首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Acta Oecologica》2007,31(1):93-101
This study investigated the seasonal modification of wax deposition, and the impact of epicuticular wax on gas-exchange as well as photoinhibition in Leucadendron lanigerum, a species from the Proteaceae family with wax-covered leaf surfaces and the stomata also partially occluded by wax. The results of this study demonstrated that the deposition of epicuticular wax in L. lanigerum is dependent on the age of the leaf as well as the season, and generation and regeneration of wax occur mostly in spring while transformation and also degeneration of wax crystals occur in winter. Epicuticular waxes decreased cuticular water loss, but had little impact on leaf reflectance. The temperature of leaves without wax was lower than that of wax-covered leaves, indicating that the rate of transpiration impacted more on leaf temperature than reflectance of light in the PAR range in L. lanigerum. The wax coverage at the entrance of stomata in L. lanigerum increased resistance to gas diffusion and as a consequence decreased stomatal conductance, transpiration and photosynthesis. Also, the results indicated that epicuticular waxes do help prevent photodamage in L. lanigerum, and so this property could benefit plants living in arid environments with high solar radiation.  相似文献   

2.
Buschhaus C  Herz H  Jetter R 《Annals of botany》2007,100(7):1557-1564
BACKGROUND AND AIMS: The waxy cuticle is the first point of contact for many herbivorous and pathogenic organisms on rose plants. Previous studies have reported the average composition of the combined wax extract from both sides of rose leaves. Recently, the compositions of the waxes on the adaxial and abaxial surfaces of Rosa canina leaves were determined separately. In this paper, a first report is made on the compositions of the epicuticular and intracuticular wax layers of Rosa canina leaves. The methods described enable the determination of which compounds are truly available at the surface for plant-organism interactions. METHODS: An adhesive was used to mechanically strip the epicuticular wax from the adaxial leaf surface and the removal was visually confirmed using scanning electron microscopy. After the epicuticular wax had been removed, the intracuticular wax was then isolated using standard chemical extraction. Gas chromatography, flame ionization detection and mass spectrometry were used to identify and quantify compounds in the separated wax mixtures. KEY RESULTS: The epicuticular wax contained higher concentrations of alkanes and alkyl esters but lower concentrations of primary alcohols and alkenols when compared to the intracuticular wax. In addition, the average chain lengths of these compound classes were higher in the epicuticular wax. Secondary alcohols were found only in the epicuticular layer while triterpenoids were restricted mainly to the intracuticular wax. CONCLUSIONS: A gradient exists between the composition of the epi- and intracuticular wax layers of Rosa canina leaves. This gradient may result from polarity differences, in part caused by differences in chain lengths. The outer wax layer accessible to the phyllosphere showed a unique composition of wax compounds. The ecological consequences from such a gradient may now be probed.  相似文献   

3.
Plant epicuticular lipids: alteration by herbicidal carbamates   总被引:2,自引:2,他引:0       下载免费PDF全文
The effect of several carbamates and trichloroacetic acid on the biosynthesis of epicuticular lipids from leaves of pea (Pisum sativum) was tested by chemical and visual methods. The carbamates tested included S-(2,3-dichloroallyl) diisopropylthiocarbamate (diallate), N-(3-chlorophenyl) isopropylcarbamate (chloropropham), S-ethyl dipropylthiocarbamate, and 2-chloroallyl diethyldithiocarbamate. Diallate reduced epicuticular lipids by 50% when the plants were root-treated and by 80% when vapor-treated. These results were supported by scanning electron microscopy and carbon replica techniques with transmission electron microscopy. The ratio of wax lipid components in the diallate-treated plants remained unchanged, with the exception of the primary alcohols, which were reduced. Diallate appears to interfere with the biosynthesis of a precursor to the elongation-decarboxylation pathway of lipid synthesis. N-(3-Chlorophenyl)isopropylcarbamate had no significant effect on total amounts of extractable epicuticular lipids, nor did it alter the structure of the wax formation on the leaves. The scanning electron microscopy micrographs indicated that S-ethyl dipropylthiocarbamate significantly reduced wax formation on pea leaves. 2-Chloroallyl diethyldithiocarbamate altered the structure of the wax formations, but not the total amount of wax (scanning electron microscopy). Trichloroacetic acid had little effect on wax deposition compared to diallate or S-ethyl dipropylthiocarbamate (scanning electron microscopy). The implication of the effect of the carbamates on epicuticular lipids and penetration of subsequent topically applied chemicals is discussed.  相似文献   

4.
STUDIES ON PLANT CUTICLE   总被引:2,自引:0,他引:2  
The waxy coverings of the leaves of different species of plant have been fractionated into wax, acidic, volatile and oil components. The levels of the waxy deposits on the leaves and the relative proportions of the principal components of the waxy coverings differed widely. Wax predominated in the waxy coverings of the leaves of cabbage and cauliflower and acidic materials in those of apple and pear.
The role of ether-soluble acidic constituents in a possible defensive mechanism of leaves against fungi, the contribution of water-soluble acidic constituents to the toxic action of copper fungicides and the influence of the waxy covering on spray deposition, phytotoxicity and the behaviour of DDT deposits on leaves are discussed. Earlier work on the nature of leaf wax components is reviewed.  相似文献   

5.
S-ethyldipropylthiocarbamate (EPTC) applied as a soil treatment or over-the-top spray on cabbage plants (Brassica oleracea L.) caused the leaves to turn ‘glossy’ for as long as 30 days. EPTC-induced glossy plants were damaged significantly less than untreated plants by diamondback moth,Plutella xylostella (L.), imported cabbage worm,Pieris rapae (L.), and cabbage looper,Trichoplusia ni (Hbn.). Reductions in damage were equivalent to those obtained from treatment with permethrin. When used in combination with permethrin, EPTC provided additive control of damage by these pests. Our calculations show EPTC-induced resistance to be cost-effective. This use of EPTC has several limitations, however. Younger plants (<9 leaves) were killed or injured by the herbicide. The growth of older plants was not affected, but plants did not become glossy for ca. 10 days after they were treated with EPTC. The crop must be protected with insecticides until the plants are mature enough to treat with EPTC, and until treated plants become glossy. In addition, since the glossy trait is only effective against first instar larvae, populations of later instars on glossy plants must be reduced with an application of insecticide. Finally, EPTC formulations are water-soluble and can be washed away from the plants by heavy rains and irrigation, which may make this use of EPTC impractical in some situations. Where its use is practical, and the indicated precautions are taken, EPTC-induced resistance could reduce dependence on chemical insecticides and reduce selection for insecticide resistance in diamondback moth.  相似文献   

6.
为了明晰高温胁迫下表皮蜡质在不结球白菜生理响应中的保护作用,该研究以不结球白菜有蜡(Q28)和无蜡(Q1202)品种为试验材料,设置高温胁迫组(昼/夜温度为37℃/30℃)和对照组(昼/夜温度为25℃/18℃)处理,观察不同材料叶片表皮细胞形态,比较分析高温胁迫处理下不同时期生理和光合指标变化的差异.结果 表明:(1)...  相似文献   

7.
Elucidation of the mechanism of adsorption of particles suspended in the gas-phase (aerosol) to the outer surfaces of leaves provides useful information for understanding the mechanisms of the effect of aerosol particles on the growth and physiological functions of trees. In the present study, we examined the localization of artificially deposited sub-micron-sized carbon-based particles on the surfaces of needles of Cryptomeria japonica, a typical Japanese coniferous tree species, by field-emission scanning electron microscopy. The clusters (aggregates) of carbon-based particles were deposited on the needle surface regions where epicuticular wax crystals were sparsely distributed. By contrast, no clusters of the particles were found on the needle surface regions with dense distribution of epicuticular wax crystals. Number of clusters of carbon-based particles per unit area showed statistically significant differences between regions with sparse epicuticular wax crystals and those with dense epicuticular wax crystals. These results suggest that epicuticular wax crystals affect distribution of carbon-based particles on needles. Therefore, densely distributed epicuticular wax crystals might prevent the deposition of sub-micron-sized carbon-based particles on the surfaces of needles of Cryptomeria japonica to retain the function of stomata.  相似文献   

8.
S-ethyldipropylthiocarbamate (EPTC), S-(2,3-dichloroallyl)diisopropylthiocarbamate (diallate) and S-(2,3,3-trichloroallyl)diisopropylthiocarbamate (triallate) inhibited the formation of very long chain fatty acids by aged potato discs. Incorporation of acetate-[14C] into total fatty acids was inhibited 24% by EPTC, 50% by triallate and 55% by diallate at 10?4 M. The relative sensitivity of very long chain fatty acid synthesis to thiocarbamates in potato tuber provides further evidence that these herbicides reduce cuticular wax by inhibiting fatty acid elongation.  相似文献   

9.
Three approaches were used to investigate effects of host plant epicuticular waxes on oviposition site selection by Plutella xylostella (L.). In the first approach, oviposition on canola (Brassica napus L.) that had epicuticular wax reduced by application of a carbamate herbicide (S-ethyl dipropylthiocarbamate) was compared with oviposition on untreated control plants. A second approach compared oviposition on sibling strains of B. napus with different wax blooms (glossy and waxy), and a third approach compared oviposition by P. xylostella on parafilm that had been applied to glossy and waxy B. napus strains for transfer of leaf components. Significantly more eggs were deposited on herbicide-treated plants (with reduced epicuticular wax) than on untreated controls. Similarly, more eggs were deposited on glossy than on waxy sibling strains of B. napus. In parafilm assays significantly more eggs were deposited on treated than on untreated parafilm. Several mechanisms could explain the differences in attractiveness of surfaces with varying wax content as oviposition sites for P. xylostella, including visual, chemical, and tactile differences between substrates. These mechanisms are discussed.  相似文献   

10.
The epicuticular wax covering on plant surface plays important roles in protecting plants against UV radiation. However, the role of epicuticular wax in affecting leaf gas exchange under enhanced ultraviolet-B (UV-B) radiation remains obscure. In the present study, different aged leaves of Brassica napus were used to analyze the responses of crystal structure and chemical constituents of epicuticular wax to UV-B radiation and the effects of such responses on gas exchange indices. Enhanced UV-B radiation significantly decreased the amount of esters in all leaves except the first leaf, amount of secondary alcohols in the second, third and fourth leaves, and amount of primary alcohols in the second and third leaves, while increased the amounts of ketones and aldehydes in the first leaf. Enhanced UV-B level had no significant effect on the amounts of alkanes and total wax in all leaves. Exposure to UV-B radiation resulted in wax fusion on adaxial leaf and stomata opening on abaxial leaf. Fusions of plates and rods on adaxial leaf surface covered most of the stomata, thereby influencing the photosynthesis in the upper mesophyll of leaves. Enhanced UV-B level significantly reduced the net photosynthesis rate (P N) but increased the stomata conductance (g s), concentrations of intercellular CO2 (C i ), and transpiration rate (E) in all leaves. Both UV-B radiation and the wax fusion induced by enhanced UV-B radiation resulted in different stomata status on abaxial and adaxial leaf surface, causing decrease of P N, and increase of g s, C i and E in leaves.  相似文献   

11.
Epicuticular and intracuticular waxes from both adaxial and abaxial surfaces of the leaves of Kalanchoe daigremontiana were analyzed. All wax mixtures were found to contain approximately equal amounts of triterpenoids and very long chain fatty acid (VLCFA) derivatives. The triterpenoid fraction consisted of glutinol (8-19% of the total wax) and friedelin (4-9%), together with smaller amounts of glutanol, glutinol acetate, epifriedelanol, germanicol and β-amyrin. The VLCFA derivatives comprised C27-C35 alkanes (19-37% of the total wax), C32-C34 aldehydes (3-7%), C32 and C34 fatty acids (0.2-3%), C26-C36 primary alcohols (4-8%), and C42-C52 alkyl esters (2-9%). The wax layers were found to differ in triterpenoid amounts, with the intracuticular wax containing higher percentages of most triterpenoids than the epicuticular wax. Friedelin, the only triterpenoid ketone present, showed the opposite distribution with higher proportions in the epicuticular wax. VLCFA derivatives also accumulated to higher percentages in the epicuticular than in the intracuticular wax layer. Epicuticular wax crystals were observed on both the adaxial and abaxial leaf surfaces.  相似文献   

12.
Abstract The leaves of Berberis aquifolium (Pursh.) exhibit either diffuse or specular (shiny) reflection, depending on the variety, but in no case are the leaves obviously glaucous. The dull-surfaced leaves were less wettable than the glossy ones. Using scanning electron microscopy it was determined that the diffuse reflection was due to tubular crystals of wax 250 nm in diameter. The crystals were primarily composed of 19-nonacosanol, a 29-carbon secondary alcohol, as determined by gas chromatography-mass spectrometry. The chemical constituents of the wax underlying the tubes appeared to be the same as those of the wax from glossy leaves, with 29-carbon and 31-carbon n-alkanes and n-heptacosanol as major constituents. The reflection spectra of dull-surfaced (diffuse reflection) or glossy (specular reflection) leaves were the same, as were those of leaves with different amounts of epicuticular wax. Removing the epicuticular wax with chloroform did not change the spectrum.  相似文献   

13.
Alkane distribution patterns were determined in the epicuticular wax of 10 species of Ericaceae and of Empetrum hermaphroditum. The patterns were uniform in the subfamily Rhododendroideae, but varied within subfamilies Arbutoideae and Vaccinioideae. In fiower wax the major alkane was the same as in leaf epicuticular wax, but the average chain length was shorter.  相似文献   

14.

Background

The epicuticular waxy layer of plant leaves enhances the extreme environmental stress tolerance. However, the relationship between waxy layer and saline tolerance was not established well. The epicuticular waxy layer of rice (Oryza sativa L.) was studied under the NaHCO3 stresses. In addition, strong saline tolerance Puccinellia tenuiflora was chosen for comparative studies.

Results

Scanning electron microscope (SEM) images showed that there were significant changes in waxy morphologies of the rice epicuticular surfaces, while no remarkable changes in those of P. tenuiflora epicuticular surfaces. The NaHCO3-induced morphological changes of the rice epicuticular surfaces appeared as enlarged silica cells, swollen corns-shapes and leaked salt columns under high stress. Energy dispersive X-ray (EDX) spectroscopic profiles supported that the changes were caused by significant increment and localization of [Na+] and [Cl] in the shoot. Atomic absorption spectra showed that [Na+]shoot/[Na+]root for P. tenuiflora maintained stable as the saline stress increased, but that for rice increased significantly.

Conclusion

In rice, NaHCO3 stress induced localization and accumulation of [Na+] and [Cl] appeared as the enlarged silica cells (MSC), the swollen corns (S-C), and the leaked columns (C), while no significant changes in P. tenuiflora.  相似文献   

15.
We show that induced synomones, emitted as a consequence of Murgantia histrionica activity on Brassica oleracea, are adsorbed by the epicuticular waxes of leaves and perceived by the egg parasitoid Trissolcus brochymenae. Leaves were exposed to M. histrionica females placed on the abaxial leaf surface. After 24 h, the leaves were treated mechanically using gum arabic, or chemically using chloroform, on the adaxial surface, and finally the adaxial surface was assayed with T. brochymenae by two‐choice tests in a closed arena. Wasp females responded to mechanically dewaxed cabbage leaf portions with feeding punctures and footprints (Ff) and with feeding punctures, oviposition and footprints (FOf), showing no effect of wax removal. In contrast, the removal of the epicuticular waxes from leaf portions close to FOf, and from leaves with oviposition and footprints (Of), determined the lack of responses by T. brochymenae. Solvent extracts of different treatments were bioassayed, but only FOf triggered parasitoid response. Thus the detection of oviposition‐induced synomones by the parasitoid depends on their adsorption by the epicuticular waxes. Mechanical wax removal from leaf portions contaminated with host footprints (f) also determined a lack of wasp responses, suggesting that the footprints might trigger the induction of a “footprint‐induced synomone” adsorbed onto the epicuticular waxes and exploited by the parasitoid. Leaf portions with the abaxial lamina previously dewaxed and then contaminated by footprints (D+f) of M. histrionica did not affect the parasitoid response, indicating that the abaxial epicuticular waxes are not directly involved in the chemicals induced by M. histrionica footprints.  相似文献   

16.
We report eight new mutants in Arabidopsis thaliana possessing altered leaf morphology and epicuticular wax. These were isolated from a T-DNA-mutagenized population using a visual screen for altered leaf reflectance, i.e. increased glaucousness or glossiness. The mutants were placed into three distinct classes based on alterations in overall plant morphology: knobhead (knb), bicentifolia (bcf), and wax. The four knb mutants formed callus-like growths in the axillary region of the rosette leaves and apical meristem, the two bcf mutants produced hundreds of narrow leaves, and the two wax mutants had leaves and stems that were more glossy than wild type and organs that fused during early development. Leaves of knb and bcf were more glaucous and abnormally shaped than wild type. Epicuticular wax crystals over knb and bcf leaf surfaces (where none were present on wild type) likely contributed to their more glaucous appearance. In contrast, the glossy appearance of the wax mutants was associated with a reduced epicuticular wax load on both leaves and stems. One representative from each phenotypic class was selected for detailed analyses of epicuticular wax chemistry. All three lines, knb1, bcf1, and wax1, had dramatic alterations in the total amounts and relative proportions of their leaf epicuticular wax constituents.  相似文献   

17.
《Plant Science Letters》1976,6(6):353-360
The effect of environmental conditions on the chemistry and morphology of Clarkia elegans leaf wax has been examined using gas liquid chromatography and scanning electron microscopy. Chemically the wax consists of a mixture of hydrocarbons, ketones, alkyl esters, aldehydes, primary alcohols and secondary alcohols of which nonacosane, nonacosan-15-one, hexacosyl hexadecanoate and tetracosyl hexadecanoate are the major co wax occurs in the form of smooth films, tubes, dendrites or plates depending upon the growth temperature. A comparison is drawn with the leaf waxes of Brassica species and the findings discussed in relation to the development of epicuticular wax layers.  相似文献   

18.
The effects of CO2 concentration on the morphological and anatomical characters of soybean (Glycine max) leaf were investigated by means of light microscopy and SEM. It was noticed that exomorphology did not show dramatic change, while stomatal density decreased with increasing CO2 concentration. Under SEM, no epicuticular wax was observed on both abaxial and adaxial sides of the control group as well as on adaxial side of the treatment group. However, leaf surface of abaxial side was noticed to be densely covered with microasterisk epicuticular wax when they were exposed to CO2-enriched environment. The epicuticular wax deposition was present in equal abundance on both stomatal and nonstomatal areas. Furthermore, leaf thickness increased significantly due largely to the origin of an extra layer of palisade in the treatment group. The results confirmed that CO2 enrichment might enhance cell division and induce greater quantity of epicuticular wax.  相似文献   

19.
大豆叶片结构对CO_2浓度升高的反应(英)   总被引:3,自引:0,他引:3  
应用光学显微镜和扫描电镜研究了CO2 浓度对大豆(Glycine m ax)叶片形态和解剖特征的影响。结果表明,叶片外部形态没有显著变化,而叶片气孔密度随CO2 浓度升高呈下降趋势。对照组叶片上下表面和处理组的上表面均无表面角质蜡层,而处理组的下表面覆盖有大量星状的表面角质蜡层,它们在气孔区和非气孔区的数量基本差不多。此外,还发现叶肉中增加了一层栅栏组织,从而使叶片明显增厚。结果证实,CO2 浓度增加将促进细胞分裂和表面角质蜡层的产生  相似文献   

20.
Tipuana tipu (Benth.) Kuntze is a tree from the leguminosae family (Papilionoideae) indigenous in Argentina and extensively used in urbanism, mainly in Southern Brazil. The epicuticular waxes of leaves and branch, and flower surface were studied by high temperature high resolution gas chromatography. Several compounds were characterized, among which the aliphatic alcohols were predominant in branch, leaves and receptacle. Alkanes were predominant only in the petals and the aliphatic acids were predominant in stamen. In branches and leaf epicuticular surfaces, six long chain wax esters series were characterized, as well as lupeol and b-amyrin hexadecanoates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号