetic trajectories of prunasin against LMA were constructed, we failed to detect a significant difference between families in the LMA at which maximum prunasin concentration occurred. This remarkable similarity in the temporal and ontogenetic trajectories between individuals, even from geographically remote families, is discussed in relation to a theoretical model for ontogenetic changes in plant defence. Our results show that ontogeny can constrain the expression of plant chemical defense and that chemical defense changes in a nonlinear fashion with ontogeny.  相似文献   

4.
In natural systems plants face a plethora of antagonists and thus have evolved multiple defence strategies. Lima bean (Phaseolus lunatus L.) is a model plant for studies of inducible indirect anti-herbivore defences including the production of volatile organic compounds (VOCs) and extrafloral nectar (EFN). In contrast, studies on direct chemical defence mechanisms as crucial components of lima beans'' defence syndrome under natural conditions are nonexistent. In this study, we focus on the cyanogenic potential (HCNp; concentration of cyanogenic glycosides) as a crucial parameter determining lima beans'' cyanogenesis, i.e. the release of toxic hydrogen cyanide from preformed precursors. Quantitative variability of cyanogenesis in a natural population of wild lima bean in Mexico was significantly correlated with missing leaf area. Since existing correlations do not by necessity mean causal associations, the function of cyanogenesis as efficient plant defence was subsequently analysed in feeding trials. We used natural chrysomelid herbivores and clonal lima beans with known cyanogenic features produced from field-grown mother plants. We show that in addition to extensively investigated indirect defences, cyanogenesis has to be considered as an important direct defensive trait affecting lima beans'' overall defence in nature. Our results indicate the general importance of analysing ‘multiple defence syndromes’ rather than single defence mechanisms in future functional analyses of plant defences.  相似文献   

5.
Plant cyanogenesis, the release of cyanide from endogenous cyanide-containing compounds, is an effective herbivore deterrent. This paper characterises cyanogenesis in the Australian tree Eucalyptus polyanthemos Schauer subsp. vestita L. Johnson and K. Hill for the first time. The cyanogenic glucoside prunasin ((R)-mandelonitrile β-D-glucoside) was determined to be the only cyanogenic compound in E. polyanthemos foliage. Two natural populations of E. polyanthemos showed quantitative variation in foliar prunasin concentration, varying from zero (i.e. acyanogenic) to 2.07 mg CN g-1 dry weight in one population and from 0.17 to 1.98 mg CN g-1 dry weight in the other. No significant difference was detected between the populations with respect to the mean prunasin concentration or the degree of variation in foliar prunasin, despite significant differences in foliar nitrogen. Variation between individuals was also observed with respect to the capacity of foliage to catabolise prunasin to form cyanide. Moreover, variation in this capacity generally correlated with the amount of prunasin in the tissue, suggesting genetic linkage between prunasin and β-glucosidase.  相似文献   

6.
Cyanogenic glucosides are amino acid-derived defence compounds found in a large number of vascular plants. Their hydrolysis by specific β-glucosidases following tissue damage results in the release of hydrogen cyanide. The cyanogenesis deficient1 (cyd1) mutant of Lotus japonicus carries a partial deletion of the CYP79D3 gene, which encodes a cytochrome P450 enzyme that is responsible for the first step in cyanogenic glucoside biosynthesis. The genomic region surrounding CYP79D3 contains genes encoding the CYP736A2 protein and the UDP-glycosyltransferase UGT85K3. In combination with CYP79D3, these genes encode the enzymes that constitute the entire pathway for cyanogenic glucoside biosynthesis. The biosynthetic genes for cyanogenic glucoside biosynthesis are also co-localized in cassava (Manihot esculenta) and sorghum (Sorghum bicolor), but the three gene clusters show no other similarities. Although the individual enzymes encoded by the biosynthetic genes in these three plant species are related, they are not necessarily orthologous. The independent evolution of cyanogenic glucoside biosynthesis in several higher plant lineages by the repeated recruitment of members from similar gene families, such as the CYP79s, is a likely scenario.  相似文献   

7.
1.  Plants are simultaneously attacked by multiple herbivores and pathogens. While some plant defences act synergistically, others trade-off against each other. Such trade-offs among resistances to herbivores and pathogens are usually explained by the costs of resistance, i.e. resource limitations compromising a plant's overall defence.
2.  Here, we demonstrate that trade-offs can also result from direct negative interactions among defensive traits. We studied cyanogenesis (release of HCN) of lima bean (Fabaceae: Phaseolus lunatus ) and effects of this efficient anti-herbivore defence on resistance to a fungal pathogen (Melanconiaceae: Colletotrichum gloeosporioides ).
3.  Leaf tissue destruction by fungal growth was significantly higher on high cyanogenic (HC) lima bean accessions than on low cyanogenic (LC) plants. The susceptibility of HC accessions to the fungal pathogen was strongly correlated to reduced activity of resistance-associated polyphenol oxidases (PPOs) in leaves of these plants. LC accessions, in contrast, showed high PPO activity, which was correlated with distinct resistance to C. gloeosporioides .
4.  Experimentally applied, gaseous HCN reduced PPO activity and significantly increased the size of lesions caused by C. gloeosporioides in LC leaves.
5.  Field observations of a wild lima bean population in Mexico revealed a higher infection rate of HC compared to LC plant individuals. The types of lesions observed on the different cyanogenic plants in nature were similar to those observed on HC and LC plants in the laboratory.
6.   Synthesis. We suggest that cyanogenesis of lima bean directly trades off with plant defence against fungal pathogens and that the causal mechanism is the inhibition of PPOs by HCN. Our findings provide a functional explanation for the observed phenomenon of the low resistance of HC lima beans in nature.  相似文献   

8.
A cyanogenic glycoside - 6'-O-galloylsambunigrin - has been isolated from the foliage of the Australian tropical rainforest tree species Elaeocarpus sericopetalus F. Muell. (Elaeocarpaceae). This is the first formal characterisation of a cyanogenic constituent in the Elaeocarpaceae family, and only the second in the order Malvales. 6'-O-galloylsambunigrin was identified as the principal glycoside, accounting for 91% of total cyanogen in a leaf methanol extract. Preliminary analyses indicated that the remaining cyanogen content may comprise small quantities of sambunigrin, as well as di- and tri-gallates of sambunigrin. E. sericopetalus was found to have foliar concentrations of cyanogenic glycosides among the highest reported for tree leaves, up to 5.2 mg CN g(-1) dry wt.  相似文献   

9.
Cyanogenic glucosides (CNglcs) are widespread plant defence compounds releasing toxic hydrogen cyanide when hydrolysed by specific β-glucosidases after plant tissue damage. In contrast to specialist herbivores that have mechanisms to avoid toxicity from CNglcs, it is generally assumed that non-adapted herbivores are negatively affected by CNglcs. Recent evidence, however, implies that the defence potential of CNglcs towards herbivores may not be as effective as previously anticipated. Here, performance, metabolism and excretion products of insects not adapted to CNglcs were analysed, including species with different degrees of dietary specialisation (generalists, specialists) and different feeding modes (leaf-snipping lepidopterans, piercing-sucking aphids). Insects were reared either on cyanogenic or acyanogenic plants or on an artificial cyanogenic diet. Lepidopteran generalists (Spodoptera littoralis, Spodoptera exigua, Mamestra brassicae) were compared to lepidopteran glucosinolate-specialists (Pieris rapae, Pieris brassicae, Plutella xylostella), and a generalist aphid (Myzus persicae) was compared to an aphid glucosinolate-specialist (Lipaphis erysimi). All insects were tolerant to cyanogenic plants; in lepidopterans tolerance was mainly due to excretion of intact CNglcs. The two Pieris species furthermore metabolized aromatic CNglcs to amino acid conjugates (Cys, Gly, Ser) and derivatives of these, which is similar to the metabolism of benzylglucosinolates in these species. Aphid species avoided uptake of CNglcs during feeding. Our results imply that non-adapted insects tolerate plant CNglcs either by keeping them intact for excretion, metabolizing them, or avoiding uptake.  相似文献   

10.
11.
Adaptive differentiation between populations is often proposed to be the product of multiple interacting selective pressures, although empirical support for this is scarce. In white clover, populations show adaptive differentiation in frequencies of cyanogenesis, the ability to produce hydrogen cyanide after tissue damage. This polymorphism arises through independently segregating polymorphisms for the presence/absence of two required cyanogenic components, cyanogenic glucosides and their hydrolysing enzyme. White clover populations worldwide have evolved a series of recurrent, climate‐associated clines, with higher frequencies of cyanogenic plants in warmer locations. These clines have traditionally been hypothesized to reflect a fitness trade‐off between chemical defence in herbivore‐rich areas (warmer climates) and energetic costs of producing cyanogenic components in areas of low herbivore pressure (cooler climates). Recent observational studies suggest that cyanogenic components may also be beneficial in water‐stressed environments. We investigated fitness trade‐offs associated with temperature‐induced water stress in the cyanogenesis system using manipulative experiments in growth chambers and population surveys across a longitudinal precipitation gradient in the central United States. We find that plants producing cyanogenic glucosides have higher relative fitness in treatments simulating a moderate, persistent drought stress. In water‐neutral treatments, there are energetic costs to producing cyanogenic components, but only in treatments with nutrient stress. These fitness trade‐offs are consistent with cyanogenesis frequencies in natural populations, where we find clinal variation in the proportion of plants producing cyanogenic glucosides along the precipitation gradient. These results suggest that multiple selective pressures interact to maintain this adaptive polymorphism and that modelling adaptation will require knowledge of environment‐specific fitness effects.  相似文献   

12.
Cyanogenesis, the release of toxic cyanide from living cells, plays an important role in the defence system of certain plant (e.g. Fabaceae) and animal (e.g. Zygaenidae) taxa. The larvae of a significant number of Zygaena moth species (Zygaenidae) preferentially feed on cyanogenic Fabaceae and some of them are able to sequester cyanogenic compounds of their host plants. Using secondary structure variation of the small-subunit rRNA, we tested the currently accepted evolutionary hypothesis explaining species diversification in the genus Zygaena . We derived secondary structures considering evidence from covariation patterns and thermodynamic folding and applied structural information in a phylogenetic analysis. Contrary to previous assumptions, our results suggest that the use of cyanogenic larval host plants is an ancient trait and that the ability to feed on cyanogenic plants was probably already present in the most recent common ancestor of Zygaena . The utilization of acyanogenic plants in Zygaena species appears to be the result of a single secondary, reverse, larval host-plant shift. © 2006 The Linnean Society of London, Zoological Journal of the Linnean Society , 2006, 147 , 367–381.  相似文献   

13.
Cyanogenic glycosides are ancient biomolecules found in more than 2,650 higher plant species as well as in a few arthropod species. Cyanogenic glycosides are amino acid-derived β-glycosides of α-hydroxynitriles. In analogy to cyanogenic plants, cyanogenic arthropods may use cyanogenic glycosides as defence compounds. Many of these arthropod species have been shown to de novo synthesize cyanogenic glycosides by biochemical pathways that involve identical intermediates to those known from plants, while the ability to sequester cyanogenic glycosides appears to be restricted to Lepidopteran species. In plants, two atypical multifunctional cytochromes P450 and a soluble family 1 glycosyltransferase form a metabolon to facilitate channelling of the otherwise toxic and reactive intermediates to the end product in the pathway, the cyanogenic glycoside. The glucosinolate pathway present in Brassicales and the pathway for cyanoalk(en)yl glucoside synthesis such as rhodiocyanosides A and D in Lotus japonicus exemplify how cytochromes P450 in the course of evolution may be recruited for novel pathways. The use of metabolic engineering using cytochromes P450 involved in biosynthesis of cyanogenic glycosides allows for the generation of acyanogenic cassava plants or cyanogenic Arabidopsis thaliana plants as well as L. japonicus and A. thaliana plants with altered cyanogenic, cyanoalkenyl or glucosinolate profiles.  相似文献   

14.
为研究云南锦斑蛾Achelura yunnanensis幼虫的化学防御策略, 利用硅胶柱色谱和HPLC制备色谱等色谱学方法对其毒性分泌液进行了化学成分的分离, 并通过核磁共振和质谱学方法对分离到的成分进行了结构鉴定。从其毒性分泌液中分离得到了两个神经毒性氰苷类化合物, 经鉴定分别为linamarin和lotaustralin。取食试验表明, linamarin对黑头酸臭蚁Tapinoma melanocephalum有明显的拒食活性。我们推测, 云南锦斑蛾体内的神经毒性物质氰苷是通过摄取宿主植物冬樱花Prunus cerasoides和云南樱花P. majestic而获得的, 并在体内转化形成毒液, 用于防御其天敌。本研究为云南锦斑蛾和宿主植物的协同进化提供了化学依据。  相似文献   

15.
The relationships between various leaf functional traits that are important in plant growth (e.g., specific leaf area) have been investigated in recent studies; however, research in this context on plants that are highly protected by chemical defences, particularly resource-demanding nitrogen-based defence, is lacking. We collected leaves from cyanogenic (N-defended) Beilschmiedia collina B. Hyland and acyanogenic (C-defended) Beilschmiedia tooram (F. M. Bailey) B. Hyland at high- and low-soil nutrient sites in two consecutive years that varied significantly in rainfall. We then measured the relationships between chemical defence and morphological and functional leaf traits under the different environmental conditions. We found that the two species differed significantly in their resource allocation to defence as well as leaf morphology and function. The N defended species had a higher leaf nitrogen concentration, whereas the C-defended species had higher amounts of C-based chemical defences (i.e., total phenolics and condensed tannins). The C-defended species also tended to have higher force to fracture and increased leaf toughness. In B. collina, cyanogenic glycoside concentration was higher with higher rainfall, but not with higher soil nutrients. Total phenolic concentration was higher at the high soil nutrient site in B. tooram, but lower in B. collina; however, with higher rainfall an increase was found in B. tooram, while phenolics decreased in B. collina. Condensed tannin concentration decreased in both species with rainfall and nutrient availability. We conclude that chemical defence is correlated with leaf functional traits and that variation in environmental resources affects this correlation.  相似文献   

16.
Kooyers NJ  Olsen KM 《Molecular ecology》2012,21(10):2455-2468
White clover is polymorphic for cyanogenesis (HCN production after tissue damage), and this herbivore defence polymorphism has served as a classic model for studying adaptive variation. The cyanogenic phenotype requires two interacting biochemical components; the presence/absence of each component is controlled by a simple Mendelian gene (Ac/ac and Li/li). Climate-associated cyanogenesis clines occur in both native (Eurasian) and introduced populations worldwide, with cyanogenic plants predominating in warmer locations. Moreover, previous studies have suggested that epistatic selection may act within populations to maintain cyanogenic (AcLi) plants and acyanogenic plants that lack both components (acli plants) at the expense of plants possessing a single component (Acli and acLi plants). Here, we examine the roles of selection, gene flow and demography in the evolution of a latitudinal cyanogenesis cline in introduced North American populations. Using 1145 plants sampled across a 1650 km transect, we determine the distribution of cyanogenesis variation across the central United States and investigate whether clinal variation is adaptive or an artefact of population introduction history. We also test for the evidence of epistatic selection. We detect a clear latitudinal cline, with cyanogenesis frequencies increasing from 11% to 86% across the transect. Population structure analysis using nine microsatellite loci indicates that the cline is adaptive and not a by-product of demographic history. However, we find no evidence for epistatic selection within populations. Our results provide strong evidence for rapid adaptive evolution in these introduced populations, and they further suggest that the mechanisms maintaining adaptive variation may vary among populations of a species.  相似文献   

17.
The cyanogenic glucoside profile of Eucalyptus camphora was investigated in the course of plant ontogeny. In addition to amygdalin, three phenylalanine-derived cyanogenic diglucosides characterized by unique linkage positions between the two glucose moieties were identified in E. camphora tissues. This is the first time that multiple cyanogenic diglucosides have been shown to co-occur in any plant species. Two of these cyanogenic glucosides have not previously been reported and are named eucalyptosin B and eucalyptosin C. Quantitative and qualitative differences in total cyanogenic glucoside content were observed across different stages of whole plant and tissue ontogeny, as well as within different tissue types. Seedlings of E. camphora produce only the cyanogenic monoglucoside prunasin, and genetically based variation was observed in the age at which seedlings initiate prunasin biosynthesis. Once initiated, total cyanogenic glucoside concentration increased throughout plant ontogeny with cyanogenic diglucoside production initiated in saplings and reaching a maximum in flower buds of adult trees. The role of multiple cyanogenic glucosides in E. camphora is unknown, but may include enhanced plant defense and/or a primary role in nitrogen storage and transport.  相似文献   

18.
Goverde M  Bazin A  Kéry M  Shykoff JA  Erhardt A 《Oecologia》2008,157(3):409-418
Cyanogenesis is a widespread chemical defence mechanism in plants against herbivory. However, some specialised herbivores overcome this protection by different behavioural or metabolic mechanisms. In the present study, we investigated the effect of presence or absence of cyanogenic glycosides in birdsfoot trefoil (Lotus corniculatus, Fabaceae) on oviposition behaviour, larval preference, larval development, adult weight and nectar preference of the common blue butterfly (Polyommatus icarus, Lycaenidae). For oviposition behaviour there was a female-specific reaction to cyanogenic glycoside content; i.e. some females preferred to oviposit on cyanogenic over acyanogenic plants, while other females behaved in the opposite way. Freshly hatched larvae did not discriminate between the two plant morphs. Since the two plant morphs differed not only in their content of cyanogenic glycoside, but also in N and water content, we expected these differences to affect larval growth. Contrary to our expectations, larvae feeding on cyanogenic plants showed a faster development and stronger weight gain than larvae feeding on acyanogenic plants. Furthermore, female genotype affected development time, larval and pupal weight of the common blue butterfly. However, most effects detected in the larval phase disappeared for adult weight, indicating compensatory feeding of larvae. Adult butterflies reared on the two cyanogenic glycoside plant morphs did not differ in their nectar preference. But a gender-specific effect was found, where females preferred amino acid-rich nectar while males did not discriminate between the two nectar mimics. The presented results indicate that larvae of the common blue butterfly can metabolise the surplus of N in cyanogenic plants for growth. Additionally, the female-specific behaviour to oviposit preferably on cyanogenic or acyanogenic plant morphs and the female-genotype-specific responses in life history traits indicate the genetic flexibility of this butterfly species and its potential for local adaptation.  相似文献   

19.
Plants are obliged to defend themselves against multiple generalist and specialist herbivores. Whereas plant cyanogenesis is considered an efficient defence against generalists, it is thought to affect specialists less. In the present study, we analysed the function of various cyanogenic features of lima bean [Phaseolus lunatus L. (Fabaceae)] during interaction with different herbivores. Three cyanogenic features were analysed, i.e., cyanogenic potential (HCNp; concentration of cyanogenic precursors), β‐glucosidase activity, and cyanogenic capacity (HCNc; release of cyanide per unit time). In no‐choice and free‐choice feeding trials, five lima bean accessions were offered to generalist desert locust [Schistocerca gregaria Forskål (Orthoptera: Acrididae)] and specialist Mexican bean beetle [Epilachna varivestis Mulsant (Coleoptera: Coccinellidae)]. The HCNc was the most important parameter determining host plant selection by generalists, whereas choice behaviour of specialists was strongly affected by HCNp. Although locusts were effectively repelled by high HCNc, this cue was misleading for the detection of suitable host plants, as extensive consumption of low HCNc plant material resulted in strong intoxication of locusts. Balancing cyanide in consumed leaf area, the quantitative release of gaseous cyanide during feeding, and cyanide in faeces suggested that specialists metabolized significantly lower rates of cyanide per consumed leaf material than generalists. We hypothesize that specialists are able to avoid toxic concentrations of cyanide by using HCNp rather than HCNc as a cue for host plant quality, and that they exhibit mechanisms that reduce incorporation of host plant cyanide.  相似文献   

20.
The cyclopentenone cyanhydrin glycoside gynocardin was the only cyanogen isolated from foliage of monotypic Australian rainforest tree, Baileyoxylon lanceolatum (Achariaceae). The presence of cyanogenic compounds in plants can have considerable taxonomic utility. A review of previous reports of cyanogenesis in the recently revised Achariaceae revealed distinct taxonomic patterns as well as inconsistencies in the reporting of cyanogenic compounds. This variation appears to be due to tissue level localisation of cyanogenic compounds as well as discrepancies in results obtained from different detection methods. Recommendations are made for future investigations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号