首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract There is a growing appreciation of the multiple social and nonsocial factors influencing the foraging behavior of social animals but little understanding of how these factors depend on habitat characteristics or individual traits. This partly reflects the difficulties inherent in using conventional statistical techniques to analyze multifactor, multicontext foraging decisions. Discrete-choice models provide a way to do so, and we demonstrate this by using them to investigate patch preference in a wild population of social foragers (chacma baboons Papio ursinus). Data were collected from 29 adults across two social groups, encompassing 683 foraging decisions over a 6-month period and the results interpreted using an information-theoretic approach. Baboon foraging decisions were influenced by multiple nonsocial and social factors and were often contingent on the characteristics of the habitat or individual. Differences in decision making between habitats were consistent with changes in interference-competition costs but not with changes in social-foraging benefits. Individual differences in decision making were suggestive of a trade-off between dominance rank and social capital. Our findings emphasize that taking a multifactor, multicontext approach is important to fully understand animal decision making. We also demonstrate how discrete-choice models can be used to achieve this.  相似文献   

2.
Population consequences of movement decisions in a patchy landscape   总被引:2,自引:0,他引:2  
Complex, human‐dominated landscapes provide unique challenges to animals. In landscapes fragmented by human activity, species whose home ranges ordinarily consist of continuous habitat in pristine environments may be forced to forage among multiple smaller habitat patches embedded in an inhospitable environment. Furthermore, foragers often must decide whether to traverse a heterogeneous suite of landscape elements that differ in risk of predation or energetic costs. We modeled population consequences of foraging decisions for animals occupying patches embedded in a heterogeneous landscape. In our simulations, animals were allowed to use three different rules for moving between patches: a) optimal selection resulting from always choosing the least‐cost path; b) random selection of a movement path; and c) probabilistic selection in which path choice was proportional to an animal's probability of survival while traversing the path. The resulting distribution of the population throughout the landscape was dependent on the movement rule used. Least‐cost movement rules (a) produced landscapes that contained the highest average density of consumers per patch. However, optimal movement resulted in an all‐or‐none pattern of occupancy and a coupling of occupied patches into pairs that effectively reduced the population to a set of sub‐populations. Random and probabilistic rules, (b and c), in relatively safe landscapes produced similar average densities and 100% occupancy of patches. However, as the level of risk associated with travel between patches increased, random movement resulted in an all‐or‐none occupancy pattern while occupied patches in probabilistic populations went extinct independently of the other patches. Our results demonstrate strong effects of inter‐patch heterogeneity and movement decisions on population dynamics, and suggest that models investigating the persistence of species in complex landscapes should take into account the effects of the intervening landscape on behavioral decisions affecting animal movements between patches.  相似文献   

3.
Ola Olsson  Arvid Bolin 《Oecologia》2014,175(2):537-548
We have developed a habitat selection model based on central place foraging theory. An individual’s decision to include a patch in its habitat depends on the marginal fitness contribution of that patch, which is characterized by its quality and distance to the central place. The essence of the model we have developed is a fitness isocline which is a function of patch quality and travel time to the patch. It has two parameters: the maximum travel distance to a patch of infinite quality and a coefficient that appropriately scales quality by travel time. Patches falling below the isocline will have positive marginal fitness values and should be included in the habitat. The maximum travel distance depends on the availability and quality of patches, as well as on the forager’s life history, whereas the scaling parameter mostly depends on life history properties. Using the model, we derived a landscape quality metric (which can be thought of as a connectivity measure) that sums the values of available habitat in the landscape around a central place. We then fitted the two parameters to foraging data on breeding white storks (Ciconia ciconia) and estimated landscape quality, which correlated strongly with reproductive success. Landscape quality was then calculated for a larger region where re-introduction of the species is currently going on in order to demonstrate how this model can also be regarded as a species distribution model. In conclusion, we have built a general habitat selection model for central place foragers and a novel way of estimating landscape quality based on a behaviorally scaled connectivity metric.  相似文献   

4.
Rethinking patch size and isolation effects: the habitat amount hypothesis   总被引:4,自引:0,他引:4  
I challenge (1) the assumption that habitat patches are natural units of measurement for species richness, and (2) the assumption of distinct effects of habitat patch size and isolation on species richness. I propose a simpler view of the relationship between habitat distribution and species richness, the ‘habitat amount hypothesis’, and I suggest ways of testing it. The habitat amount hypothesis posits that, for habitat patches in a matrix of non‐habitat, the patch size effect and the patch isolation effect are driven mainly by a single underlying process, the sample area effect. The hypothesis predicts that species richness in equal‐sized sample sites should increase with the total amount of habitat in the ‘local landscape’ of the sample site, where the local landscape is the area within an appropriate distance of the sample site. It also predicts that species richness in a sample site is independent of the area of the particular patch in which the sample site is located (its ‘local patch’), except insofar as the area of that patch contributes to the amount of habitat in the local landscape of the sample site. The habitat amount hypothesis replaces two predictor variables, patch size and isolation, with a single predictor variable, habitat amount, when species richness is analysed for equal‐sized sample sites rather than for unequal‐sized habitat patches. Studies to test the hypothesis should ensure that ‘habitat’ is correctly defined, and the spatial extent of the local landscape is appropriate, for the species group under consideration. If supported, the habitat amount hypothesis would mean that to predict the relationship between habitat distribution and species richness: (1) distinguishing between patch‐scale and landscape‐scale habitat effects is unnecessary; (2) distinguishing between patch size effects and patch isolation effects is unnecessary; (3) considering habitat configuration independent of habitat amount is unnecessary; and (4) delineating discrete habitat patches is unnecessary.  相似文献   

5.
Emergent properties of conspecific attraction in fragmented landscapes   总被引:1,自引:0,他引:1  
Attraction to conspecifics may have wide-ranging implications for habitat selection and metapopulation theory, yet little is known about the process of attraction and its effects relative to other habitat selection strategies. Using individual-based simulations, I investigated the emergent properties of conspecific attraction during habitat selection on survival, fecundity, short-term fitness (survival x fecundity), and distributions in fragmented landscapes. I simulated conspecific attraction during searching and settlement decisions and compared attraction with random, habitat-based (searching for the presence of habitat), and habitat quality sampling strategies (searching for and settling in high-quality habitat). Conspecific attraction during searching or settlement decisions had different consequences for animals: attraction while searching increased survival by decreasing time spent in nonsuitable habitat, whereas attraction during settlement increased fecundity by aggregating animals in high-quality habitats. Habitat-based sampling did not improve fitness over attraction, but directly sampling habitat quality resulted in the highest short-term fitness among strategies. These results suggest that attraction can improve fitness when animals cannot directly assess habitat quality. Interestingly, conspecific attraction influenced distributions by generating patch size effects and weak edge effects, highlighting that attraction is one potential, yet previously unappreciated, mechanism to explain the widespread patterns of animal sensitivity to habitat fragmentation.  相似文献   

6.
1. Movement mediates the response of populations and communities to landscape and habitat spatial structure, yet movement capability may itself be modified by selection pressures accompanying landscape change. Insect flight morphology can be affected by both the landscape surrounding habitat patches and the distribution of resources within habitat patches. 2. This study investigated the relative influence of local habitat patch conditions and surrounding landscape structure on variation in morphological traits associated with flight in the bog copper (Lycaena epixanthe), a butterfly endemic to temperate Nearctic peatlands. 3. Eight habitat patches were sampled to assess the influence of the surrounding landscape (connectivity of potential habitat and matrix composition) and patch size (an integrated proxy of resource density and spatial distribution) on investment into flight, measured by thorax and abdomen mass, and wing area. 4. The results revealed an effect of both local habitat conditions and landscape structure on flight‐related morphological traits. Increasing forest cover in the surrounding landscape, indicative of increased habitat patch isolation, corresponded with less mobile phenotypes in both sexes. Surrounding landscapes with more water were also generally associated with less mobile phenotypes. Investment into flight was greater in smaller peatlands in which host plant density is higher and more homogeneously distributed. 5. The present study highlights that morphological traits associated with mobility may be responding to both local habitat patch characteristics and surrounding landscape structure. It also supports the hypothesis that local habitat conditions contribute to morphological variation in butterflies.  相似文献   

7.
曹铭昌  刘高焕  徐海根 《生态学报》2011,31(21):6344-6352
生境在鸟类生活史中发挥着重要的作用,关系到鸟类的生存和繁衍。由于鸟类对环境变化的响应发生在等级序列空间尺度上,基于多尺度的研究更能深入刻画鸟类-环境之间关系。以丹顶鹤(Grus japonensis)为研究对象,以其迁徙和越冬的重要地区-黄河三角洲自然保护区为研究区域,应用等级方差分解法和等级划分法,分析丹顶鹤与微生境、斑块、景观尺度因子之间的关系,探求丹顶鹤生境选择的主要影响因素和尺度。等级方差分解结果表明,在第1等级水平,景观尺度因子与微生境、斑块尺度因子之间的联合效应大于独立效应,景观尺度因子的独立效应大于微生境和斑块尺度因子;在第2等级水平,景观尺度上的景观组成因子重要性大于景观结构因子,微生境尺度上的植被和水分因子为重要影响因素。等级划分结果表明,景观尺度上,翅碱蓬滩涂、水体面积大小是主要影响因素;微生境尺度上,植被盖度和水深为主要限制因子;在斑块尺度上,斑块类型对丹顶鹤生境选择最为重要。研究认为,在黄河三角洲自然保护区,景观尺度是影响丹顶鹤生境选择的主要尺度,景观尺度因子通过与微生境和斑块尺度因子的独立和联合作用制约着丹顶鹤在保护区的生境选择和空间分布格局。建议加强对翅碱蓬滩涂、芦苇沼泽、水体等湿地生境的保护和管理,规范和控制保护区内人类活动强度。  相似文献   

8.
Having historically been abundant throughout Europe, the house sparrow (Passer domesticus) has in recent decades suffered severe population declines in many urban and rural areas. The decline in rural environments is believed to be caused by agricultural intensification, which has resulted in landscape simplification. We used giving-up densities (GUDs) of house sparrows feeding in artificial food patches placed in farmlands of southern Sweden to determine habitat quality during the breeding season at two different spatial scales: the landscape and the patch scale. At the landscape scale, GUDs were lower on farms in homogeneous landscapes dominated by crop production compared to more heterogeneous landscapes with mixed farming or animal husbandry. At the patch level, feeding patches with a higher predation risk (caused by fitting a wall to the patch to obstruct vigilance) had higher GUDs. In addition, GUDs were positively related to population size, which strongly implies that GUDs reflect habitat quality. However, the increase followed different patterns in homogeneous and heterogeneous landscapes, indicating differing population limiting mechanisms in these two environments. We found no effect of the interaction between patch type and landscape type, suggesting that predation risk was similar in both landscape types. Thus, our study suggests that simplified landscapes constitute a poorer feeding environment for house sparrows during breeding, that the population-regulating mechanisms in the landscapes differ, but that predation risk is the same across the landscape types.  相似文献   

9.
1. Local extinctions in habitat patches and asymmetric dispersal between patches are key processes structuring animal populations in heterogeneous environments. Effective landscape conservation requires an understanding of how habitat loss and fragmentation influence demographic processes within populations and movement between populations. 2. We used patch occupancy surveys and molecular data for a rainforest bird, the logrunner (Orthonyx temminckii), to determine (i) the effects of landscape change and patch structure on local extinction; (ii) the asymmetry of emigration and immigration rates; (iii) the relative influence of local and between-population landscapes on asymmetric emigration and immigration; and (iv) the relative contributions of habitat loss and habitat fragmentation to asymmetric emigration and immigration. 3. Whether or not a patch was occupied by logrunners was primarily determined by the isolation of that patch. After controlling for patch isolation, patch occupancy declined in landscapes experiencing high levels of rainforest loss over the last 100 years. Habitat loss and fragmentation over the last century was more important than the current pattern of patch isolation alone, which suggested that immigration from neighbouring patches was unable to prevent local extinction in highly modified landscapes. 4. We discovered that dispersal between logrunner populations is highly asymmetric. Emigration rates were 39% lower when local landscapes were fragmented, but emigration was not limited by the structure of the between-population landscapes. In contrast, immigration was 37% greater when local landscapes were fragmented and was lower when the between-population landscapes were fragmented. Rainforest fragmentation influenced asymmetric dispersal to a greater extent than did rainforest loss, and a 60% reduction in mean patch area was capable of switching a population from being a net exporter to a net importer of dispersing logrunners. 5. The synergistic effects of landscape change on species occurrence and asymmetric dispersal have important implications for conservation. Conservation measures that maintain large patch sizes in the landscape may promote asymmetric dispersal from intact to fragmented landscapes and allow rainforest bird populations to persist in fragmented and degraded landscapes. These sink populations could form the kernel of source populations given sufficient habitat restoration. However, the success of this rescue effect will depend on the quality of the between-population landscapes.  相似文献   

10.
Traditionally, ecological restoration is based on re‐establishing patterns of vegetation communities with the expectation that wildlife will recolonize, restoring the ecological function. However, in many restoration projects, wildlife fails to recolonize, even when vegetation is restored, in many cases because revegetated habitats lack the critical features required by wildlife. We present a new approach to restoration, based on a detailed understanding of ecological process, the mechanisms by which wildlife respond to landscape patterns. Our animal‐centric approach involves measuring the risk‐sensitive decision‐making of individual animals as they balance searching for food, mates, and breeding sites with avoiding being eaten by predators and relates this to fine‐scale habitat and landscape structure. The outcome of these decisions can be measured in occupancy of habitat, the information on which conventional restoration is based. Incorporating landscape genetics allows retrospective assessment of the outcome of dispersal decisions by individual animals on a deeper time frame and at regional scales. Fine‐scale connectivity models can be parameterized with these multiscale spatial and temporal data to direct restoration efforts. We are translating this novel approach to practice in the large Midlands restoration project (4 years, AUD $6 million) in Tasmania, Australia, in partnership with Greening Australia. More than 200 years of intensive agricultural practice in this National Biodiversity Hotspot has resulted in extensive landscape modification, high densities of feral cats, and decline of many native mammals. Our research–practice partnership will alter the way that restoration is done, leading hopefully to successful restoration of wildlife, gene flow, and ecological function.  相似文献   

11.
Adequate nutrition is a fundamental requirement for the maintenance and growth of populations, but complex interactions between nutrients and plant toxins make it difficult to link variation in plant quality to the ecology of wild herbivores. We asked whether a ‘foodscape’ model of habitat that uses near-infrared spectroscopy to describe the palatability of individual trees in the landscape, predicted the foraging decisions of a mammalian browser, the koala (Phascolarctos cinereus). Specifically, we considered four behavioural decision points at which nutritional quality may influence an animal’s decision. These were: which tree to enter, whether to feed from that tree, when to stop eating, and how long to remain in that tree. There were trends for koalas to feed in eucalypt trees that were more palatable than unvisited neighbouring conspecific trees, and than trees that they visited but did not eat. Koalas ate longer meals in more palatable trees, and stayed longer and spent more time feeding per visit to these trees. Using more traditional chemical analyses, we identified that an interaction between the concentrations of formylated phloroglucinol compounds (a group of plant secondary metabolites) and available N (an integrated measure of tannins, digestibility and N) influenced feeding. The study shows that foodscape models that combine spatial information with integrated measures of food quality are a powerful tool to predict the feeding behaviour of herbivores in a landscape.  相似文献   

12.
张宇  李丽  李迪强  吴巩胜 《生态学报》2018,38(11):3784-3791
基于斑块尺度的生境适宜性研究,可以通过物种分布的景观格局特征,推导出研究区的景观适宜性,有利于景观规划决策。研究首先分析农业用地对神农架川金丝干扰的阈值,其次采用泊松回归构建基于斑块尺度的包含植被类型、斑块特征和人为干扰特征的猴群分布模型,依据模型结果叠加道路适宜性分级图对川金丝猴适宜生境进行评价。结果显示:(1)农业用地干扰阈值为2000 m;(2)最优模型显示猴群偏好面积大、形状简单的寒温性针叶林、寒温性针叶-落叶阔叶混交林、温性针叶-落叶阔叶混交林斑块,对农业用地具有回避性;(3)道路干扰已成为川金丝猴迁移的主要障碍,川金丝猴分布区受到的农业干扰较小,但其成为阻碍川金丝猴扩张分布区的屏障。建议神农架保护区全面开展道路与旅游景点对野生动物干扰的监测。  相似文献   

13.
Although improving the quality of habitat patches in fragmented landscapes is a main conservation target few studies have examined patch management in relation to the surrounding landscape. Tackling such an issue needs a cross-scale approach that takes the hierarchical nature of landscapes into account. Here I show the results of a cross-scale study focusing on the distribution patterns of ten forest vertebrate species (birds and mammals). The overarching goal of this study was to understand the strength of patch scale determinants of distribution, following the appropriate control for relevant landscape properties (e.g. habitat loss vs. habitat subdivision). I show how, after controlling for uncertainty in the detection of the species and for the role of landscape properties, patch scale variables still played an important role in determining occupancy patterns of forest vertebrates. For some species variation in the values of patch structure variables increased occurrence probability with only moderate levels of habitat loss, highlighting the fact that habitat management should be targeted towards precise landscape conditions. In other cases the effect of patch variables was strong therefore variation in their values always brought substantial increase/decrease of presence probability. Overall these results strongly suggest that habitat management should never be carried out irrespective of the properties of the surrounding landscape, rather, it should be carefully targeted towards specific landscape contexts (e.g. above a certain amount of habitat) where it is more likely to be effective.  相似文献   

14.
The biodiversity of a habitat patch is predicted to be driven in part by interactions between patch quality and landscape context (i.e. type of regional matrix), but these interactions are rarely explored experimentally. Understanding the interaction between patch quality and matrix context can provide insight into the kind of dynamics that best describe a metacommunity and help predict how the diversity of a patch will respond to environmental change at different scales. We conducted a landscape‐scale experiment to examine how regional and local aspects of the terrestrial matrix interact to affect biodiversity within artificial ponds designed to mimic generic features of freshwater ephemeral ponds. We manipulated both the kind of matrix surrounding ponds (open canopy grassland, pine forest, and hardwood forest) and pond quality (three different types of leaf litter substrate). Ponds were left open to natural colonization for three months by aquatic insects and amphibians. The terrestrial matrix had consistent and strong effects on biodiversity throughout the experiment: ponds in open canopy areas had more animal morphotypes than ponds in pine or hardwood forests. Leaf litter type affected biodiversity during the experiment, with more animal morphotypes in ponds with higher quality litter than ponds with lower quality litter, and this effect was stronger in open canopy areas. The effect of leaf litter, however, disappeared by the end of the experiment. Our results suggest that the matrix surrounding patches has strong effects on community dynamics and biodiversity within patches, and conservation efforts aimed at maintaining biodiversity requires simultaneous consideration of both matrix habitats and habitat patches.  相似文献   

15.
Aim This study investigated whether habitat fragmentation at the landscape level influences patch occupancy and abundance of the black‐headed gull, Chroicocephalus ridibundus, and whether the response of the species to environmental factors is consistent across replicated landscape plots. Location Water bodies (habitat patches) in southern Poland. Methods Surveys were conducted in two landscape types (four plots in each): (1) more‐fragmented landscape, in which habitat patches were small (mean size 2.2–6.2 ha) and far apart (mean distance 2.5–3.1 km); and (2) less‐fragmented landscape, in which habitat patches were large (mean size 9.2–16.5 ha) and separated by short distances (mean 0.9–1.4 km). Observations were performed twice in 284 potential habitat patches during the 2007 breeding season. Results Colonies were significantly more frequent and larger in the less‐fragmented landscapes than in the more‐fragmented ones. Probability of patch occupancy and number of breeding birds were positively related with patch size and these relationships were especially strong in the more‐fragmented landscapes. In the less‐fragmented landscapes, the occurrence of black‐headed gulls was negatively related to the distance to the nearest local population, but in the more‐fragmented landscapes such a relationship was not detected. As distance to the nearest habitat patch increased, the probability of the patch occupancy decreased in the more‐fragmented landscapes. Moreover, abundance was negatively influenced by distance to the nearest habitat patch, especially strongly in more‐fragmented landscapes. Proximity of corridors (rivers) positively influenced the occupation of patches regardless of landscape type. The number of islets positively influenced occupancy and abundance of local populations, and this relationship was stronger in the more‐fragmented landscapes. Main conclusions Our results are in agreement with predictions from metapopulation theory and are the first evidence that populations of black‐headed gulls may have a metapopulation structure. However, patch occupancy and abundance were differentially affected by explanatory variables in the more‐fragmented landscapes than in the less‐fragmented ones. This implies that it is impossible to derive, a priori, predictions about presence/abundance patterns based on only a single landscape.  相似文献   

16.
杨婉清  杨鹏  孙晓  韩宝龙 《生态学报》2022,42(16):6487-6498
景观格局是人与自然共同作用的结果,深刻影响着区域的生态系统服务及可持续发展。以高度城市化地区——北京市为案例,选取了粮食生产、水质净化、空气净化、气体调节、生境质量以及休闲娱乐6项重要生态系统服务,采用InVEST (Integrated Valuation of Ecosystem Services and Tradeoffs)、ROS (Recreation Opportunity Spectrum)等模型定量评估了1980-2018年生态系统服务时空分布。通过对北京市景观组成与景观配置指数进行定量分析,进一步探索了景观格局演变对生态系统服务的影响。结果表明:(1)北京市1980-2018年建设用地扩张了120%,建设用地扩张是耕地面积减少的主要原因。景观格局总体上趋于破碎化,斑块形状复杂化,斑块异质性增加;(2)时间上,北京市1980-2018年粮食生产、水质净化、气体调节、生境质量、休闲娱乐5项生态系统服务均呈现下降趋势;空间上,粮食生产呈现东南部较高,西北部较低的分布特征,其余生态系统服务均呈现西北部较高,东南部较低,市中心最低的分布特征;(3)景观水平上,林地、建设用地等景观组成变化对生态系统服务影响最为显著。破碎化指数、多样性指数等景观配置指数对生态系统服务影响最为显著;类型水平上,平均斑块面积、斑块聚集度对生态系统服务影响相对最为显著。总体来讲,通过分析景观格局演变如何影响生态系统服务,为如何通过设计和优化景观格局来提升生态系统服务提供了定量依据,从而为促进区域的景观可持续规划提供理论依据和案例参考。  相似文献   

17.
Human depopulation of rural mountain areas and the consequent abandonment of traditional land management are among the greatest driving forces behind changes in mountain ecosystems in Western Europe. Tree and shrub encroachment lead to an increase in landscape matrix uniformity and habitat fragmentation. For some animal species, this represents an unusual case of habitat loss caused by secondary succession. The animal species associated with this agro‐pastoral habitat may suffer from decreased connectivity as a consequence. The Rock Partridge Alectoris graeca is a species endemic to European mountains that represents a model for investigating the impact of habitat loss. We compared the habitat suitability of the Apennine Rock Partridge prior to abandonment of traditional agro‐pastoral activities by aerial photography with the current landscape, in order to investigate the effect of secondary succession on the distribution and viability of the species. We assessed the historical distribution (c. 1900–1950) by quantifying anecdotal evidence from interviews, and the current distribution (2005) from survey data. We applied ecological niche factor analysis and connectivity approaches to evaluate change in habitat suitability over this time scale. Moreover, to quantify landscape connectivity, we evaluated the relative importance of each patch in the two periods. Results indicated that to maintain a viable population in the Apennines, the species requires an ensemble of ecological conditions considerably different from the current situation. We observed a drastic decrease in connectivity as a result of a reduction in numbers and size of high suitability patches. This is most probably the primary cause of the current decline of the Rock Partridge population in the Apennines.  相似文献   

18.
Habitat loss and fragmentation affect species richness in fragmented habitats and can lead to immediate or time‐delayed species extinctions. Asynchronies in extinction and extinction debt between interacting species may have severe effects on ecological networks. However, these effects remain largely unknown. We evaluated the effects of habitat patch and landscape changes on antagonistic butterfly larvae–plant trophic networks in Mediterranean grasslands in which previous studies had shown the existence of extinction debt in plants but not in butterflies. We sampled current species richness of habitat‐specialist and generalist butterflies and vascular plants in 26 grasslands. We assessed the direct effects of historical and current patch and landscape characteristics on species richness and on butterfly larvae–plant trophic network metrics and robustness. Although positive species‐ and interactions–area relationships were found in all networks, structure and robustness was only affected by patch and landscape changes in networks involving the subset of butterfly specialists. Larger patches had more species (butterflies and host plants) and interactions but also more compartments, which decreased network connectance but increased network stability. Moreover, most likely due to the rescue effect, patch connectivity increased host‐plant species (but not butterfly) richness and total links, and network robustness in specialist networks. On the other hand, patch area loss decreased robustness in specialist butterfly larvae–plant networks and made them more prone to collapse against host plant extinctions. Finally, in all butterfly larvae–plant networks we also detected a past patch and landscape effect on network asymmetry, which indicates that there were different extinction rates and extinction debts for butterflies and host plants. We conclude that asynchronies in extinction and extinction debt in butterfly–plant networks provoked by patch and landscape changes caused changes in species richness and network links in all networks, as well as changes in network structure and robustness in specialist networks.  相似文献   

19.
Summary The model of exploitation ecosystems was re-analysed, assuming that habitat patches are so small that they form only parts of the home range of an individual predator. For habitat complexes where productive patches abound, the results suggested that predation will strongly spill over from productive patches, which set the tune for population dynamics within the whole landscape, to barren ones. This result conforms to the one obtained by T. Oksanen by assuming despotic habitat choice and essentially larger patch sizes. For habitat complexes heavily dominated by the barren habitat, spillover predation was predicted to be weak, as was the case in her large patch model. Unlike in her analysis, however, predation pressure was substantially reduced also within the productive habitat. In habitat complexes where patches are so small that they are exploited in a fine-grained manner, predation pressure was always found to be more intense in the barren habitat, contrary to the predictions of the original model of exploitation ecosystems. This analysis thus suggests that their model is applicable mainly on the landscape level. On the level of individual habitats, the applicability of their results depends on the habitat configuration (at its best for the prevailing habitat of the landscape and for moderate-sized patches of an essentially more productive habitat) and generally decreases with decreasing patch sizes.  相似文献   

20.
We use an individual-based, spatially realistic metapopulation model to study the evolution of migration rate. We first explore the consequences of habitat change in hypothetical patch networks on a regular lattice. If the primary consequence of habitat change is an increase in local extinction risk as a result of decreased local population sizes, migration rate increases. A nonmonotonic response, with migration rate decreasing at high extinction rate, was obtained only by assuming very frequent catastrophes. If the quality of the matrix habitat deteriorates, leading to increased mortality during migration, the evolutionary response is more complex. As long as habitat patch occupancy does not decrease markedly with increased migration mortality, reduced migration rate evolves. However, once mortality becomes so high that empty patches remain uncolonized for a long time, evolution tends to increase migration rate, which may lead to an "evolutionary rescue" in a fragmented landscape. Kin competition has a quantitative effect on the evolution of migration rate in our model, but these patterns in the evolution of migration rate appear to be primarily caused by spatiotemporal variation in fitness and mortality during migration. We apply the model to real habitat patch networks occupied by two checkerspot butterfly (Melitaea) species, for which sufficient data are available to estimate rigorously most of the model parameters. The model-predicted migration rate is not significantly different from the empirically observed one. Regional variation in patch areas and connectivities leads to regional variation in the optimal migration rate, predictions that can be tested empirically.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号