首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The effects of biotin on insulin secretion in pair-fed control rats and biotin-deficient rats were investigated using the method of isolated pancreas perfusion. Isolated pancreas perfusion was performed using 20 mM glucose, 10 mM arginine, and 20 mM glucose plus various concentrations of biotin (20 mM glucose + biotin solution) as stimulants of insulin secretion. The insulin response to 20 mM glucose in biotin-deficient rats was approximately 22% of that seen in control rats. The level of the insulin response to 10 mM arginine was also significantly lower in biotin-deficient rats than in control rats. These results indicate that insulin release from the pancreas was disturbed in biotin-deficient rats. The insulin responses to 20 mM glucose + 1 mM biotin in biotin-deficient and control rats increased to 165% and 185%, respectively, of that to 20 mM glucose. These biotin-induced increases in glucose-stimulated insulin release were evident within the first few minutes of the infusion. An enhancement of the arginine-induced insulin response in control rats was not found when arginine and biotin was administered. These results suggest that biotin may play an important role in the mechanism by which glucose stimulates insulin secretion from the beta cells of the pancreatic islets.  相似文献   

3.
4.
In order to observe the effect of the adrenergic system on pancreatic glucagon secretion in the isolated perfused rat pancreas, phenylephrine, an alpha-adrenergic agonist, and isoproterenol, a beta-adrenergic agonist, were added to the perfused solution. 1.2 microM phenylephrine suppressed glucagon secretion at 2.8 mM glucose, and it also decreased insulin secretion at 11.1 mM glucose. 240 nM isoproterenol enhanced glucagon secretion not only at 2.8 mM glucose, but also at 11.1 mM glucose, as well as insulin secretion at 11.1 mM. In order to study the role of intra-islet noradrenalin, phentolamine, an alpha-adrenergic antagonist, and propranolol, a beta-adrenergic antagonist, were infused with the perfused solution. 10 and 100 microM phentolamine caused an increase in insulin secretion, and 25 microM propranolol decreased insulin secretion, while they did not cause any change in glucagon secretion. From these results, it can be concluded that alpha-stimulation suppresses not only insulin but also glucagon secretion, while beta-stimulation stimulates glucagon secretion, as well as insulin secretion. Intra-islet catecholamine may have some effect on the B cell, whereas it seems to have no influence on the A cell.  相似文献   

5.
The effects of sodium salicylate, a prostaglandin synthesis inhibitor, on glucose-induced secretion of insulin and glucagon by the isolated perfused rat pancreas have been studied. Sodium salicylate inhibited both basal (2.8 mM glucose) and stimulated (16.7 mM glucose) insulin release in a dose dependent manner (1, 5 and 10 mM). This inhibition is not interpretable in terms of a simple inhibition of cyclooxygenase by sodium salicylate. Basal glucagon release was not changed by 1 mM sodium salicylate but the latter partially blocked its inhibition by 16.7 mM glucose. Higher doses of sodium salicylate (5 and 10 mM) inhibited basal glucagon secretion without affecting its response to 16.7 mM glucose. These findings suggest a predominant stimulatory action of endogenous prostaglandins on glucagon release.  相似文献   

6.
M F Walsh  S B Pek 《Life sciences》1984,34(18):1699-1706
Some of the metabolites of arachidonic acid formed in the lipoxygenase and cyclooxygenase pathways stimulate insulin release. We studied the relative importance of each of these pathways in the modulation of glucose-induced insulin release by using inhibitors of arachidonate metabolism. Perfusion of the isolated rat pancreas with two chemically different inhibitors of cyclooxygenase, flurbiprofen and sodium salicylate, markedly inhibited prostaglandin E2 release, but had little effect on glucose-induced insulin release or on potentiation of insulin release caused by prior exposure to glucose. On the other hand, nordihydroguaiaretic acid (NDGA), a lipoxygenase inhibitor, not only inhibited both phases of glucose-induced insulin release but also abolished the potentiation effect. These effects of NDGA prevailed, when it was administered together with flurbiprofen, which caused profound inhibition of prostaglandin E2 release. We conclude that 1) lipoxygenase pathways play a dominant role in glucose-stimulated insulin release, and 2) endogenous lipoxygenase metabolites influence the potentiating effect of glucose on the release of insulin in response to a subsequent stimulation.  相似文献   

7.
Obestatin is a 23-amino acid peptide derived from preproghrelin, purified from stomach extracts and detected in peripheral plasma. In contrast to ghrelin, obestatin has been reported to inhibit appetite and gastric motility. However, these effects have not been confirmed by some groups. Obestatin was originally proposed to be the ligand for GPR39, a receptor related to the ghrelin receptor subfamily, but this remains controversial. Obestatin and GPR39 are expressed in several tissues, including pancreas. We have investigated the effect of obestatin on islet cell secretion in the perfused rat pancreas. Obestatin, at 10 nM, inhibited glucose-induced insulin secretion, while at 1 nM, it potentiated the insulin response to glucose, arginine and tolbutamide. The potentiated effect of obestatin on glucose-induced insulin output was not observed in the presence of diazoxide, an agent that activates ATP-dependent K(+) channels, thus suggesting that these channels might be sensitive to this peptide. Obestatin failed to significantly modify the glucagon and somatostatin responses to arginine, indicating that its stimulation of insulin output is not mediated by an alpha- or delta-cell paracrine effect. Our results allow us to speculate about a role of obestatin in the control of beta-cell secretion. Furthermore, as an insulinotropic agent, its potential antidiabetic effect may be worthy of investigation.  相似文献   

8.
In the presence of a nonstimulatory concentration of glucose, a 60-min perfusion with 50 muM acetylcholine was shown to elicit a monophasic release of insulin in the isolated dog pancreas preparation. A decline in secretory response, which may be due to desensitization of the beta-cell to acetylcholine, was noted during the latter part of the perfusion interval. The potent insulin secretory response elicited by acetylcholine during the 60-min period was abolished 0y 25 muM atropine. Inhibition of the insulinotropic action of acetylcholine was also noted with administration of the mitotic spindle inhibitor, colchicine. When compared to 20-min control perfusions, addition of 1 mM colchicine resulted in a 50% reduction in acetylcholine-induced insulin release. These results suggest that insulin secretion stimulated by acetylcholine can be considered to be due to a muscarinic action of this agent which is dependent, at least in part, upon the microtubular system of the beta-cell.  相似文献   

9.
10.
To elucidate the physiological significance of ketone bodies on insulin and glucagon secretion, the direct effects of beta-hydroxybutyrate (BOHB) and acetoacetate (AcAc) infusion on insulin and glucagon release from perfused rat pancreas were investigated. The BOHB or AcAc was administered at concentrations of 10, 1, or 0.1 mM for 30 min at 4.0 ml/min. High-concentration infusions of BOHB and AcAc (10 mM) produced significant increases in insulin release in the presence of 4.4 mM glucose, but low-concentration infusions of BOHB and AcAc (1 and 0.1 mM) caused no significant changes in insulin secretion from perfused rat pancreas. BOHB (10, 1, and 0.1 mM) and AcAc (10 and 1 mM) infusion significantly inhibited glucagon secretion from perfused rat pancreas. These results suggest that physiological concentrations of ketone bodies have no direct effect on insulin release but have a direct inhibitory effect on glucagon secretion from perfused rat pancreas.  相似文献   

11.
We have investigated the effect of rat leptin as well as the 22-56 fragment of this molecule on pancreatic hormone secretion in the perfused rat pancreas. In pancreases from fed rats, leptin failed to alter the insulin secretion elicited by glucose, arginine or tolbutamide, but inhibited the insulin response to both CCK-8 and carbachol, secretagogues known to act on the B-cell by increasing phospholipid turnover. This insulinostatic effect was also observed with the 22-56 leptin fragment. In pancreases obtained from 24-hour fasted rats, no effect of leptin on carbachol-induced insulin output was found, perhaps as a consequence of depressed B-cell phospholipid metabolism. Leptin did not influence glucagon or somatostatin release. Our results do not support the concept of leptin as a major regulator of B-cell function. Leptin inhibition of carbachol-induced insulin output might reflect a restraining effect of this peptide on the cholinergic stimulation of insulin release.  相似文献   

12.
On the isolated perfused rat pancreas phenformin at high concentrations (10 mg/1, 50 mg/1 and 100 mg/1) provokes an increase of the insulin and lactate output in the effluent liquid. In no case is glucagon secretion modified by this substance. There exists a statistically significant correlations between the increase in insulin output and the increase in lactate output induced by phenformin.  相似文献   

13.
14.
15.
Glibenclamide stimulates the insulin secretion by the isolated and perfused rat pancreas, but does not inhibit glucagon secretion when the perfusion liquid contains 1.5 g/I glucose. In the absence of glucose in the perfusion medium, glibenclamide stimulates both insulin and glucagon secretions.  相似文献   

16.
17.
18.
19.
While alloxan treatment stimulated insulin secretion, alloxan pretreatment reduced arginine and glucose-induced insulin secretion in the isolated perfused rat pancreas. The transient insulin secretion by alloxan was inhibited by 3-O-methylglucose and somatostatin. Diminished insulin response to arginine and glucose induced by pretreatment with alloxan was restored by the addition of 3-O-methylglucose, whereas the addition of somatostatin did not improve the impaired insulin secretion. These results indicate that alloxan induced insulin secretion is not due to an uncontrolled leakage, but that the stimulatory and inhibitory action of alloxan on insulin secretion might be initiated by the binding of alloxan to the hexose transport site.  相似文献   

20.
Xenin is a 25-amino acid peptide of the neurotensin/xenopsin family identified in gastric mucosa as well as in a number of tissues, including the pancreas of various mammals. In healthy subjects, plasma xenin immunoreactivity increases after meals. Infusion of the synthetic peptide in dogs evokes a rise in plasma insulin and glucagon levels and stimulates exocrine pancreatic secretion. The latter effect has also been demonstrated for xenin-8, the C-terminal octapeptide of xenin. We have investigated the effect of xenin-8 on insulin, glucagon and somatostatin secretion in the perfused rat pancreas. Xenin-8 stimulated basal insulin secretion and potentiated the insulin response to glucose in a dose-dependent manner (EC(50)=0.16 nM; R(2)=0.9955). Arginine-induced insulin release was also augmented by xenin-8 (by 40%; p<0.05). Xenin-8 potentiated the glucagon responses to both arginine (by 60%; p<0.05) and carbachol (by 50%; p<0.05) and counteracted the inhibition of glucagon release induced by increasing the glucose concentration. No effect of xenin-8 on somatostatin output was observed. Our observations indicate that the reported increases in plasma insulin and glucagon levels induced by xenin represent a direct influence of this peptide on the pancreatic B and A cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号